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Epilepsy is a neurological disorder characterized by recurrent seizures, affecting
over 65 million people worldwide. Treatment typically commences with the use
of anti-seizure medications, including both mono- and poly-therapy. Should
these fail, more invasive therapies such as surgery, electrical stimulation and focal
drug delivery are often considered in an attempt to render the person seizure free.
Although a significant portion ultimately benefit from these treatment options,
treatment responses often fluctuate over time. The physiological mechanisms
underlying these temporal variations are poorly understood, making prognosis a
significant challenge when treating epilepsy. Here we use a dynamic network
model of seizure transition to understand how seizure propensity may vary over
time as a consequence of changes in excitability. Through computer simulations,
we explore the relationship between the impact of treatment on dynamic
network properties and their vulnerability over time that permit a return to
states of high seizure propensity. For small networks we show vulnerability
can be fully characterised by the size of the first transitive component (FTC).
For larger networks, we find measures of network efficiency, incoherence and
heterogeneity (degree variance) correlate with robustness of networks to
increasing excitability. These results provide a set of potential prognostic
markers for therapeutic interventions in epilepsy. Such markers could be used
to support the development of personalized treatment strategies, ultimately
contributing to understanding of long-term seizure freedom.
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1 Introduction

The response to treatment in epilepsy–such as anti-seizure medication (ASM),
neurostimulation, or surgery - often fluctuates over time. Most clinical studies in this
context have examined this with respect to the overall long-term probability of seizure
freedom for people with epilepsy (e.g., probability of no seizures for a period of at least
1 year) (Brodie et al., 2012; Chen et al., 2018). On shorter time-scales, perhaps the most
prominent example of a transient, declining change in treatment outcomes is the so-called
“honeymoon effect”. This is broadly characterized by a period of significant reduction in
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seizure frequency following the intervention: the “honeymoon”
period, which can last from a couple of weeks to several months.
By definition, the honeymoon period is followed by an increase in
seizure frequency, sometimes to levels at least as high as those prior
to the intervention (Boggs et al., 2000). Understanding mechanisms
that contribute to this phenomenon are therefore critical for
improving outcomes for people with epilepsy.

For anti-seizure medications (ASMs), the honeymoon effect
(also referred to as acquired tolerance) is most commonly
observed in benzodiazepines. As a result they are generally
considered unsuitable for use as long-term treatments (Riss et al.,
2008). However, people with epilepsy are known to develop
tolerance to a wider range of medications (Löscher and Schmidt,
2006; Abou-Khalil et al., 2008). One study published in 2000 saw
that as many of 22 out of 80 patients experienced a return to at least a
baseline seizure frequency after an initial positive response to
medication (Boggs et al., 2000). Animal studies have suggested
seizure type may also affect the likelihood of tolerance to certain
ASMs, however little supporting evidence exists in humans (Löscher
et al., 1996; Löscher and Schmidt, 2006). Further, there is the
phenomenon of “cross-tolerance”. Here, tolerance to one
medication may lead to tolerance to another (Abou-Khalil et al.,
2008). This observation could support the notion that tolerance
emerges due to adaptation of the underlying mechanisms of seizure
generation and propagation.

In the context of epilepsy surgery, patients undergoing resective
surgery often experience a relapse in seizures following an
apparently successful period of remission (De Tisi et al., 2011;
Petrik et al., 2021). Rates of seizure recurrence and surgical
success rates are highly heterogeneous, depending both on the
type of seizures experienced, the presence (or otherwise) of
visible brain lesions and the nature of the surgery performed
(Téllez-Zenteno et al., 2005). Contributing factors can include
incomplete resection of the epileptogenic zone, as well as the
emergence of new or previously-undetected epileptogenic
networks. In this latter scenario, seizures of a different nature to
those experienced prior to surgery are commonplace (Petrik et al.,
2021). Onset of epilepsy during the first year of life has been
associated with late seizure relapse following apparently
successful surgery (Petrik et al., 2021), supporting the idea that
some brains may have a more ingrained tendency to ictogenicity.
Other studies have also shown that seizure recurrence within
6 months of surgery is associated with people whose seizures
began earlier in life (Goellner et al., 2013).

Mathematical modelling approaches constitute a powerful tool
to investigate how putative physiological factors could drive changes
in seizure propensity (Touboul et al., 2011; Goodfellow et al., 2012;
Petkov et al., 2014; Jirsa et al., 2017; Proix et al., 2017; Sinha et al.,
2017; Olmi et al., 2019; Junges et al., 2020; Gerster et al., 2021).
Typically these models endow regions within a network structure
with a specific mechanism describing a process of interest (e.g., a
transition into a seizure state). Further, the network structures are
often inferred or estimated directly from imaging or
neurophysiological data (Wang et al., 2014; Chiarion et al., 2023).

Given the relationship between hyperexcitability and seizures,
these models typically consider the role of excitability for creating
the conditions (or likelihood) for synchronised activity (i.e., a proxy
for seizure-like activity). At the macroscale, it is important to

disambiguate “excitability” from the activity of excitatory
neurons. In this context, neural mass models or mean-field
models are typically used to consider the impact on emergent
excitability of the balance between excitatory and inhibitory
populations. This overall balance has been explored in general
terms with respect to seizure generation and termination, and
more specifically in the context of seizure-likelihood during
treatment with ASM (Kramer et al., 2012; Jiruska et al., 2013;
Jirsa et al., 2014; Meisel et al., 2015).

We have previously used dynamic network models of seizure
transition to simulate and predict the effects of treatment strategies
(Woldman et al., 2019; Junges et al., 2020). In these model
frameworks, seizure propensity is fundamentally impacted by a
combination of local brain excitability and network configuration.
Some key aspects of dynamic brain networks (as represented in these
models) include seizure propensity, as well as robustness to change,
i.e., how robust a state of low seizure propensity is to potential future
changes in network reconfiguration and/or local excitability.

Three scenarios for response to treatment are outlined in
Figure 1. The first (Scenario A) describes an effective treatment
regime in which seizure frequency is reduced to a sustained extent
following the onset of treatment. While a temporary reduction in
seizure count following treatment may be attributed to natural
variation in seizure rates (Scenario B), observations of initial

FIGURE 1
Some potential responses to epilepsy treatment over an arbitrary
time scale and an arbitrary scale of seizure risk. Seizure risk is
represented on the y-axis and time on the x-axis. Time of treatment
onset is markedwith a vertical dashed purple line, and a threshold
for seizure freedom is marked with a horizontal dashed grey line. In
scenario (A), treatment reduces seizure risk below the seizure
freedom threshold and risk remains low. In scenario (B), seizure risk is
naturally fluctuating over time. Treatment does not affect the seizure
risk, but fluctuations align with treatment onset by chance. In scenario
(C), treatment initially reduces seizure risk to the same extent as in
scenario (A), but seizure risk gradually returns to the initial pre-
treatment level. This corresponds to the honeymoon effect and is the
scenario we propose a framework to describe in this study. Note that
in practice scenarios (B,C) may be difficult to disambiguate: the
seizure freedom threshold is crossed at the same times in both cases.
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success of treatment with a later return of seizures suggest some
mechanism by which the brain adapts towards increased seizure
risk (Scenario C).

The trends in seizure propensity observed over extended periods
of time post treatment suggest a diversity of neurophysiological
mechanisms may contribute to the return of seizures in people with
epilepsy. Whilst a comprehensive exploration of such mechanisms
using a mathematical modelling framework is unfeasible, we can use
this framework to estimate the effects of general neurophysiological
alterations in seizure propensity. For example, exploring how a brain
associated with certain model parameters responds to a
homogeneous increase in excitability can help us to better
understand, and potentially predict, seizure return. Such a
hypothesis might be more representative of some cases than
others (e.g., generalized versus focal epilepsies), but can
nonetheless help identifying features strongly associated to
changes in seizure propensity, as well as serve as a basic
framework that can be extended to more specific scenarios.

In this study, we systematically explore the relationship between
properties of brain networks and the response of these networks to a
drive towards increased seizure propensity (considered as an
increase in overall excitability). These network properties range
in complexity from simple, such as average clustering coefficient
or efficiency, to more complex features such as the first transitive
component or trophic incoherence. They capture a variety of
features of networks which may be relevant for prognosis, for
example, the combined effect of network directionality and
small-worldness. A drive towards increased seizure propensity
may represent the combined effect of neurophysiological
mechanisms that underpin transient responses to treatment.
Within our proposed framework, we assess robustness to these
mechanisms through quantification of the speed and extent that
seizure propensity increases when a perturbation is applied, and how
properties of the network can impact these changes.

2 Materials and methods

We consider a phenomenological model of seizure transition
that permits the existence of two states, reflecting seizure-like
behaviour and background activity respectively (Kalitzin et al.,
2010; Benjamin et al., 2012). The model is a modified version of
the normal form of the subcritical Hopf bifurcation, which
incorporates a slowly varying time-dependent variable λ

reflecting the level of “excitability” within a brain region. This
type of model has been utilised for epilepsy in a variety of
contexts (Kalitzin et al., 2010; Benjamin et al., 2012; Hebbink
et al., 2017; Junges et al., 2020). Within a single node, the
dynamic evolution is defined by:

dz
dt

� z λ − 1 + iω + 2 z| |2 − z| |4( ) + αdW, (1)

τ
dλ
dt

� λ0 − λ − z| |2. (2)

In this formulation, node activity z is a complex variable x + iy,
such that Re(z) = x corresponds to the simulated EEG electrode
activity. ω is the frequency of the limit cycle of this system, and can

be tuned so that this frequency corresponds to that seen during
seizure-like activity. λ is the time-dependent node excitability and λ0
the constant baseline level of excitability. τ is a real constant
modulating the rate at which a node transitions from the seizure-
like to the non seizure-like state. α reflects the impact of dynamic
inputs received by regions of the brain (nodes) that are not explicitly
accounted for within the model dynamics. This noise drives
transitions to the limit cycle. Under an Euler-Maruyama scheme,
dW draws a value from the uniform distribution bounded by [0,

��
dt

√
]

at each time-step. Typical values for these model parameters can be
found within Table 1.

This system is deterministic when α = 0. Within the physically
permissible region of λ ∈ [0, 1] and |z|≥ 0, the dynamics of z are
characterised by three steady-state solutions. The first is a stable
limit cycle at |z|2 � 1 + �

λ
√

. This represents seizure-like behaviour.
The second is a fixed point which exists at z = 0 corresponding to
background (inter-ictal) behaviour. Separating these two stable
solutions is an unstable limit cycle at |z|2 � 1 − �

λ
√

. These steady
state solutions are shown in Figure 2.

Eq. 2 describes the λ dynamics, and has a single stable steady-
state solution in which λ � λ0 − |z|2, illustrated in Figure 2. When z
is close to its fixed point, in the inter-ictal state, |z|2 is very small and
λ therefore tends to λ0; in the case where |z| is large, λ tends towards
values less than λ0, decreasing the excitability and forcing a natural
return of the system towards the fixed point. The time-scale of this
return is determined by the slow variable τ. There exists a steady
state in both λ and z at z = 0 and λ = λ0. As λ0 increases the size of the
basin of attraction of the stable limit cycle decreases, such that the
distance between the z = 0 and the unstable limit cycle decreases.
This makes it easier for the system to undergo transition to the
seizure-like state.

The dynamics in the non-deterministic system (α > 0) are shown
for a single node in Figure 3. The system stays near the initial
condition of the stable fixed point (z = 0, λ = λ0) unless the influence
of the noise is strong enough that the trajectory crosses the unstable
‘separatrix’ solution causing it to approach the ictal state. Increased
activity z results in a drop in the excitability λ - the key mechanism
which returns the system from the seizure-like state to the inter-
ictal state.

To appropriately reflect brain network activity, we extend the
model consider interacting node dynamics with a network. Here we

TABLE 1 Parameters of the modified subcritical Hopf model used in this
paper (Junges et al (2020)).

Parameter Meaning Value

N Number of nodes in the network 3, 20

ω Frequency of stable limit cycle 20 Hz

β Diffusive coupling strength 0–6

γ Additive coupling strength 0–6

τ Time-scaling factor 5 s

dt Simulation time 0.0005 s

α Noise amplitude coefficient 0.08

M Adjacency matrix 0, 1
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describe network dynamics as a system of coupled time-dependent
stochastic differential equations,

dzi � zi λi − 1 + iω + 2 zi| |2 − zi| |4( ) + 1
N

∑N
j�1

Mijg zi, zj( )⎛⎝ ⎞⎠dt

+ αdWi, (3)
τdλi � λ0 − λi − |zi|2( )dt, (4)
g zi, zj( ) � β zj − zi( ). (5)

N is the total number of nodes within the network such that i =
1, 2, . . . , N.Mij is the adjacency matrix categorising the edges within
a network. We consider here directed networks without self-loops,
so Mij is allowed to be asymmetric with all diagonal entries set to 0.
For the purposes of the present study we consider only binary
networks such that entries of Mij are 1 or 0, corresponding to the

existence or nonexistence of an edge. g (zj, zi) is the diffusive
coupling function where β is a real constant specifying the
strength of the system coupling. Through this choice of coupling,
interactions between nodes can additionally influence transitions
from the steady-state to the stable limit cycle and vice versa.

2.1 Quantifying seizure propensity

In order to quantify the likelihood of the system transitioning
into the seizure-like state we utilise the concept of Brain Network
Ictogenicity (BNI) (Petkov et al., 2014; Lopes et al., 2018). Since its
introduction, BNI has been used in many works as a measure of
network seizure propensity. This includes as a way to quantify the
change in seizure propensity after network nodes are removed or
network edges are perturbed (Sinha et al., 2017; Goodfellow et al.,

FIGURE 2
(A): bifurcation diagram of |z| in λ. Stable steady states are indicated as solid lines, and unstable steady states as dashed lines. The red point at (1, 0)
represents the Hopf Bifurcation. Two limit points are marked in green at (0, 1) and (0, −1). (B): The nullclines of λ at different values of λ0, which is parabolic
with a peak at (|z| � 0, λ � λ0). Grey dashed lines indicate themaximum andminimum values of λ0. When |z| � 0 in the interictal state, λ converges to λ0. In
the ictal state, |z| takes on larger values and consequently λ converges to lower values.

FIGURE 3
Dynamics of the modified subcritical Hopf model for a single node. (A) Trajectory in phase space for a single node. The direction of flow is anti-
clockwise. (B) Simulated single-node EEG activity Re(z) over a timescale of T = 200s. (C) Variation in the slow excitability variable λ.
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2016; Lopes et al., 2017; Lopes et al., 2019; Lopes et al., 2020). It
evaluates the likelihood of simulated networks to transit into a
seizure state, calculated as

BNI � ∑T/dt
i�1

f m( )
TN

. (6)

T is here the total simulated time-span and dt the time-step when
system trajectories are evaluated, using a first-order Euler-
Maruyama scheme. To ensure consistency between network
simulations, the initial state for all nodes is the background
(steady) state. m is the number of nodes found within the
seizure-like state during a given time step, such that

f m( ) � 0 m< 2
m otherwise

{ (7)

A node is considered as being in a seizure-like state if |z|2 > 0.5. We
consider the system is in a seizure when at least 2 nodes are in the
seizure-like state (m ≥ 2). As we are primarily interested in seizure
transitions due to synchronization, cases where m < 2 are discarded
to minimise the effect of spontaneous transitions into the stable limit
cycle. Consequently, if no two or more nodes simultaneously enter
the seizure-like state across an entire simulation then BNI = 0,
whereas if all network nodes remain in the high activity state
throughout the simulation then BNI = 1. In order to exclude the
possibility that any network behaviour is unique to a certain range of
the coupling parameter β, BNI is averaged over β ∈ [0, 6] such that it
includes behaviour from both the strong and weak coupling regimes
(Junges et al., 2020). To account for the impact of stochasticity, the
BNI is then re-averaged over several realisations of noise. Timescales
of T = 500s or T = 2000s were chosen for each simulation with a
time-step of dt = 0.0005s with 5 realisations implemented for each
calculation.

In order to reproduce the increase in seizure propensity
observed in the honeymoon effect, we consider a gradual increase
in the baseline excitability of the network, λ0. It would be possible, in
this framework, to consider higher-complexity perturbations to the

system which correlate with increased seizure propensity, such as
specific alterations to network topology or connection strength,
however in this work we focus on excitability, the propensity for
a system to attain high activity states represented by λ0, as a key
feature which directly determines seizure propensity. Figure 4 shows
the trajectories in BNI of two 20-node networks as a function of λ0.
We consider both extremes of network connectivity - a fully-
connected network, in which all possible edges are present, and a
completely disconnected network, in which no edges are present and
hence all nodes are isolated and independent of each other. For
values of λ0 < 0.6, BNI was uniformly 0 for both networks, such that
no nodes concurrently entered the seizure-like state at any given
point during the simulated time-span. The completely disconnected
network has a much more gradual and less steep increase in BNI
than the fully connected network.

We quantify the increase of network BNI under increasing λ0 by
two metrics. The area under the curve (AUC) quantifies the overall
increase in seizure propensity upon increase of λ0. We define the
“quartile distance”,

QD � λ0|BNI�0.75 − λ0|BNI�0.25, (8)
such that it is the increase in λ0 required for network BNI to increase
from 0.25 to 0.75. This measure quantifies the rate of increase of
network trajectories in seizure propensity as a function of λ0.

2.2 Network features

In order to quantify the network characteristics associated to
seizure propensity we use a number of features of binary directed
networks which may have an effect on the dynamic properties of the
model system. We limit our analysis to five features, though the
framework proposed may be applied to any network feature that is
believed to be relevant to seizure generation. We choose measures
that vary in their complexity and are designed to capture a variety of
network properties. We initially consider the first transitive
component, a measure which identifies strongly-connected
regions of the brain which may be considered “drivers” of
activity, known to have a strong impact on the genesis of seizure
activity (Benjamin et al., 2012). To assess the phenomenon of
directionality at a more global level than FTC, we also consider
the trophic incoherence, which measures the directionality of flow in
the edges of a network. The presence of “driver” and “responder”
regions is known to impact how different nodes and subgraphs
influence each other towards similar behaviour (e.g., seizure-like or
inter-ictal states) (Terry et al., 2012; Junges et al., 2020). We further
consider efficiency and mean clustering coefficient, two global
measures which capture respectively global and (averaged) local
characteristics of small-worldness, known to be a significant
property of complex networks in nature, including of functional
brain networks (Bassett and Bullmore, 2006). Finally, we draw on
degree variance as a measure of heterogeneity in the graph topology.
Efficiency, clustering coefficient and degree variance have previously
been shown to associate with epilepsy diagnosis (Faiman et al.,
2021), while trophic incoherence is a relevant feature of information
flow in networks (Johnson et al., 2014), making these suitable
candidates for analysis of adaptations in functional brain
connectivity and seizure prognosis.

FIGURE 4
Trajectories of BNI with increasing λ0 for the fully-connected and
completely disconnected 20-node networks.
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2.2.1 First transitive component
The First Transitive Component (FTC) is a measure of network

connectivity introduced in the context of modelling seizures by
Benjamin et al. (Benjamin et al., 2012). The FTC is defined to be a set
of nodes consisting of all regions of the network which are strongly-
connected (there is a directed path in each direction between any
pair of nodes) but receive no information from elsewhere in the
network: these regions “drive” but do not “respond” to the behaviour
of other nodes in the network. More formally, for a directed network
of size N with nodes {n1, n2, . . . , nN}, consider each distinct pair of
nodes {ni, nj}. We state that ni ≪ nj if there exists a directed path
from ni to nj. Likewise, nj ≪ ni if there exists a directed path from nj
to ni. A node is a member of the FTC if every node from which it is
reachable is reachable from it in return. The FTC is therefore the set
of nodes nj such that any ni for which ni ≪ nj also satisfies nj ≪ ni. It
has been shown that the FTC is a predictor for the network escape
times (another measure of seizure propensity which can act as a
proxy for the BNI) of small networks (N ≤ 4) (Benjamin et al., 2012).
Figure 5 depicts all 13 non-isomorphic connected 3 node networks
grouped by the size of FTC, which we denote as n.

2.2.2 Trophic incoherence
Trophic incoherence is a quantification of the extent to which

the overall flow of information in a directed network follows a
distinct hierarchy or direction (Johnson et al., 2014). A low trophic
incoherence describes a network in which information
predominantly flows in a single direction, such as in traditional
descriptions of food webs. A demonstration of this property is
shown in Figure 6. The relative position of a node within the
hierarchy of a directed network is quantified as the “trophic

level”. In the context of modelling seizure dynamics, high trophic
levels may describe “responder” regions which predominantly
receive information from the rest of the network, while low
trophic levels would correspond to “driver” regions which
predominantly send information to other nodes in the network.
Trophic incoherence, then, can be described in this context as a
measure of the extent to which different regions of the brain share an
equal role in the “driver” and “responder” activity in the network.
The revised notion of trophic incoherence used here was introduced
by MacKay et al. (MacKay et al., 2020). Since the networks under
consideration are unweighted, we will consider the definition in the
case where all edges are assigned weight 1.

In the uniformly-weighted case, the imbalance of a node is

vi � din
i − dout

i (9)

and the total weight of the node is

ui � din
i + dout

i (10)

where dini and douti refer to the in-degree and out-degree of node
i, respectively.

The trophic level is then defined as the vector solution h to the
system of equations

Λh � v (11)

where Λ is the graph Laplacian operator

Λh( )j � ujhj −∑
i∈V

Aij + Aji( )hi (12)

Finally, then, the trophic incoherence for a uniformly-weighted
graph is

F0 � 1
E| | ∑

i,j( )∈E
hi − hj − 1( )2 (13)

2.2.3 Efficiency
The concept of network efficiency quantifies the ability of nodes

in a network to communicate with each other. A highly efficient
network contains short paths in both directions between any chosen
pair of nodes, while a network with low efficiency contains pairs of

FIGURE 5
All connected directed networks of size 3 and their first transitive
components. FTCs of size n = 1,2, and 3 are highlighted in purple,
green and blue respectively. The first network for n = 2 is coloured a
different green to highlight that the FTC comprises two separate
components of the graph, which are not connected by an edge. This
leads to distinct behaviour from other networks with FTC of size 2.

FIGURE 6
An example of a network with a low trophic incoherence.
Information flows in a clear direction, from “source” nodes (shown in
red), via intermediates (shown in magenta), to “sink” nodes (shown
in blue).
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nodes which can only communicate through long paths across the
network, and may include nodes which are not joined by any path of
directed edges, at least in one direction. Formally, the (global)
efficiency (Latora and Marchiori, 2001) of a directed network is
defined as

E G( ) � 1
N N − 1( ) ∑i≠j

1
dij

(14)

where dij is the shortest path length from node i to node j, and its
inverse thus describes the efficiency of communication between the
two nodes. The global efficiency is therefore an average of
efficiencies between all (ordered) pairs of nodes in the directed
network. Efficiency is an important marker in functional brain
connectivity networks, as it represents the ability of regions of
the brain to share information, and describes the global
behaviour of small-world networks (Latora and Marchiori, 2001;
Rubinov and Sporns, 2010).

2.2.4 Mean local clustering coefficient
Clustering is the property of a network in which neighbouring

nodes share mutual neighbours, forming densely-connected groups
of nodes within the graph structure. For a binary directed network,
the notion of mean clustering coefficient is defined as follows
(Fagiolo, 2007):

C G( ) � 1
N

∑
i∈V

A + AT( )3[ ]
ii

2 din
i + dout

i( ) din
i + dout

i − 1( ) − 2d↔
i[ ] (15)

Here, d↔i refers to the number of nodes to which i is connected
by an edge in both directions. A is the adjacency matrix of the
network G, such that [(A + AT)3]ii is the number of triangles that
node i is included in, irrespective of the directions of the edges.

Clustering measures the prevalence of small, well-connected
cliques in the graph, and is a measure of the local behaviour of small-
world networks (Watts and Strogatz, 1998).

2.2.5 Degree variance
The variance of the node degrees quantifies the heterogeneity of

a graph (Snijders, 1981). That is, whether nodes in a network are all
similarly well-connected, resulting in a low degree variance, or there
exist some nodes with many neighbours and some nodes with few,
resulting in a high variance. For directed networks, the degree in
question is taken to be the out-degree, such that the degree variance
is given as

V � 1
N

∑
i∈V

dout
i − d�out( )2 (16)

where dout is the average out-degree of all nodes, equalling |E|
N ,

where E is the set of all directed edges in the network.

2.3 Selection of networks

A set of 10,000 20-node random binary directed networks with a
mean degree of 2.5 were generated for formal analysis within this paper.
This network size and mean degree is in line with typical functional
connectivity networks obtained from scalp or intracranial EEG
recordings (Aminoff, 2012; Sargolzaei et al., 2015; Lopes et al.,

2017). Networks were generated using the NetworkX package in
Python (Hagberg et al., 2008), which utilises the Erdös-Rényi
algorithm (Erdös and Rényi, 1959; Gilbert, 1959) and specified as at
least weakly connected. Figure 7 shows the distribution of the number of
nodes contained in the FTC, n, for these networks. We observe a bi-
modal distribution, where the majority of networks lie in the range of
n < 5 or n > 15. An equivalent distribution for 1000 networks generated
with mean degrees of 1.5 and 6 is shown for comparison. As the mean
degree of generated networks increases, so does the likelihood of the
FTC spanning the entire network. Equivalently as networks become
more sparse, the likelihood that a large proportion of the network is
contained within the FTC decreases. Our choice of a mean degree of
2.5 is a pragmatic choice, such that it contains a large sample of
networks with both high and low n. BNI has been shown to depend on
the network mean degree (Petkov et al., 2014). In order to avoid such
influence, networks were generated with both equal mean degree and
number of nodes N.

2.4 Correlations

Nonlinear correlations are used to measure the relationships
between network measures andmeasures of the increase in BNI with
increasing λ0. We calculate Kendall correlation coefficients between
AUC/QD and efficiency, mean local clustering coefficient, trophic
incoherence and degree variance; both across all sizes of FTC and for
individual sizes of FTC. Significance is evaluated at α = 0.0001, with a
Bonferroni correction for multiple comparisons.

FIGURE 7
Sizes of FTCs of 10,000 randomly-generated 20-node networks
of mean degree 2.5, and 1000 networks of mean degree 1.5 and 6. In
the case of mean degree 2.5, for each n between 6 and 14, there were
fewer than 50 networks (<0.5%) in the sample. The least-
represented size of FTCwas n =9, which appeared twice in the sample
of 10,000. For the sample of 1000 networks with mean degree 1.5, the
number of networks for each n ≥ 9 was less than 5, with no networks
having n ≥ 18. For the sample of 1000 networks with mean degree 6,
there were no networks with 2 ≤ n ≤ 18, and 97.5% of the networks had
n = 20.
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3 Results

3.1 3 node networks

In Figure 8 we present the BNI for all 13 non-isomorphic 3 node
networks (Benjamin et al., 2012) as a function of the baseline
excitability λ0. We observe that network trajectories in λ0 show a
tendency to group together according to the size of their FTC, n.
This is consistent with the work of Benjamin et al. (Benjamin et al.,
2012) who have shown that network escape times for 3 node
networks group according to n. This behaviour cannot be
trivially approximated by counting the number of edges within
each network, e.g., 3-edge networks with n = 1, 2, or 3 exhibit distinct
behaviour. The set of networks with n = 1 exhibit the most gradual
increase in BNI as λ0 increases. The initial incline of networks with
n = 2 is intermediate (between n = 1 and n = 3), with a sharp increase
in incline occurring in the region of λ0 = 0.85. Networks with n = 3
exhibit similar behaviour, albeit with a steeper increase in BNI. The
exception to this pattern is the 3-node network consisting of a single
sink driven by two otherwise isolated nodes (n = 2), indicated in
Figures 5, 8.

The behaviour of these network trajectories was quantified using
two measures - the area under the curve (AUC) and the quartile
distance (QD). The distribution of these measures for n = 1, 2, 3 is
shown in Figure 9. When the single-node sink is excluded, it is clear
that the distribution of AUC/QD is dissimilar for different
values of n.

3.2 20 node networks

Having characterised the dynamics in small networks (N = 3), we
now consider networks of sizeN= 20. Figure 10 presents the distribution

of QD/AUC measures for increasing values of n. For both measures,
values tend to remain similar for networks with FTC sizes beyond n = 6.

As n alone is no longer sufficient to predict how network BNI
will evolve as λ0 increases, we quantified the relationship between

FIGURE 8
(A) BNI as a function of increasing baseline excitability λ0 for all non-isomorphic three-node networks. All parameters follow the standard values
stated in Table 1. Networks with an FTC containing 1 node are shown in purple, those with an FTC containing 2 nodes shown in green and those with an
FTC containing the whole network are shown in blue. The trajectory for a single-node sink (ref Figure 5) driven by two otherwise isolated nodes (n = 2) is
shown in dark green. Errors are calculated as the standard deviation over 5 realisations of the noise co-efficient α. (B) Focus on the region of 0.8 <
λ0 < 0.9 where trajectories intersect.

FIGURE 9
Boxplots of the distributions of quartile distance and AUC for
each size of FTC in 3-node networks. We exclude the anomalous case
for n = 2 in which the two nodes in the FTC are not connected by an
edge (see Figures 5, 8; this network has an AUC of 0.0904 and
QD of 0.0950). We see that there are clear trends exhibited in the
remaining: as n increases, AUC increases andQDdecreases. Boxes are
drawn from the first to third quartiles with the median value marked in
blue.Whiskers are drawn at themaximum andminimumdata points of
the set, excluding any outliers. Outliers are marked by asterisks (*).
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additional network measures and AUC/QD. It should be noted that
the number of networks in the range 6 ≤ n ≤ 14 was very low (< 50
for each n out of a total 10,000, while > 2000 are present for n = 1, 2).
The networks within this range were combined with a sample of
50 networks for each remaining value of n, and evaluated by
efficiency, mean clustering coefficient, trophic incoherence and
degree variance.

Figure 11 displays the relationships of network measures with
AUC and QD across all sizes of FTC. Significant positive
correlations were observed for AUC with network efficiency
(Kendall tau = 0.393, p < 0.0001) and trophic incoherence
(Kendall tau = 0.357, p < 0.0001). A significant negative
correlation was observed for AUC with degree variance, (Kendall
tau = −0.472, p < 0.0001). No strong correlation was found between
AUC and mean clustering coefficient (Kendall tau = −0.0827, p =
1.670 × 10−3). Significant negative correlations were observed for QD
with network efficiency (Kendall tau = −0.347, p < 0.0001) and
trophic incoherence (Kendall tau = −0.398, p < 0.0001). A significant
positive correlation was observed for QD with degree variance,
(Kendall tau = 0.567, p < 0.0001). No significant correlation was
found between QD and mean clustering coefficient (Kendall tau =
0.0575, p = 0.03153).

We will now observe in closer detail these relationships
for each size of FTC. Due to the low numbers of networks
generated for the intermediate values of n, further analysis is
conducted only on high and low sizes of FTC: 1 ≤ n ≤ 5 and 16 ≤
n ≤ 20. For these, Kendall correlation coefficients between
our network metrics, and network AUC/QD are shown
in Figure 12.

Figure 12 shows that there is a clear trend for a negative
correlation between the network efficiency and QD, and between
trophic incoherence and QD. For high values of n, there is a weak
positive correlation between degree variance and QD. No
consistent trend in correlation is shown between QD or AUC
and mean clustering co-efficient for high or low n. For networks
with n ≤ 5 there is a trend of moderate positive correlation of
AUC with trophic incoherence and network efficiency,
respectively.

To illustrate the results shown above, the trajectories of highest
and lowest efficiency and trophic incoherence for n = 3, 18 are
shown in Figure 13. For both n = 3 and n = 18, the initial incline of
the high-efficiency network is lower than that of the low-efficiency
network. The maximum slope of the high-efficiency networks is
greater, with trajectories intersecting at approximately λ = 0.85.
Similar behaviour is shown for the networks with highest and lowest
trophic incoherence. Equivalent plots for n = 1, 5, 16, 20
can be found in Supplementary Figures S1–S4 in the
Supplementary Material.

It is important to point out that the relationship between
network measures and AUC/QD can be influenced by the choice
of network mean-degree (see Supplementary Figure S5 in the
Supplementary Material). However, regarding practical
applications, this is not a limiting factor of this framework as
connectivity networks obtained from brain imaging can be
thresholded to match the values presented in this work.

In our analysis, we see that our results for AUC are mirrored
in the results for QD; and indeed that AUC and QD are
significantly negatively correlated (Kendall tau = −0.581, p <
0.0001), as seen in Supplementary Figure S6 in the
Supplementary Material. However, AUC and QD quantify two
different aspects of the trajectories of BNI in increasing λ0: AUC
expresses the overall increase of the curve across all λ0, while QD
is an expression of the slope of the trajectory. This is
demonstrated in Figure 14, which shows the trajectory of BNI
in increasing λ0 for two networks with the same QD of 0.0775 and
AUCs of 0.1172 and 0.1353; and two networks with similar
AUCs of 0.1269 and 0.1268 but QDs of 0.0350 and
0.0899 respectively. These are indicated on the scatter plot in
Supplementary Figure S6.

Amongst the network measures, network efficiency and
trophic incoherence are strongly positively correlated
(Kendall tau = 0.693, p < 0.0001) and both of these are
significantly negatively correlated with degree variance
(Kendall tau = −0.309, −0.328 respectively with p-values
< 0.0001). MCC has no significant correlation with network
efficiency (Kendall tau = −0.0784, p = 0.00291), trophic
incoherence (Kendall tau = −0.0291, p = 0.260) or degree
variance (Kendall tau = 0.0905, p = 0.000738). The
relationships between these measures are displayed in
Supplementary Figure S7.

FIGURE 10
Boxplots of the distributions of quartile distance and AUC for
each size of FTC in 20-node networks. Beyond n = 6 we see very little
variation in either measure which can be associated to n. Boxes are
drawn from the first to third quartiles with the median value
marked in blue. Whiskers are drawn at the maximum and minimum
data points of the set, excluding any outliers. Outliers are marked
by stars.
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Size of FTC has a significant positive correlation with
network efficiency (Kendall tau = 0.375, p < 0.0001) and
trophic incoherence (Kendall tau = 0.302, p < 0.0001) and a
significant negative correlation with degree variance (Kendall
tau = −0.366, p < 0.0001). No significant correlation is found

between the size of FTC and mean clustering coefficient (Kendall
tau = −0.0697, p = 0.0104). We see upon observation in
Supplementary Figure S8 that as with AUC and QD, where
trends exist between FTC and other network measures, they
are not in general monotonic.

FIGURE 11
Scatter plots detailing the relationships between AUC and network measures for 20-node networks, coloured by the size of FTC.

FIGURE 12
(A) 2D correlation plot between AUC and network metrics for 20-node networks (efficiency (NE), mean clustering co-efficient (MCC), trophic
incoherence (TI) and degree variance (DV)) for n = 1 − 5, 16 − 20 for 20 node randomly generated networks with amean degree of 2.5. Kendall correlation
coefficients are colour-coded under the right axis colorbar with exact values shown in each cell. Significance values are labelled as * where p < 0.05, **
where p < 0.01 and *** where p < 0.0001. (B) Correlation plot between QD and network metrics for 20-node networks.

Frontiers in Network Physiology frontiersin.org10

Harrington et al. 10.3389/fnetp.2024.1308501

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2024.1308501


3.3 128 node networks

We sought to evaluate whether our findings were consistent when
networks of sizes comparable to larger EEG generated networks were
considered. Networks of sizeN= 128were chosen for analysis. The FTC
distribution of 128 node networks with a mean degree of 2.5 was
strongly skewed towards lower sizes of FTC. Networks were therefore

sampled for analysis within a range of n = 4 − −12. Due to this limited
range of FTC sizes compared to network size we do not explore the
relationships of AUC and QD with size of FTC at this scale.

We see that on a group level the relationships between our
chosen network measures and AUC/QD are preserved as network
size increases from N = 20 to N = 128. Figure 15 provides a more
detailed examination of these relationships for each value of FTC

FIGURE 13
Comparison of trajectories for 20-node networks with minimal and maximal values of efficiency and trophic incoherence for n = 3, 18.

FIGURE 14
Illustration of network trajectories with similar AUC (QD) and strongly different QD (AUC).
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considered. At a group level, a significant positive correlation was
observed for AUCwith network efficiency (Kendall tau = 0.4789, p <
0.0001) and trophic incoherence (Kendall tau = 0.4792, p < 0.0001).
A significant negative correlation was observed for AUC with degree
variance (Kendall tau = −0.3515, p < 0.0001). No strong correlation
was found between AUC and mean clustering coefficient (Kendall
tau = 0.0530, p = 0.0928.) Significant negative correlations were
observed for QD with network efficiency (Kendall tau = -0.3912, p <
0.0001) and trophic incoherence (Kendall tau = −0.3277, p <
0.0001). A significant positive correlation was found for QD with
degree variance (Kendall tau = 0.3311, p < 0.0001). No significant
correlation was found between QD and mean clustering co-efficient
(Kendall tau = −0.0281, p = 0.4379). Figure 15 shows that there is a
clear trend for positive correlation between AUC and efficiency,
trophic incoherence for all values of FTC considered. No consistent
trend is shown between QD and any network metrics within each
FTC subset.

4 Discussion

In this study, we propose a model framework that can be used to
understand changes in treatment response over time. In this context,
treatment could be considered as medication, or more invasive options
such as surgery or stimulation. This framework considers the interaction
of a set of network features: size of the first transitive component (FTC),
efficiency, clustering, incoherence, and heterogeneity (degree variance).

Our results show that, for small networks (3 nodes), distinct patterns
of BNI increase as a function of the baseline excitability (λ0) can be
observed. These patterns were shown to be well characterised by the
number of nodes in the FTC. Networks with FTC of size 1 have themost
gradual (less steep) increase in BNI. From the nature of these networks

(seen on the first row in Figure 5), it is observed that the dynamics are
mainly influenced by a source node, shown in purple in all networks.
This node is not being “controlled” (i.e., forced to keep in the fixed point
via diffusive coupling) by any other node, therefore the transition into
seizure states is mainly dictated by the effect of the smooth increase in λ0
on the driving node. This configuration is a conceptual representation of
a scenario where seizures emerge in a specific brain region and can easily
spread to the rest of the brain.

For networks with FTC of size 3, the graph is strongly connected,
and all nodes are controlling each other to some extent. This
explains why these networks remain with low values of BNI
when 0 < λ0)0.85. However, as λ0 increases, nodes which
transition to the limit-cycle encourage other nodes to do the
same. The higher levels of synchronization in these networks lead
to a steeper increase in BNI. In this scenario isolated abnormal
activity cannot arrest other brain regions, and seizures can only
emerge if those regions were already close to the seizure threshold.

For networks with FTC of size 2, levels of BNI increase are
intermediary when two interconnected nodes are influencing a third
node (light green in Figure 5). In this scenario, we observe a similar
but less strong effect than that seen for networks with FTC of size 3
(fully connected). However, when two sources are independently
influencing a third node (dark green in Figure 5), the profile of BNI
increase is much slower than for any other networks. In this case, the
competing sources struggle to arrest the third node at any given
time, and the values of BNI are comparatively small even for large
values of λ0 (see Figure 8). The results observed here are in line with
the analysis of 3- and 4-node networks presented in (Junges et al.,
2020). The different behaviour observed when competing effects are
present in the network suggests a more complex relationship
between BNI and λ0 for larger networks. Effectively this occurs
due to sub-networks that interact in intricate ways.

FIGURE 15
(A) 2D correlation plot between AUC and network metrics (efficiency (NE), mean clustering co-efficient (MCC), trophic incoherence (TI) and degree
variance (DV)) for n = 4 − 12 for 128 node randomly generated networks with a mean degree of 2.5. Kendall correlation coefficients are colour-coded
under the right axis colorbar with exact values shown in each cell. Significance values are labelled as * where p < 0.05, ** where p < 0.01 and *** where p <
0.0001. (B) Correlation plot between QD and network metrics.
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We see this phenomenon clearly for larger networks (20 nodes),
where the size of the FTC is not enough to fully characterize the
relationship between BNI and λ0. Figure 10 shows that for small FTC
sizes (n)5), a negative (positive) correlation is observed between n and
AUC (QD), with the lowest values of AUC (highest QD) being observed
for FTC sizes of 4–5. Networks with larger FTC sizes (n > 6) tend to
present increased AUC and decreased QD. A more detailed
investigation shows that AUC tends to be lower and QD tends to
be higher in less efficient, incoherent andmore heterogeneous networks
(Figure 12). This relationship with AUC is clearer in networks with
small FTC. These results suggest that a network structure containing
long distances of communication between nodes, a hierarchical flow
and nodes with different levels of influence, in addition to a small
driving subnetwork, can more effectively help control the emergence
and spread of seizures. These properties may be present, for example, in
a graph containing strongly-connected subnetworks embeddedwithin a
hierarchy. Interestingly, the clustering coefficient does not seem to
influence a network’s response to an increase in λ0.

The results described above suggest that optimal robustness to
an increase in baseline excitability are observed for networks with
FTC sizes of 4–5. Minimal AUC and maximal QD suggest that
increases in the baseline excitability have a smaller and more gradual
effect on seizure propensity in these networks. At the same time, a
similar robustness effect is seen for networks with lower efficiency,
incoherence and higher degree variance. The effect for these three
measures is preserved in larger networks of size 128.

Previous works compared functional networks obtained using
electroencephalography (EEG) recordings from people with epilepsy
and healthy controls. A recent literature review of biomarkers of
idiopathic epilepsy from resting-state EEG explored graph-based
markers and showed evidence that, in specific frequency bands,
networks from people with epilepsy tend to have elevated mean
degree, degree variance, and path length (Faiman et al., 2021). The
observed effect of epilepsy in these measures are in line with the results
presented in this work. However it is important to notice that our study
explores the relationship between the network markers and changes in
seizure propensity, and not with seizure propensity itself. The
relationship between trophic incoherence and epilepsy, to the best f
our knowledge, has not been explored. Nevertheless, studies have
shown that spreading processes in networks (such as seizures) can
be strongly affected by trophic organisation (Klaise and Johnson, 2016).

Once validated using networks obtained from brain imaging
modalities (e.g., electroencephalography) and long term post-
intervention seizure monitoring, the framework presented in this
work can provide prognostic markers of seizure propensity
progression. This will support the development of personalized
intervention strategies, aiming to achieve long term seizure freedom.
In the context of surgical intervention, network-basedmodels of seizure
transition have been extensively used to predict optimal surgical
strategies via the estimation of seizure propensity after intervention
(Goodfellow et al., 2016; Lopes et al., 2017; Sinha et al., 2017; Lopes et al.,
2020). However, these methods tend to ignore potential long-term
changes in the system, which could lead to seizure recurrence. The
framework presented in this study can significantly extend the current
potential of these models by quantifying robustness to mechanisms
associated to the honeymoon effect. This would ultimately contribute to
support pre-surgical planning via the identification of strategies leading
to more robust seizure control.

A limitation of this work is the relatively simple description of the
mechanisms leading to the increase in seizure propensity after
therapeutic interventions (honeymoon effect). Here, we are
representing such an effect via a linear and spatially homogeneous
increase in baseline excitability. In reality, such effect might be best
represented by complex combinations of local and more intricate
changes in excitability, as well as in the network structure itself.
Additionally, the specific nature of these mechanisms can depend
on several factors, like epilepsy type, age at intervention
(neurodevelopmental stage), and/or intervention type. However, this
work does not aim to propose a tool to comprehensively estimate the
effects of increased seizure propensity in every circumstance. Instead,
we propose a general framework to represent the honeymoon effect,
which can be modified and validated to describe specific scenarios and
provide valuable prognostic markers.
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