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We review an approach for reconstructing oscillatory networks’ undirected and
directed connectivity from data. The technique relies on inferring the phase
dynamics model. The central assumption is that we observe the outputs of all
network nodes. We distinguish between two cases. In the first one, the observed
signals represent smooth oscillations, while in the second one, the data are pulse-
like and can be viewed as point processes. For the first case, we discuss estimating
the true phase from a scalar signal, exploiting the protophase-to-phase
transformation. With the phases at hand, pairwise and triplet synchronization
indices can characterize the undirected connectivity. Next, we demonstrate how
to infer the general form of the coupling functions for two or three oscillators and
how to use these functions to quantify the directional links. We proceed with a
different treatment of networks with more than three nodes. We discuss the
difference between the structural and effective phase connectivity that emerges
due to high-order terms in the coupling functions. For the second case of point-
process data, we use the instants of spikes to infer the phase dynamics model in
theWinfree form directly. This way, we obtain the network’s couplingmatrix in the
first approximation in the coupling strength.
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1 Introduction

1.1 The connectivity problem

Inferring network connectivity from observation represents one of the most challenging
data analysis problems. This task finds practical applications in many fields and particularly
in life sciences. For example, determining brain area connectivity is essential for studying
normal and pathological brain function. This brief review summarizes one of the existing
approaches to the connectivity problem. This approach is not general: it applies to the case of
oscillatory networks when each node represents an active, self-sustained oscillator. However,
as we argue below, the approach is natural for this case, and the results admit a clear
interpretation. The technique relies on the phase dynamics reconstruction from
observations; it assumes that the outputs of all network nodes are available.

Before proceeding with the approach’s description and discussion, we briefly formulate
how we understand the connectivity. We start by formulating an ensemble of N coupled
dynamical systems, the couplings are not necesseraly pairwise, but can include many-body
interactions. Suppose the dynamics of the kth node are described by
_xk � Fk(xk) + εHk(xk, x1, . . . , xN), where the vector xk consists of the state variables at
the node k (below we focus on the case of weak coupling, thus we introduce a parameter ε
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having the dimension of frequency). Notice that even a more generic
setup could be considered, where couplings themselves are described
by some differential equations. Vector functions Fk and Hk

determine the autonomous and the interaction dynamics of the
node k. Since the numbering of oscillators is arbitrary, for the sake of
brevity it is convenient to write, without loss of generality, the
dynamics equation for the first unit, i.e., to set k = 1 and omit one
index. Thus, we write

_x � F x( ) + εH x, x2, . . . , xN( ). (1)
This equation and its phase approximation version written

below help to quantify all incoming links 1 ← j, j = 2, . . . , N. If
the coupling term H depends explicitly1 on xj, we say that there
exists a structural link j→ 1. In other words, a structural link means
some physical connection, e.g., resistive coupling of electronic
circuits, synaptic or gap-junction neuronal coupling, connection
of brain areas via fibers, etc. Such connections are represented by an
explicit dependence in the dynamical equations, which is generally
directional (i.e., existing connection j → 1 does not imply the link 1
→ j and vice versa; if both links exist, their strengths generally differ).
Naturally, node 1 can have many incoming links. In this case, the
function H depends on many arguments. Below, we mainly
concentrate on the typical case of pair-wisely coupled networks when

H � ∑
j≠1

Hj x, xj( ), (2)

but in Section 2.3.4, also many-body (triplet) couplings will be
discussed shortly.

Even if the nodes k, j are not structurally connected, they may
exhibit correlated dynamics due to a common drive or indirect
coupling via a third node, etc. Different measures partially discussed
below quantify the degree of correlation or, in other words, the
functional connectivity. To illustrate the difference between
structural and functional connectivities, consider a simple motif
of three oscillators, where the second unit drives the other two, 1←
2 → 3. Obviously, units 1 and 3 are not structurally linked but may
be correlated, i.e., functionally connected.

Most important for us is the notion of effective phase
connectivity because it is precisely what the approach discussed
below yields. A characterization of oscillations with their phases (to
be discussed inmore details in Section 1.2 below) replaces dynamical
variables at each node xk with the phases φk. Generally, the phase
dynamics equation of the first node reads

_φ � ω + εh φ,φ2, . . . ,φN( ), (3)
where ω is the natural frequency, and h is the (phase) coupling
function. If h depends on φj, we say that there is an effective phase
connection j→ 1.We discuss the relation between functionsH and h
and the relation between structural and effective phase
connectivities in the next section after recalling the basic results
of the phase reduction theory. We emphasize that in the context of
the connectivity problem, the word “effective” sometimes means the

data-based estimation of the true connectivity. We use the term to
describe the connectivity as the true phase dynamics give it; as we
argue below, it generally differs from structural connectivity.

1.2 Basic facts about phase reduction

As already emphasized, the reviewed approach applies to
networks of self-sustained units. Although natural oscillators are
inevitably noisy or weakly chaotic, many analysis techniques rely on
the phase reduction theory, which is mostly easily formulated for
coupled limit-cycle oscillators (and then extended under some
approximations to other cases). In this Section, we briefly present
the main results of this theory. Thus, here we assume that isolated
systems possess stable limit cycles and, hence, exhibit periodic
oscillations. It is well-known that for such systems the phase
variable can be introduced obeying

_φk � ωk. (4)
It is important that the phase is defined both for the limit cycle

and its basin of attraction. The description of the dynamics in terms
of the phases means an immediate reduction of the problem
dimensionality: each limit-cycle oscillator, two- or
multidimensional, is now quantified by only one variable φk. The
dynamics of interacting units obeys Eq. 3 and the phase space of the
system is the N-dimensional torus, unless the coupling becomes too
strong and destroys the torus (Afraimovich and Shilnikov, 1983).
We underline that derivation of functions h from given H remains
an unsolved problem in the general case. The well-known theory
provides a recipe for the derivation in the first-order approximation
in the interaction strength, and even in this case the analytical
solution requires knowledge of phase sensitivity functions [see
detailed discussion by Nakao (2016)]. However, for network
reconstruction from data, this derivation is not needed. We only
need the general properties of functions h.

Let us assume that the coupling strength ε is small compared to
the frequency ε≪ ω, and express the function h in powers of ε. Eq. 3
becomes

_φ � ω + εQ1 φ,φ2, . . . ,φN( ) + ε2Q2 φ,φ2, . . . ,φN( ) +/ . (5)
In the limit of weak coupling, one keeps only the first-order term

Q1, and the general theory says, that for the pair-wise coupling, see
Eq. 2, this term reads

Q1 φ,φ2, . . . ,φN( ) � ∑
j>1

qj φ,φj( ). (6)

It means that in the weak-coupling limit, the pair-wise coupling
on the level of full equations results in the pair-wise coupling in the
phase model. This property is not preserved if the high-order terms,
i.e., terms ~ε2, ~ε3, . . . are not negligible. So, the analysis of the
analytically solvable case of three oscillators coupled pair-wisely in a
chain (i.e., only structural couplings 1 ↔ 2 and 2 ↔ 3 are present)
yields the second-order term Q2(φ, φ2, φ3) in the equation for the
first unit dependent on all three phases (Gengel et al., 2021), though
the first and third oscillators are not structurally linked: they interact
only through the second oscillator. This theoretical result confirms
earlier numerical observations (Kralemann et al., 2011; Kralemann
et al., 2014) demonstrating the difference between the structural and

1 Explicit dependence means that there exists at least one partial derivative
∂Hl/∂xjm that does not vanish identically, where indices l, m label
components of H and xj, respectively.

Frontiers in Network Physiology frontiersin.org02

Rosenblum and Pikovsky 10.3389/fnetp.2023.1298228

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2023.1298228


effective phase connectivity. We expect that third-order terms Q3

provide dependence on the phase of the lth unit interacting with the
first oscillator indirectly through twomediators, e.g., in the following
configuration, 1 ↔ n ↔ m ↔ l, and so on.

A remark is in order. Consider for a moment two oscillators.
The first-order phase approximation yields a general function of
two phases, Q1 = Q1(φ1, φ2). If the coupling is weak ε ≪ ω, then
one typically performs another approximation step, by averaging
the phase equation over the oscillation period 2π/ω and obtaining
the averaged coupling function (describing slow variations of the
phases) that depends on the slow phase difference only, ~Q1 �
~Q1(φ1 − φ2) (the Kuramoto-Daido form), see, e.g., Pikovsky et al.
(2001). This step essentially facilitates the theoretical treatment
of the phase dynamics, but using the Kuramoto-Daido form
instead of the general dependence may be an unnecessary
simplification for the connectivity inference from data.
Another useful representation of the phase dynamics is the
Winfree form. If the term H2 can be written as H2(x1, x2) =
sH2(x1, x2) = sh2(φ1, φ2), where s is a constant unit vector and we
substituted the variables x1,2 on the limit cycles as functions of
φ1,2, then one obtains

Q1 φ1,φ2( ) � Z φ1( )h2 φ1,φ2( ), (7)
where Z(φ1) is the phase sensitivity function for a perturbation in
direction s, or phase response curve (PRC). In many cases one
assumes that the driving term does not contain the driven
coordinates, i.e., h2(φ2) contains the driving phase only. In case
of more than two units, the sensitivity functions generally differ for
different inputs.

All real-world oscillators are noisy, and in the simplest case of
a state-independent noise we shall add a random term to the
right-hand side of Eqs 1–5. However, the main properties of the
phase dynamics remain, also for the case of weakly chaotic
oscillators.

In summary, the main idea of the approach reviewed in this
paper is to estimate phases from observed time-series data and
reconstruct Eq. 3 for each network node. These equations provide
effective phase connectivity that is close but not identical to the
structural one. Two factors render efficient reconstruction: 1)
phase representation is low-dimensional (there is only one
equation per unit), and 2) the function h on the right-hand
side has a relatively simple form (it can be represented as a
multiple Fourier series). This inference is possible if the data are
suitable for phase estimation; we discuss this case in the next
section. The situation differs if the data look like a sequence of
spikes. We address this problem in Section 3.

2 Case I: smooth oscillatory dynamics

2.1 From time series to phases

2.1.1 From time series to a protophase
The first step in the phase dynamics analysis is the phase

inference from the observed signals. Generally, observables are
functions of the state variables x. For periodic dynamics
(i.e., without coupling) these observables are periodic functions of
time, but under coupling, these observables are nearly periodic

signals with amplitude and phase modulations. An extraction of
the phase is simple, if at least two scalar observables y(1)

k (t), y(2)
k (t)

for a system k are available. In this case, a two-dimensional plot of a
trajectory on the plane (y(1), y(2)) is a nearly closed curve, and one can
characterize the phase by a coordinate along the curve. In the
simplest case when the curve is close to a circle, one can take θk �
arg[y(1)

k − 〈y(1)
k 〉 + i(y(2)

k − 〈y(2)
k 〉)] as such a coordinate. If the

curve is more complex, e.g., it has several loops, one can define
this coordinate as a normalized length along the curve,

θ � 2π
L t( ) − L ti( )
L ti+1( ) − L ti( )

(here ti are time instants at which the ith revolution completes; each
revolution corresponds to one oscillation). This approach ensures
that the obtained coordinate θ grows monotonically with time. A
complex waveform appears, e.g., in the analysis of an
electrocardiogram, where one heartbeat cycle consists of several
“waves.” For an advanced algorithm developed for the ECG analysis,
see Kralemann et al. (2013a).

The problem is less trivial if only one scalar observable yk(t) is
available. To perform the embedding, one needs to construct from
it the second observable. The method of choice in the literature is
obtaining the second time series by virtue of the Hilbert Transform
(King, 2009; Feldman, 2011): ~yk(t) � Ĥ[yk(t)]. The variable θ

based on the embedding (yk(t), ~yk(t)) is often called “Hilbert
phase” (quite often it is additionally assumed “by default” that θ is
an argument of a complex observable yk(t) + iĤ[yk(t)]). This
method works reasonably well for a nearly harmonic signal with a
weak and slow modulation of the phase and small amplitude
modulation. If the phase modulation is not slow and small, the
HT method is inaccurate but still used in many applications
because of its simplicity. Recently, an improvement of the HT
method has been suggested (Gengel and Pikovsky, 2019; Gengel
and Pikovsky, 2021; Gengel and Pikovsky, 2022). The procedure
implies an iterative approach: one takes the variable θ(1) based on
the embedding (yk(t), Ĥ[yk(t)]) as a first approximation (thus the
superscript 1), and uses it as a new time variable to perform a new
embedding (yk(θ(1)), Ĥ[yk(θ(1))]), where now in the computation
of HT one considers the signal as a function of θ(1) instead of a
function of time. This step begets a new, improved coordinate θ(2),
etc. Gengel and Pikovsky (2019), Gengel and Pikovsky (2021), and
Gengel and Pikovsky (2022) demonstrated that for a signal with a
pure phase modulation, this iterative procedure converges,
allowing for a perfect inference of a phase. However, if
amplitude modulation is also present, the inference is
inaccurate. Developing a reliable method for phase and
amplitude demodulation of a signal remains a challenging
problem; see also Matsuki et al. (2023).

The variable θ discussed above is monotonic in time and grows
by 2π at each oscillation, but it is not the phase because the genuine
phase of an oscillator has a special property—it grows, according to
Eq. 4, uniformly in time, while the variable θ obeys

_θ � ω + f θ( ), (8)
where the function f(θ) depends on the form and selection of the
observables y and on the method of its extraction. To emphasize this
difference, variable θ is called protophase.
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2.1.2 From a protophase to the phase
The transformation from a monotonic protophase to the true

phase is a necessary and straightforward step in the phase reduction
theory2. Writing dφ

dt � ω � dφ
dθ

dθ
dt, one obtains the desired

transformation

dφ
dθ

� ω
dθ
dt

[ ]−1
� σ θ( ), or φ � ∫θ

0
σ θ′( )dθ′. (9)

Finding the transformation function σ(θ) in data analysis is non-
trivial: we must estimate it from a noisy trajectory. Hence, we must
compute an average of dt/dθ over the trajectory. Kralemann et al.
(2007) and Kralemann et al. (2008) demonstrate an efficient
algorithm that avoids numerical differentiation. Let the discretely
sampled protophases be θ̂j, j = 1, . . . , Np, where Np is the number of
points. Then the transformation reads:

φ � θ + 2∑M
n�1

Im Sn einθ − 1( )/n[ ], where Sn � N−1
p ∑Np

j�1
einθ̂j . (10)

Here M should not be chosen too high to avoid overfitting.
Numerical tests by Kralemann et al. (2008) demonstrate that the
protophase-to-phase transformation (Eq. 10) provides a nearly
homogeneously growing phase. It removes the deviations from ωt
with the characteristic time 2π/ω, but preserves low-frequency
features like phase diffusion. It is important that the
transformation (Eq. 10) is invertible and therefore not a
“filtering” or “smoothing.”

2.2 Undirected connectivity

The main qualitative effect of weak interaction between self-
oscillatory systems is a possibility of their synchronization
manifested by frequency and phase locking. So, for two periodic
oscillators, which, being uncoupled, have close but different
frequencies, synchronization means that the frequencies become
precisely equal if the interaction is switched on and its strength
exceeds some threshold. Equality of frequencies means boundness of
the phase difference ψ = φ1 − φ2, i.e., |ψ| < const. Generally, if the
frequencies of uncoupled systems fulfill nω1 ≈ mω2, where n, m are
some positive integers, the interaction may result in synchronization,
which can be defined according to frequency and phase locking
conditions, nΩ1 = mΩ2 and |ψn,m| = |nφ1 − mφ2| < const,
respectively; here, Ω1,2 denote frequencies of coupled systems
(observed frequencies). In a noisy environment, ψn,m remains
constant for long time intervals, but can exhibit relatively rapid ± 2π
jumps, called phase slips. Then, the locking condition |ψ| < const does
not hold, but the distribution of ψn,m mod 2π remains non-uniform.
Note that phase slips also appear in a noise-free case when the oscillators
are slightly outside the border of synchrony. A measure of the non-
uniformity of the distribution of the phase differences quantifies thus
phase coherence. In otherwords, it quantifies how far the system is from

the asynchronous case of two uncoupled oscillators where the
distribution of ψn,m mod 2π is uniform.

The corresponding measure can be the entropy of the
distribution or the amplitude of its first Fourier mode. The latter
is known as the phase locking value or synchronization index and is
most popular because it has no parameters (Rodriguez et al., 1999;
Mormann et al., 2000; Rosenblum et al., 2001). For the general case
of n: m locking, where n, m are some positive integers, this
measure is

γn,m � |〈exp i nφ1 −mφ2( )[ ]〉|, (11)
where 〈·〉 means averaging over time. Obviously, 0 ≤ γn,m ≤ 1; this
index quantifies the constancy of the phase difference. Since the ratio
between the frequencies of the uncoupled systems is unknown,
though it can be roughly estimated, one tries different combinations
of n, m and picks the values which maximize γn,m.

For a network, computing the index γn,m, we can assign its value
to the link between these nodes. This procedure provides an
undirected network of functionally connected units but does not
yield reliable information about the underlying physical
connections. To illustrate this issue, let us consider a motif of
three units coupled in the following configuration: 1 ↔ 2 ↔ 3. It
is known that the 1st and 3rd oscillators can synchronize, while the
central unit 2 remains asynchronous. This state is denoted as remote
synchrony, see Bergner et al. (2012); its appearance can be explained
by the second-order phase reduction that yields the coupling term
~ε2 dependent on φ1 − φ3 (Kumar and Rosenblum, 2021). For this
state, quantifying functional interrelations through the index γ will
yield a strong link 1 ↔ 3 and no links for the pairs (1, 2) and (2, 3).

FIGURE 1
Synchronization index as a function of frequency mismatch in a
system of two coupled van der Pol oscillators, see Eq. 12. The solid
black line shows the index computed from the true phases; this
computation requires knowledge of the systems equations and
serves as a benchmark. The vertical dashed line marks the border of
the synchronization domain. We see that computing γ from
protophases 1) yields the protophase-dependent results, and 2) the
index value can be essentially smaller than one for synchronous states.
Next, we see that the protophase-to-phase transformation provides
an essential improvement.

2 Knowledge of the protophase suffices if only the frequency of the signal is
required, since 〈 _θ〉 � 〈 _φ〉, where 〈·〉 denotes averaging over time.

Frontiers in Network Physiology frontiersin.org04

Rosenblum and Pikovsky 10.3389/fnetp.2023.1298228

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2023.1298228


With Figure 1 we illustrate the importance of the protophase-to-
phase transformation for computation of γ. See Kralemann et al.
(2008) for analytical examples demonstrating that calculating the
index from protophases can yield either an under- or overestimated
value. Here, we generate the signals by simulating the dynamics of
two coupled van der Pol oscillators:

€x1,2 − 3 1 − x2
1,2( ) _x1,2 + 1 ± Δω( )2x1,2 � 0.1 _x2,1 − _x1,2( ). (12)

Taking x1,2 as observables, we compute the Hilbert protophases
θ(H)
1,2 and length protophases θ(L)1,2 . Then we compute γ1,1 from
protophases and transformed protophases. For the benchmark, we
take the index calculated from true phases3. The results
demonstrate that the index γ depends on the chosen
protophase, while the protophase-to-phase transformation
eliminates this ambiguity and crucially improves the estimate.
Finally, we mention that the index is large outside of the
synchronization domain, which means that it is not a measure
of synchronization but of the interaction strength reflected in
phase correl ations.

The definition of the synchronization index can be easily
extended to quantify triplet interactions. Consider triplet locking
defined via the condition

|nφ1 +mφ2 + lφ3|< const, nω1 +mω2 + lω3 � 0, (13)
where integers n, m, l can be both positive and negative, while the
conditions of the pairwise locking are not satisfied for any pair of
units (Kralemann et al., 2013b). The corresponding index is

γn,m,l � |〈exp i nφ1 +mφ2 + lφ3( )[ ]〉|. (14)

We emphasize that many-body interaction when coupling terms
depend on more than two phases naturally appears in oscillatory
networks, see Pikovsky and Rosenblum (2022) for a review and
Nijholt et al. (2022) for an experimental illustration.

A natural question is: what is the advantage of index γn,m over
the usual correlation directly computed from the time series without
phase estimation? The reason is twofold. First, the synchronization
index distinguishes the locking states (or, more precisely, states close
to locking) of different orders. Second, if the oscillators are noisy or
weakly chaotic, the amplitudes may strongly fluctuate while the
phases can lock. Thus, a measure exploiting phases is more sensitive
to interaction.

2.3 Directed connectivity

Determination of the true structural connectivity of a network
requires knowledge of the state space Eq. 1. One can compute the
norm of the corresponding coupling function H as a measure of the
connection’s strength. So the effect of the jth node on the first one is
quantified by ‖H(x, xj)‖. However, such quantification is not
complete since the effect of the forcing depends not only on the
force’s strength but also on the system’s sensitivity to this influence.
Anyway, reconstruction of Eq. 1 from scalar data is hardly feasible.

In contradistinction, inference of the phase dynamics Eq. 3 is
possible; some limitations are discussed below. In the rest of this
section, we treat separately the cases of two, three, and more than
three units.

2.3.1 Two oscillators
Suppose we observe two oscillators and register two observables

y1,2. Suppose also that these observables are suitable for phase
estimation. Then, we perform a two-step procedure for each
observable: first, we compute protophases exploiting an
appropriate technique and then execute the protophase-to-phase
transformation. The next step is to estimate phase derivatives (the
instantaneous frequencies). To this end, we first unwrap each phase
to make it a monotonically growing function of time and then apply
a Savitzky–Golay filter, i.e., for each time point, perform a local
polynomial fit in a running window, and obtain the derivative at this
point from the fitted curve. Local fitting is a smoothing filter, making
this approach especially useful for noisy data. Having phases and
their derivatives, we find the right-hand sides of coupled equations

_φ1,2 � ω1,2 + Q 1,2( ) φ1,2,φ2,1( )
(here, it is convenient to write the index of the first system
explicitly)4. There are at least two ways to achieve this. The first
one is to use the fact that the coupling function is 2π-periodic in both
arguments, represent it by a double Fourier series, and find the
coefficient of this series by the least mean squares fit. The second
one is to use the kernel density estimation to obtain the desired
function on a rectangular grid. Note that practically we compute the
r.h.s. of phase equations and then represent it as a sum of the constant
non-zero term (frequency ω) and zero-mean function5.

Now, we introduce an index d1→2 quantifying the directionality
of coupling (Rosenblum and Pikovsky, 2001). It is defined so that
d1→2 = 1 for unidirectional coupling from the first to the second unit,
d1→2 = −1 for the opposite case, and −1 ≤ d1→2 ≤ 1 for bidirectional
coupling. The directionality index is

d1→2 � c2 − c1
c1 + c2

,

where c1,2 = ‖Q(1,2)‖/ω1,2 and ‖Q(1,2)‖2 � ∑ |F (1,2)
n,m |2, where F (1,2)

n,m

are the Fourier coefficients of the corresponding zero-mean function
Q(1,2). Coefficients c1,2 provide a relative dimensionless measure of
the external action on a unit. For effects of noise and data length on
the efficiency of this technique, see Smirnov and Bezruchko (2003).
Comparison of this approach with the partial directed coherence can
be found in Smirnov et al. (2007).

We conclude the discussion of the two-units case with two
remarks. 1) Inference of a function of two variables φ1, φ2 requires
that the given points scatter over the square domain (toroidal

3 See Gengel et al. (2021) for the algorithm providing coupled oscillator
phases.

4 We mention that the phase coupling functions Q(1,2) generally contain
high-order terms in the coupling strength, cf. Eq. 5.

5 This representation assumes that Q has zero mean, which is generally
false. The coupling function can have a constant term that scales with the
coupling strength. If several observations for different though unknown
coupling values are available, it is possible to infer the correct value of the
natural frequency, see Kralemann et al. (2007) and Kralemann et al. (2008).
In the case of only one observation, assigning the constant term of the
r.h.s. to ω seems to be the only option.
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surface) 0 ≤ φ1,2 < 2π. In other words, the systems shall not
synchronize. In the opposite case, the trajectory is just a curve on
the surface of the torus, and the fitting procedure fails. 2) A widely
used approach is reconstructing the coupling function as a function
of the phase difference, i.e., in the Kuramoto-Daido form. Such
inference requires less numerical effort than recovering the general
function of two phases, but the price is that one has to choose the n:
m ratio beforehand.

2.3.2 Three oscillators
For a motif of three oscillators, we first calculate three

protophases, then perform three times the transformation to
phases, and infer the coupling functions exploiting the least
mean squares fit6. To be exact, by fitting, one finds the
coefficients of the Fourier representation, e.g., for the first oscillator:

_φ1 � ∑
l1 ,l2 ,l3

F l1 ,l2 ,l3 exp i l1φ1 + l2φ2 + l3φ3( )[ ].
Then we set ω � F 0,0,0 and assign the sum of all terms except for

the constant one to Q(1). To quantify a link, e.g., a pairwise action
from 2 → 1, we compute a partial norm

P2
1←2 � ∑

l1 ,l2≠0

|F l1 ,l2 ,0|2. (15)

Quantification of the joint action of units 2 and 3 on the first one is
given by

T 2
1←2,3 � ∑

l1 ,l2≠0,l3≠0

|F l1 ,l2 ,l3|2. (16)

We emphasize that one can perform a pairwise analysis, e.g.,
reconstructing the coupling function Q(1) from phases φ1, φ2 as
described in the previous section. In this way, one ignores the third
oscillator. The norm of the reconstructed function ‖Q(1)‖ generally
differs from P1←2; indeed, the former one captures both direct and
indirect causal effect from 2 to 1, while the latter is less sensitive to
indirect effects.

2.3.3 More than three oscillators
An extension to the case of N > 3 units seems straightforward.

However, by reconstructing a high-dimensional coupling function,
we face the curse of dimensionality. For a successful inference, we
must fill the N-dimensional hypercube, which requires large data
sets. A possible solution is to use triplet analysis (Kralemann et al.,
2014). Suppose we want to quantify a link from unit k to unit j. To
this goal, we reconstruct the equation

_φj � ωj + Q j,k,m( ) φj,φk,φm( )
for allm ≠ j, k, i.e., for all possible triplets. Then, from each triplet we
obtain partial norm

~T 2

j←k m( ) � ∑
lj ,lk≠0

F j( )
lj ,lk,0

∣∣∣∣∣∣ ∣∣∣∣∣∣2 (17)

and take

T 2
j←k � min

m

~T 2

j←k m( ) (18)

as the final triplet-based measure of the link strength. Figure 2
illustrates the idea.

Numerical experiments (Kralemann et al., 2014) with small
networks (N = 5 and N = 9) demonstrate that the triplet analysis
provides a very good separation between existing and non-existing
connections. Moreover, the results confirm that most of the non-
existing links revealed by the technique are not artifacts but reflect
causal information flowmediated by indirect driving. This driving is
due to terms emerging in the high-order phase reduction.

The technique was thoroughly tested by Rings and Lehnertz
(2016) for networks of weakly chaotic Rössler oscillators, also in the
presence of noise. The main result is that, for networks with high
mean degrees and a larger number of nodes (N ≫ 10), the triplet
analysis does not appear to provide information about directional
couplings other than the one obtained with the pairwise analysis.

2.3.4 Reconstruction of large networks
The generalization of the presented techniques to the case of

large networks is straightforward. So, Pikovsky (2018) has treated
three basic models of coupling in large networks (below, we assume
that the initial preprocessing, including protophase extraction and a
transformation to the phase, is completed):

_φk � ωk + ∑N
j�1;j≠k

Γkj φj − φk( ), (19)

_φk � ωk + ∑N
j�1;j≠k

Qkj φj,φk( ), (20)

_φk � ωk + ∑N
j�1;j≠k

∑N
l�1,l≠k,l>j

Gkjl φj,φk,φl( ). (21)

Here Eq. 19 describes a so-called Kuramoto-Daido network with
arbitrary and generally different pairwise coupling functions depending
on the phase differences; Eq. 20 describes a network where pairwise
coupling functions are general 2π-periodic functions of the phases; Eq.
21 describes a hypernetwork with triplet interactions.

As the first step, we calculate from the time series of phases their
time derivatives _φk [themost common approach here is to use Savitzky-
Golay filtering, see Ahnert and Abel (2007)]. In the next step, we
represent the coupling functions as sums of elementary sin and cos
functions (in the case of the Kuramoto-Daido coupling) or as sums of
products of these functions. For example, the coupling function Qkj in
Eq. 20 is represented as

Qkj φj,φk( ) � ∑2M
m�1

∑2M+1

l�1
qkjmlfm φj( )fl φk( ), (22)

where

f2n−1 x( ) � cos nx, f2n x( ) � sin nx, f2M+1 � 1,
n � 1, . . . ,M.

Parameter M defines the number of harmonics in the test
functions; it should be adjusted according to complexity of the
coupling function. Exploiting this representation, one performs
minimization of the squared error for the discrete time series φk(n)

6 Kernel density estimation in three dimensions is computationally
inefficient and difficult to interpret.

Frontiers in Network Physiology frontiersin.org06

Rosenblum and Pikovsky 10.3389/fnetp.2023.1298228

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2023.1298228


∑
n

_φk − ~ωk −∑
j

Qkj φj,φk( )⎛⎝ ⎞⎠2

,

where Qkj(φj, φk) is substituted using Eq. 22, and then finds
unknown coefficients q and frequencies ~ωk by virtue of singular
value decomposition. We illustrate the performance of the approach
for the Winfree-type model with random coupling functions
(containing p = 3 harmonics) and a fully connected random
network of 16 oscillators in Figure 3.

Similar approaches to reconstruction of large oscillatory
networks have been discussed by Casadiego and Timme (2018),
Panaggio et al. (2019), Tokuda et al. (2019), Novaes et al. (2021), and
Rings et al. (2022). We mention that there is still a problem of
discriminating small couplings from nonexisting ones. Generally,
one obtains false positive and false negative interactions. See

Cecchini et al. (2021) for an extended analysis of relations of
these errors to the network structure.

3 Case II: pulse-like oscillatory
dynamics

Suppose we observe neuronal spiking, or the data we measure
looks like spiking, so reducing the signals to point processes is
appropriate. If it is reasonable to assume the self-sustained activity,
then the proper model is that of pulse-coupled integrate-and-fire
units7. In this one-dimensional model, the phase of each unit grows
uniformly, _φk � ωk. When the phase φk attains 2π, the unit issues a
spike, and its phase is instantaneously reset to zero.

3.1 Undirected connectivity

Suppose we deal with two units and know the times at which
they fire. Without loss of generality, we say that phase is zero when a
unit spikes, and it grows to 2π within an inter-spike interval. The
simplest way to quantify the degree of synchrony for two units is to
approximate their phases linearly between the spikes and compute
the synchronization index. For advanced techniques focused on
analysis of spike train data, see Kreuz et al., 2007, Kreuz, 2011, and
Satuvuori et al., 2017.

3.2 Directed connectivity

Here, we discuss the connectivity inference for the case when a
network of pulse-coupled oscillators can reasonablymodel the system,
and the available data represent sequences of spikes (Cestnik and
Rosenblum, 2017).We assume that the coupling is sufficiently weak to
justify the phase description. Next, we suppose that a unit’s phase

FIGURE 2
Triplet analysis of networks with N > 3 oscillators. Suppose we quantify the link 1→ 3 absent in the given configuration. However, if we estimate the
link strength using Eq. 17 exploiting the triplet (3, 1, 5), shown by the orange color in (A), we obtain a non-zero value, indicated by a dashed line. The
explanation is that units 1 and 3 are connected through unit 2, and this connection is not captured by the triplet used. We obtain amuch better estimation
using the triplet (3, 1, 2) (B). Notice that the resultingmeasure is always positive. Therefore, takingminimumover all triplets, see Eq. 18, yields the best
estimation.

FIGURE 3
Results of the reconstruction of the coupling constants for one
oscillator in the random network (Eq. 20) using 5,000 observation
points. Norms of the reconstructed coupling functions are plotted vs.
the true ones. Square, plus, and circle symbols correspond toM=
1,M= 2, andM= p= 3, respectively. Dashed lines help to see validity of
a linear relation between the reconstructed and true norms. For the
proper numberM= 3 of explored harmonics the reconstruction is very
good.

7 Integrate-and-fire system is the simplest representation of a relaxation
oscillator.
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response curve (PRC) is the same for all incoming connections,
though PRCs of different units generally differ. We describe
individual units by the integrate-and-fire model. It is, without
interaction, the phase of each unit grows uniformly, _φk � ωk.
When the phase φk attains 2π, the unit issues a spike, and its
phase is instantaneously reset to zero. At this moment, the unit k
sends a stimulus through all outgoing links and thus kicks all units
connected to it through these links. When unit j receives a kick from
unit k, its phase is instantaneously reset according to its PRC Zj(φ):

φj → φj + εjkZj φj( ),
where coefficient εjk quantifies the strength of the link k → j.
Generally, εjk ≠ εkj.

In our approach, we choose one oscillator (let it be the first one)
and consider all its incoming connections. To simplify the notations,
we omit the index 1, so for the incoming links we rename ε1k by εk,
with k = 2, 3, . . . , N. Using an iterative procedure described below,
we infer this oscillator’s frequency ω, PRC Z, and εk. Next, we
perform the same analysis for all other units.

We denote the inter-spike intervals for the chosen (first) unit as
Tm, wherem = 1, 2, . . . ,M andM + 1 is the number of spikes in the
pulse train of the first unit. We write the following equations for the
phase evolution within each interval Tm:

ωTm +∑N
k�2

εk ∑nm k( )

l�1
Z φ k,l( )

m( ) � 2π. (23)

Here φ(k,l)
m is the phase of the first unit at the instant when it

receives the lth spike from the unit k, within the inter-spike interval
numberm; nm(k) is the number of incoming stimuli from the unit k
within interval Tm. For sufficiently large M, these equations can be
solved by iterations to provide unknown ω, εk, Z, see Cestnik and
Rosenblum (2017).

The key idea for solving Eq. 23 is as follows. Suppose for a
moment that we know phases φ(i,l)

m and coupling coefficients εk.
Representing Z(ϕ) as a finite Fourier series, we obtain the
overdetermined linear system for unknown Fourier coefficients
(provided M > 2NF + 1, where NF is the order of the Fourier
expansion). Suppose, vice versa, that we know phases and PRC; then
we obtain a linear system to find coupling coefficients εk. These
observations suggest a process to solve the problem: we start with
some initial estimates for φ(i,l)

m , εk and obtain the first estimates for
Z, ω. Next, we use the first estimates for Z, ω to obtain second
estimates for φ(i,l)

m , εk, etc. Since the coupling coefficients and PRC
enter the phase dynamics equation as a product, we obtain these
quantities up to a constant factor. The numerical tests show that the
iterative procedure converges for the random initial distribution of
εk or equal values εk = ε. The initial phase is taken as linearly growing
within the inter-spike interval. The next iterations are piece-wise
linear: the phase grows linearly between the incoming spikes and
changes instantaneously when these spikes arrive. Suppose we
compute the phase at the end of an inter-spike interval for some
iteration; we denote this phase as ψm,i, where m, i label the inter-
spike intervals and the iteration, respectively. ψm,i is calculated
according to the left-hand side of Eq. 23, using ω, εk, Z from the
previous iteration. Since the latter values are not exact, generally ψm,i

≠ 2π. The outcome of this fact is twofold. First, we rescale the phase
by 2π/ψk,i. Second, we use the standard deviation σi = std(ψm,i − 2π)

as a measure of convergence: if σi decreases with iterations, then the
results are reliable. Furthermore, one can reconstruct the same
network many times, starting from different initial values of the
coupling strength and checking the convergence. If different initial
values yield close results, then the latter can be trusted.

The tests demonstrate that the technique is robust and capable of
dealing with relatively short data (several hundreds of spikes suffice).
If the coupling is not weak enough, the estimation of the network
connectivity remains correct, but the obtained PRC becomes
amplitude-dependent. The method works well unless the nodes
synchronize. It may also fail in case of sparse networks where one
can expect purely periodic nodes. Indeed, the iterative procedure
requires some variability in the drive. However, noise in realistic
networks enhances the reconstruction.

4 Discussion

In this mini-review, we presented one line of a broad field of
research aiming at network inference from observations. The
presented approach explicitly relies on the coupled oscillation
theory. It is, therefore, suitable only for the case where all network
nodes are self-sustained oscillators, either noisy periodic or weakly
chaotic. An additional crucial requirement is that each node is
observed and the observables are appropriate for phase estimation.
It is not easy to verify these conditions in practice, which is a weak
point of the presented approach. However, if the assumptions used are
correct, the approach allows for a straightforward interpretation of the
results and yields a reasonable inference of the structural connectivity.
As important applications, we mention analysis of the interaction
between cardiovascular and respiratory systems in humans
(Kralemann et al., 2013a) and between cardiac, respiratory, and
delta brain rhythms in anesthetized rats (Musizza et al., 2007), as
well as use of coupling functions to reveal microvascular impairment
in treated hypertension (Ticcinelli et al., 2017). A difficult problem is
the nonstationarity of real-world data, see Stankovski et al. (2012) for
an estimation of time-evolving coupling. Finally, we mention the
assessment of the statistical significance of the inference. The typical
approach implies comparing the obtained results with those for the
surrogate data, see, e.g., Andrzejak et al. (2003). A discussion of the
corresponding techniques may be the subject of a separate review;
here, we only mention a simple procedure exploited by Kralemann
et al. (2013a) for the bivariate case. To analyze the significance of the
coupling function estimation, they compared this function with those
obtained for cardiac and respiratory time series taken from different
subjects using a similarity index, which quantifies the similarity of
forms of two two-dimensional functions.

Another popular approach exploits information-theoretical
measures, see, e.g., Hlaváčková-Schindler et al. (2007), Faes et al.
(2011), Xiong et al. (2017), and Krakovská et al., 2018. Multiple
techniques from this group do not assume that one deals with self-
sustained systems and have, therefore, a broad field of applications, e.g.,
they can be applied to networks consisting of both active and passive
units. However, the interpretation of results is complicated. The
detected information flows can be interpreted as functional
connectivity, which is generally directed, because the information-
theoretical measures are asymmetric, contrary to cross-correlations.
This functional connectivity generally differs from genuine physical
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connections (i.e., the inference procedure can yield links that are not
structural according to our definition). Finally, we mention a hybrid
approach where one evaluates the directionality of interaction by
applying the information theory approach to phases (Paluš and
Stefanovska, 2003; Vlachos et al., 2022). For a review of techniques
originating from different approaches, see Lehnertz (2011), Rings and
Lehnertz (2016), Siggiridou et al. (2019), Moraffah et al. (2021), Shojaie
and Fox (2022), and Runge et al. (2023). Unfortunately, a detailed
comparison of all existing techniques is missing because it requires
much effort, publically available codes, and well-designed test models.
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