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The Constrained Disorder Principle (CDP) defines all systems in nature by their
degree of inherent variability. Per the CDP, the intrinsic variability is mandatory for
their proper function and is dynamically changed based on pressures. The CDP
defines the boundaries of inherent variability as a mechanism for continuous
adaptation to internal and external perturbations, enabling survival and function
under dynamic conditions. The laws of nature govern the world’s natural
phenomena and underlie the function of all systems. Nevertheless, the laws of
physics do not entirely explain systems’ functionality under pressure, which is
essential for determining the correct operation of complex systems in nature.
Variability and noise are two broad sources of inherent unpredictability in biology
and technology. This paper explores how the CDP defines the function of systems
andprovides examples fromvarious areas in naturewhere theCDP applies, including
climate, genetic, biology, and human behavioral variabilities. According to the CDP,
system malfunction results from inappropriate performance of the boundaries of
inherent variability. The environment influences the physiological variability, and
species interactions influence eco-evolutionary outcomes. The CDP defines human
behavior as being driven by randomness and accounts for malfunctions and their
corrections. The paper reviews variability-based CDP algorithms and CDP-based
second-generation artificial intelligence systems and their potential for improving
systems’ prediction and efficiency by using variability.
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1 Introduction

A law of nature is a rule that governs the world’s natural phenomena. The natural world
obeys the laws of nature. Nature’s laws attempt to explain how systems function (Earman
et al., 1984). Nevertheless, the laws of physics cannot entirely explain system functionality
under pressure, which is essential for elucidating the correct operation of systems (Law of
nature, 2024). The Constrained Disorder Principle (CDP) defines all systems in nature by
their degree of inherent variability, which is mandatory for their proper function and is
dynamically changed based on pressures (Ilan, 2022a).

This paper explores how the CDP defines the function of systems in nature and
accounts for malfunctions. It describes the use of CDP-based platforms to improve systems’
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functionality. The paper provides examples from various fields,
highlighting the concept’s relevance and applicability to
various areas.

1.1 The current laws of physics are
insufficient to explain the functionality of all
systems in nature

Classical physics laws have been used to explain phenomena in
the macroscopic world. Examples include the classical laws of
motion, gravity, electromagnetism, thermodynamics, and energy.
These empirically based natural laws govern macroscopic physical
systems (Wong et al., 2023). These laws codify nature’s phenomena
at human perception scales, focusing on nonrelativistic phenomena
greater than quantum effects. Most of these laws can be quantified as
equations based on measurable parameters, such as mass, force,
acceleration, distance, energy, or charge (Wong et al., 2023).

While the classical laws of physics can explain many observable
natural phenomena, they cannot codify natural phenomena alone,
even when combined with several assumptions and initial
conditions (Broz et al., 2023). Recently, a natural law called the
law of increasing functional information was proposed using
functional information as a parameter (Wong et al., 2023).
However, it may not thoroughly explain how all systems in
nature function under dynamic conditions.

1.2 The constrained disorder principle
defines the function of all systems in nature

The constrained disorder principle (CDP) defines all systems in
nature based on their degree of variability. Per the CDP, all systems
are characterized by inherent variability, which is mandatory for
proper function. The degree of variability is determined by the
dynamic borders, which adapt the range of the inherent variability to
the internal and external pressures. It provides systems with a
mechanism for adaptation under continuous perturbations (Ilan,
2022a). Noise is defined from the point of view of both dynamics and
statistics. A CDP is schematically formulated using the B=F formula,
where B represents borders and F represents function and efficiency.
The formula implies that the boundaries of variability determine the
proper function of systems. As a result of this mechanism, systems
can better adapt to the noise around them and, therefore, conserve
energy (Ilan, 2022b). A malfunction occurs when the borders cannot
contain more variability when needed or cannot limit the amount of
variability when its degree is too high, disturbing the adequate
function (Sigawi et al., 2023).

In a closed system, energy is conserved according to the first law
of thermodynamics (Zohuri and Zohuri, 2018). According to the
second law of thermodynamics, heat cannot flow spontaneously
from colder to warmer bodies, and the entropy of a closed system
remains constant or increases (Lieb and Yngvason, 2004; Zivieri,
2023). Based on the second law, the CDP provides a platform
that underpins all system functionality, including the microscopic
and macroscopic worlds. It enables systems to conserve
energy by adapting to noise rather than attempting to repel it
(Ilan, 2022b).

1.3 Variability and noise are two broad
sources of inherent unpredictability in
biology and technology

According to the CDP, every system in nature is characterized
by noise (Ilan, 2022b; Ilan, 2019a; Ilan, 2019b; Ilan, 2020a; Ilan,
2020b; El-Haj et al., 2019; Ilan, 2019c; Ilan, 2019d; Ilan-Ber and Ilan,
2019; Forkosh et al., 2020; Ilan, 2019e; Ilan, 2022c; Shabat et al.,
2021; Ilan, 2023a). Variabilities within and between systems
determine the function and outcome of all systems (Ilan, 2023a;
Ilan, 2023b). It is thus necessary to dissect intra- and intersystem
variability and technical noise to understand functionality and
malfunctions.

Replicability is a crucial benchmark for good research. It is often
thought that something has gone wrong when results differ from
those from a previous study of the same system using the same
method (Prasad, 2023). However, many variables contributing to the
outcome are often overlooked in an attempt to understand a system.
Two broad sources of unpredictability exist when applying the same
method to an identical problem: the inherent variability in a system
and the noise associated with the technology used (Prasad, 2023).

In addition to the inherent variability of brain function
necessary for proper functioning, technical noise and intra and
inter-patient variabilities must be considered (Van Horn et al., 2008;
Waschke et al., 2021). For example, a technical difference in
neuroimaging can result in noise, which depends on the type of
MRI scanner, scanning protocols, and software version used for
analysis (Prasad, 2023). Different populations have different brain
morphology, so normative data and brain templates based on
European ancestry are unsuitable for other brain types (Kang
et al., 2020). In some areas of the world, genetic variations are
more prevalent, affecting the results of brain testing (Kopal et al.,
2023). The aging process and the effects of sex have a direct effect on
the brain. Globally, population ages vary, affecting participants’ ages
and the results of brain imaging (Kapoor et al., 2019). Neuroimaging
is influenced by socioeconomic factors that are different across
countries (Karia et al., 2021). In studies in which a disease has
distinct phenotypes, the proportion of clinical phenotypes included
in the research affects the results (Gutiérrez-Gutiérrez et al., 2021).
Diseases vary biologically between countries. Parkinson’s disease
onset is a decade younger in India than inWestern countries (Prasad
et al., 2022). It exemplifies the importance of accounting for
technical noise and inter-subject variabilities when considering
the inherent intra-system variability.

1.4 CDP defines the variability of systems
in nature

A few examples from natural systems illustrate that inherent
intra-system variability is essential to proper system functionality.

1.4.1 The CDP defines climate variability
Climate variability refers to changes in climatic parameters from

their long-term mean. The climate of a location varies every year
during a specific period (Thornton et al., 2014). At supra-decadal
timescales, climate models underestimated regional but not global
temperature variability. Proxy reconstructions and model

Frontiers in Network Physiology frontiersin.org02

Ilan 10.3389/fnetp.2024.1361915

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2024.1361915


simulations are essential for detecting multidecadal to centennial
climate fluctuations (Laepple et al., 2023). Climate models and proxy
interpretations are inconsistently less reliable on multidecadal and
longer timescales than proxy-based reconstructions, implying
deficiencies. Studies found, in contrast, that simulated and proxy
reconstructed temperature variations were in agreement. Climate
models simulating past climate states cannot replicate regional
climate variations for longer timescales, thereby underestimating
regional variability on multidecadal and longer timescales and
biasing climate projections and attribution studies (Laepple
et al., 2023).

Multiple factors contribute to climate variability. Internal
variability and external forcing affect rainfall in the southwestern
Australian region. During 2001–2020, southwestern Australia’s
cool-season rainfall declined by 20% compared to the
1901–1960 average. Models simulate realistic levels of decadal
variability, suggesting that a large proportion is underestimated
and external forcing contribution is significant (Rauniyar
et al., 2023).

The pH and temperature of seawater in reef environments vary
significantly from day to day. Cycles of variations occurred within
24 h, associated with the daily light cycle, and then within 12 h,
associated with the semi-diurnal tides of the atoll. The PH,
temperature, and carbonate chemistry were monitored
continuously and periodically to determine the variability,
showing that seawater temperature did not determine
pH variability, and the relative balance of net organic carbon
metabolism modulates carbonate chemistry on the atoll
throughout the day (de Almeida et al., 2023).

The data exemplify the CDP, in which the range within which
the variability occurs is related to internal and external variables.

1.4.2 Per the CDP, variability underlines
human disparity

Cell-to-cell variability has stochastic and deterministic
components, but defining, quantifying, and disentangling them is
challenging (Brückner et al., 2020). Single-cell technology enables
quantifying variability from cell to cell in various biological contexts.
The extrinsic noise can result from non-observable changes in
cellular components such as cell cycle, cell-to-cell signaling, and
metabolism within an otherwise homogeneous population (Arriaga,
2008). Nevertheless, it is unknown whether these sources of extrinsic
noise are independent of each other or whether they are stochastic or
deterministic. Cells employ a variety of regulatory mechanisms to
buffer variations in noise, resulting in lower levels of noise in a
population as a whole (Eling et al., 2019; Baudrimont et al., 2019).

When multiple tissues or individuals are compared, biological
noise is created (Eling et al., 2019). When omic data is sequenced
from the whole cell or the nucleus, it produces biological noise.
Biological noise increases with the difference between tissues,
nucleus or entire cell sequencing, and data obtained from
different individuals (Janssen et al., 2023). Datasets must preserve
biological meaning while removing the batch effect, such as
preserving highly variable proteins so that downstream analysis
can be more accurate (Koca and Sevilgen, 2024).

DNA loops, chromatin domains, and higher-order
compartments contribute to the complex three-dimensional
organization of genomes in the cell nucleus. These features are

present in most types of cells and tissues. Transcription is stochastic,
and chromatin architecture varies widely among cells. A cell- and
allele-specific variability in genome architecture reflects intrinsic
and extrinsic sources of variability, leading to structural
heterogeneity in genome function (Finn and Misteli, 2019).

Submaximal exercise capacity, for example, indicates
cardiorespiratory fitness. A heritability level of about 40%
characterizes submaximal exercise capacity. Physical working
capacity (PWC150) was used to identify panels of genes
associated with human variability in intrinsic PWC150
(iPWC150) and its trainability (dPWC150). By combining
genome-wide association and skeletal muscle gene expression
with plasma proteomics and metabolomics experiments, genes,
proteins, and metabolites were associated with iPWC150 or
dPWC150. Numerous muscle and cardiovascular phenotypes
have been associated with DNA variants. Two panels of
prioritized 13 genes and pathways of biological relevance to
iPWC150 and dPWC150 were identified, suggesting that
iPWC150 involves genes and pathways different from those
of dPWC150. Data indicate that skeletal muscle morphology,
metabolism, and red blood cell oxygen-carrying capacity affect
submaximal exercise capacity and support the linkage between
variability and genetic phenotypes (Hota et al., 2023).

1.4.3 In the CDP, randomness is exploited to
prevent the accumulation of mutational harm

“Organelle” DNA, or oDNA, contains instructions for
building blocks that can be changed. Some leaves lose their
ability to photosynthesize when they become bleached (Broz
et al., 2023). By exploiting randomness, plants prevent
mutational damage from accruing over time. The mutations
inherited from a mother are transmitted to the offspring,
resulting in a plant’s descendants dying off. Plants instead
spread out the harm they inherit so that while some offspring
receive many mutations, others receive fewer. In both animals
and humans, this process is called segregation. It relies on plants
producing random variances in their offspring. The inherited
damage of plants is spread randomly. During cell division, oDNA
molecules are randomly distributed, and some of the oDNA
molecules are overwritten with others, causing plant
segregation over time and between mothers and daughters. By
sorting different types of oDNA into different germline cells,
selection against damaged oDNA is partially mediated. There is a
gradual but continuous segregation process during the
development of plants, with a more rapid increase between the
inflorescence formation and the next-generation of leaves (Broz
et al., 2023). Per the CDP, the data exemplifies the importance of
genetic variability for proper system functionality.

1.4.4 According to the CDP, systemsmalfunction is
a result of inappropriate variability

Due to the stochastic nature of biochemical reactions, proteins
and mRNAs are produced differently within cells (Soltani et al.,
2016). Typically, this source of variation is termed “noise”. Multiple
processes contribute to phenotypic variability by amplifying and
attenuating noise (Hansen andWeinberger, 2019). Per the CDP, the
inherent variability is mandatory for proper functionality, and
malfunctions are linked with out-of-range variability. It reflects
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the dysfunction of the boundaries of the variability, which cannot be
compatible with the environmental noise.

Escherichia coli’s chemotaxis network modulates its random
swimming pattern to navigate its environment. It must deal with
unavoidable fluctuations in the number of its molecular
constituents. The chemotaxis network’s output is measured by
the probability of clockwise rotation (CW), or CW bias, whose
temporal fluctuations proxy network noise. A quantification of
fluctuations in chemotaxis signaling is achieved by observing the
switching statistics of flagella in optically trapped E. coli cells over
the dynamic range of a network. A steady CW bias fluctuation is
mandatory for driving flagellar switching and cell tumbling.
Chemical stimulation causes a decrease in the network
changes. Based on gene expression noise research, a stochastic
theory demonstrated bursts that drive CW bias fluctuations. CW
bias is constrained by an intrinsic kinetic ceiling on network
activity, suppressing fluctuations. A steep gradient may also be
prevented from tumbling unproductively by this limit (Bano
et al., 2023). It exemplifies a CDP-based range of the inherent
system variability.

Neurons respond to stimuli in various ways, including time-
dependent and independent inputs or post-synaptic potentials
resulting from interactions between them. Incoming stimuli
resemble noise or a random variable. Gaussian white noise is
considered a standard function for a stochastic model of neurons.
The transmission of signals is affected by pulse width. By examining
the role of noise and finite pulses, neurons show fluctuating
interspike intervals. Once synchronous dynamics reach some
critical value, they collapse into asynchronous dynamics. As a
result of such abrupt changes in dynamics, synchronous and
asynchronous firing behavior coexist (Pimenova et al., 2016). The
data exemplifies the importance of a range of variability supporting
the B = F formula of the CDP.

When healthy, biological and physiological systems display
complex randomness with specific characteristics that are scale-
invariant and nonlinear. A breakdown in these characteristics
results in inappropriate variability linked to pathological states
and conditions. Research on cardiac dynamics, locomotion, and
brain function supports these concepts (Peng et al., 1995; Ivanov
et al., 1996; Ivanov et al., 1999a; Ivanov et al., 1999b; Kantelhardt
et al., 2002; Schumann et al., 2010; Yang et al., 2011).
Physiological variability is vital for maintaining brain
dynamics at critical levels and for proper brain function
during sleep, wakefulness, and cognitive processes. Previous
studies have shown that neuronal noise in human and animal
brains is vital to sleep arousal. This neuronal noise also influences
adverse clinical events, such as sudden infant death syndrome,
linked to reduced variation in neuronal noise (Dvir et al., 2018).
These earlier basic research studies laid the foundation for
modern clinical practice.

Metabolic syndrome is associated with physiological
variability in mitochondrial rRNA (Pecina et al., 2023).
Symptoms of metabolic syndrome are related to common
mitochondrial DNA sequence variants. High-fat diets affected
the metabolic phenotype of rat strains with identical nuclear but
unique mitochondrial genomes. Insulin resistance development
is related to mitochondrial rRNA sequence variation due to the
accumulation of diacylglycerol due to tissue-specific reductions

in oxidative capacity. The variation in the 12 S rRNA sequence
affects the assembly and translation of mitochondrial ribosomes,
causing metabolic disturbances (Pecina et al., 2023). It reflects the
importance of a personalized variability signature in the
subject’s phenotype.

A persistent fluctuation in blood glucose levels is referred to
as glycemic variability and is linked to anxiety and depression. To
potentially improve the effects of diabetes, glycemic control, and
fluctuations must be maintained at an optimal level in the
comprehensive management of diabetes (Shi et al., 2023). A
measure of glucose variability is the coefficient of variation
(CV), calculated by dividing the standard deviation by the
mean blood glucose level. Glycemic variability is associated
with severe consciousness disturbance and in-hospital
mortality in critically ill patients with cerebrovascular disease
(CVD) with cerebral infarction and non-traumatic cerebral
hemorrhage. A log-transformed CV was associated with
cognitive impairment and in-hospital mortality. The data
suggested that enhancing glycemic variability stability may
reduce adverse outcomes in patients with severe CVD and
supports the CDP concept that variability needs to be
constrained for proper function (Cai et al., 2023). The data
exemplifies the linkage of out-of-range variability with organ
malfunction.

Central aponeurosis (CA) cross-sectional non-uniformities were
evaluated as a marker for the central region of the rectus femoris
(RF) in patients with low physical activity-induced muscle atrophy.
Muscle thickness was thinner at the edge than at the center,
indicating a non-uniform morphology in the RF. There is a wide
variation in the cross-sectional area of atrophic muscle and a non-
uniformity in its cross-sectional area that can identify the RF’s
center, supporting the role of variability range in diseased conditions
(Takahashi and Okura, 2023).

Data from individuals who underwent detailed hormonal
sampling were used to quantify reproductive hormone variability
due to pulsatile secretion, diurnal variation, and feeding based on
CV and entropy. One reproductive hormone measure could
quantify reproductive hormone variability due to pulsatile
secretion, diurnal variation, and nutrient intake. Based on the
data, the reliability of reproductive hormone measurements can
be evaluated by quantifying the variability of a single measurement
(Abbara et al., 2023). Adrenocorticotropic hormone (ACTH) levels
before and after transsphenoidal surgery (TSS) indicate remission.
Using single ACTH measurements to determine Cushing’s disease
(CD) remission is challenging. Variability suppression of ACTHwas
observed in CD, with remission associated with restored variability,
suggesting that the degree of variability can serve for disease
prediction (Alvarez et al., 2023).

All-cause dementia and neurodegenerative conditions are
associated with sleep disturbances and clinical sleep disorders.
Sleep variability over a long period is significantly associated with
cognitive impairment, indicating that sleep duration instability may
play a role in cognitive decline (Keil et al., 2023).

According to the CDP, these examples illustrate that diseases are
associated with inappropriate variability borders, emphasizing the
need for adequately functioning borders that adapt to dynamic
changes in the environment to maintain an adequate range of
variability in a system.
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1.4.5 Per the CDP, the environment influences
physiological variability, and species interactions
influence eco-evolutionary outcomes

The variability of healthy biological rhythms exhibits fractal-like
patterns, while pathology and disease degrade them (Rhea et al.,
2014; Sturmberg et al., 2015). Biological rhythm patterns may
interact to reflect overall health or lack of it, depending on how
they interact (Zueva, 2015).

Human gait variability is essential for safe and adaptive gait and
interacting effectively with dynamic environments. Health gait
variability exhibits fractal-like patterns, indicating optimal
connectivity between biological processes. The breakdown of
these patterns suggests a decrease in the interaction between
system elements (Vaz et al., 2020). Previous studies have
reported the discovery of scale-invariant structures, fractal
patterns, self-similarity, and power-law long-range correlations
observed across multiple measurement scales in gait dynamics,
wrist motion, and locomotor control (Hausdorff et al., 2001; Hu
et al., 2004; Ashkenazy et al., 2002; Ivanov et al., 2007). These
pioneering works demonstrated that, although stochastic, the
variability in physiological systems is not random but adheres to
specific dynamical laws that vary with physiological states and
pathological conditions. Among the features of gait variability
that distinguish functional from dysfunctional locomotor systems
is the temporal structure of stride-to-stride fluctuations. These
fluctuations in healthy and functional gait exhibit fractal-like
patterns and are self-similar across multiple measurement scales
(Bock and Beurskens, 2010; Phinyomark et al., 2020). There is a
significant, robust, positive correlation between the temporal
structure of gait and the patterns of muscle activity in older
adults. During walking, muscle activity variability patterns and
stride-to-stride fluctuations of older adults are positively
correlated, and biological rhythms that make up the human
neuromuscular system are interconnected (Jordão et al., 2023).
The data supports the importance of variability in adapting to
environmental pressures.

Heart rate variability (HRV) refers to the difference in time
between pulses, which reflects the effects of the autonomic nervous
system (ANS). When a subject is relaxed, the HRV tends to vary, but
when they are stressed, it becomes more regular. HRV dampens with
age, with more regular intervals between heartbeats. As a result, the
adaptive response is more rigid—stimulating the vagus results in
diminished release of inflammatory cytokines (Chen P. C. et al., 2021).
Previous studies have highlighted the occurrence of self-similarity
across various measurement scales, as evidenced by heart rate
variability (HRV) (Ivanov et al., 2001; Schulte-Frohlinde et al.,
2001; Nunes Amaral et al., 2001; Ashkenazy et al., 2001; Ivanov
et al., 2004; Ivanov, 2007). In patients with Type II diabetes who
received seasonal flu vaccinations, CRP, a marker for inflammation,
was transiently elevated, while HRV declined simultaneously (Lanza
et al., 2011). Post-COVID vaccination, HRV decreased significantly
on day two and returned to baseline by day 10 (Kerkutluoglu et al.,
2023). When humans hear or read grammatical mistakes, they
experience a physiological stress response, and their HRV is more
regular. When subjects heard speech samples without grammatical
errors, their HRV was more variable, indicating they were more
relaxed, and the HRV became more regular when grammatical
errors were heard (Divjak et al., 2024). The data reflects

the CDP, which measures the inherent variability in response to
environmental pressures.

Herbivory is a selection pressure on plants reflected in physical
and chemical adaptations that prevent animals from eating their
tissues. Most ecosystems rely heavily on interactions between plants
and herbivores, but their strength is highly variable. Plant-herbivore
biology is influenced by the variability within a system, from
ecological stability to plant defense evolution. The variability in
herbivory within populations increases with latitude, decreases with
plant size, and is phylogenetically structured. There is a weak
increase in mean herbivory at lower latitudes and a decrease in
variation between individuals. Plant species with smaller leaves
showed higher herbivory variability, indicating phylogenetic
relationships. Per the CDP, it exemplifies how variability varies
across macroscale gradients (Robinson et al., 2023).

1.5 Variability-based CDP algorithms

Algorithms that use randomness are a significant challenge
(Flanigan and Procaccia, 2023). Numerous factors make real-
world data noisy and imperfect, resulting in unpredictable
outcomes (Hariri et al., 2019).

Information transmission in biological signaling circuits is
described as a noise filter. Cells need accurate, real-time data
about their environment to propagate, amplify, and process
signals. However, biochemical reaction networks cannot provide
accurate representations of the data. In addition to filtering the
noise, biology must predict the environment’s current state based on
delayed information caused by the finite speed of chemical signaling
(Tsimring, 2014; Zechner et al., 2016). The biochemical noise filter is
derived from studies that relate signaling fidelity in cellular circuits
to optimal noise filtering. The framework provides a versatile means
of determining the maximum mutual information between an
environmental signal and a real-time estimate derived from the
system. A biological network’s structure and its components’
response times affect the accuracy of that estimate. By tuning
enzyme kinetic parameters and populations, evolution may have
optimized information transfer (Hathcock et al., 2016).

A fundamental principle in this field is the “Maximum Entropy
Principle,” which indicates that the distribution with the highest
entropy should be chosen as the least biased model among all
probability distributions that meet the specified constraints
(Ahmed et al., 2023). This principle is fundamental to many
machine learning and deep learning applications. In classification
tasks, deep learning models often utilize the Softmax activation
function in the output layer due to the principle of maximum
entropy (Ahmed et al., 2023; Lin et al., 2016).

Per the CDP, algorithms that account for variability and
uncertainty can improve the accuracy of their outputs. Below are
several examples of using randomness to improve
algorithm accuracy.

1.5.1 Entropy is used in machine learning and
information theory

Entropy is associated with the concept of disorder and measures
the level of chaos in a dataset. Low entropy values indicate a more
predictable and structured dataset, while high entropy values
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indicate high uncertainty and randomness (Santana-Carrillo et al.,
2023). A CDP-based algorithm can be implemented using entropy
to improve models’ accuracy by bringing them closer to reality. In
information theory and machine learning, entropy measures
uncertainty or randomness in a dataset, providing insight into
the information or disorder in a system (Author Anonymous,
2023). Information theory defines entropy as the amount of
information required to encode symbols (Naeem et al., 2023).
Determining the minimum number of bits required to encode
each symbol from a source measures the uncertainty or
randomness of the source’s output. Whenever all outcomes in a
source have equal probabilities, the entropy value is at its maximum.
As a result, every outcome has an equal chance of occurring,
resulting in the highest level of uncertainty. When there is a high
probability of one outcome occurring, entropy is minimized,
resulting in low uncertainty (Brisson et al., 2023).

In machine learning, entropy measures the purity or impurity of
the data. By evaluating the unpredictability or randomness within a
dataset, machine learning optimizes decision-making models
(Sarker, 2021). An algorithm can make informed decisions and
improve its performance based on a dataset’s level of uncertainty or
impurity. It can describe or predict the outcomes of a system by
quantifying the level of disorder or randomness in the data (Ali
et al., 2022).

Entropy plays a role in supervised learning tasks that learn a
mapping between input features and output labels and is used by
random forests and decision tree algorithms (Sarker, 2021). Based
on entropy, decision trees can determine which attribute or feature
reduces entropy most after a split, resulting in more homogeneous
subsets and better class separation (Zhang and Gionis, 2023).
Decision tree algorithms evaluate the information gain or
reduction in uncertainty in datasets by calculating their entropy
before and after possible splits (Podgorelec et al., 2009). Decision
tree nodes are measured by their entropy, which measures their
impurity. Tree-building is stopped when the desired purity or
minimum entropy level is reached. Nodes are considered pure if
all their examples belong to the same class, resulting in zero entropy
and no further splitting required (Zhang and Gionis, 2023). Random
forests, which combine multiple decision trees to make predictions
and reduce overfitting, use entropy to reduce overfitting. A random
forest’s tree-building process is guided by entropy, which calculates
the information gained at each split point (Gao et al., 2022). Entropy
is used to evaluate the distribution of different classes within a
dataset to determine the predictive power of features (Birant and
Birant, 2023; Juszczuk et al., 2021; Tsang et al., 2011; Gao et al., 2022;
Sun et al., 2019; Abdar et al., 2021; Bezbochina et al., 2023).

1.5.2 Machine learning using CDP-based
probabilistic methods

Machine learning models use deterministic approaches, where
one outcome can be derived from a set of inputs (Sarker, 2021). This
approach does not consider real-world data for its inherent
uncertainty and variability. As deterministic models ignore
uncertainty, they fail to capture potential outcomes’ ranges and
associated probabilities. The result may be overconfident predictions
and unreliable decisions (Abdar et al., 2021). The deterministic
approach is unable to explain underlying processes or causality.
Factors contributing to the outcome are not considered when

examining the input-output relationship, which is complex and
affected by hidden variables (Karimi et al., 2022). The deterministic
model does not generalize well to new and unknown data when it
ignores this complexity and lacks flexibility and adaptability. For
deterministic models to make predictions, data must be complete
and precise and have a fixed relationship between variables. Real-
world scenarios, however, are likely to have missing or noisy data,
and real-world decision-making involves making choices under
uncertain conditions (Gurung et al., 2020; Taghavifard et al., 2009).

Several factors contribute to uncertainty, including incomplete
information, noise in the data, and inherent system variability.
Probabilistic approaches to machine learning effectively address
uncertainty in decision-making (Adnan et al., 2023). Probabilistic
models assign probabilities to different outcomes or predictions,
indicating their degree of confidence and facilitating the handling of
noisy or missing data (Aizpurua et al., 2022; Manzoni et al., 2023).
Multiple outcomes or predictions are generated based on the same
input, and probabilities are assigned to the different outcomes. The
goal of a probabilistic model is not to find a single “correct” answer
but to estimate the likelihood of various outcomes and provide a
distribution of probabilities associated with each outcome. It
provides a more realistic and comprehensive picture of problems
because uncertainty is incorporated. It enables more nuanced
decision-making, accounting for the various possible outcomes
and likelihood (Khodabakhshian et al., 2023). This approach is
beneficial whenmultiple factors contribute to the outcome and there
is limited or noisy data to analyze.

An uncertainty in machine learning can be defined as a lack of
complete knowledge or a variable outcome and is divided into two
types. The aleatoric uncertainty of data stems from its inherent
randomness, and the epistemic uncertainty is a lack of knowledge or
information about the underlying process (Hüllermeier and
Waegeman, 2021). In probabilistic models, the uncertainty
associated with a prediction is estimated to get a more
comprehensive picture of the underlying data distribution
(Enderle et al., 2023).

A probabilistic model is built using various methods, including
Bayesian networks, Gaussian processes, and hiddenMarkov models.
Considering uncertainty and variability, these models offer a more
robust and flexible framework for analyzing and understanding
complex phenomena (Mowbray et al., 2022). A Bayesian network is
a model where nodes represent variables, and probabilistic
relationships are defined by conditional probabilities (Vaniš et al.,
2023). Comparing the complexity and fit of different models is the
primary method of Bayesian model selection, which avoids
overfitting and selects the model that best represents the
underlying process (Piironen and Vehtari, 2017).

In probabilistic modeling, Bayesian inference enables updating
beliefs about uncertain quantities based on observed data. It
quantifies uncertainty and makes coherent and principled
predictions (Etz and Vandekerckhove, 2018). Using observed
data describes how to update prior beliefs and probabilities. In a
posterior probability model, the evidence in the data is considered
along with the prior beliefs to determine the updated knowledge (Liu
et al., 2023). This framework combines prior beliefs with data-driven
evidence to produce more reliable predictions. Based on Bayesian
inference, a posterior distribution describes the range of possible
values and their probabilities. By capturing the uncertainty inherent
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in the data, this distribution allows for more informed decisions to
be made (Liu et al., 2023).

It is possible to capture uncertainty using non-parametric
methods, like Gaussian processes, that model the underlying
distribution. It offers flexibility and estimates uncertainty for
predictions suitable for small or noisy data sets (Dudek and
Baranowski, 2022). It is possible to estimate uncertainty more
robustly by combining multiple models’ predictions using
ensemble methods, such as random forests or bagging. By
introducing randomness into the learning process, these methods
generate models that capture both aleatoric and epistemic
uncertainty (Wang et al., 2023). The Monte Carlo method of
simulation and the Sequential Monte Carlo method of
distribution estimation are often used together to simulate
possible outcomes and estimate the distribution of decision
outcomes (Endo et al., 2019).

There are challenges to the use of probabilistic approaches
(Kobayashi and Hiraishi, 2014). To make reliable predictions,
they need substantial data to estimate the underlying uncertainty
accurately. Low-quality or inadequate data can lead to unreliable
estimates and biased results. Using complex models and large
datasets can be computationally demanding. Some probabilistic
models cannot scale up as the problem’s complexity and dataset’s
size increase (Ding and Bouvry, 2014; Li et al., 2020). Bayesian
models are challenging in specifying and communicating
probabilistic results to stakeholders and decision-makers (Gao
et al., 2022; Sun et al., 2019).

1.5.3 Use of bootstrapping in machine learning
The bootstrapping technique in machine learning comprises

resampling with replacement to generate multiple training datasets
rather than relying solely on a few observations (Tsamardinos et al.,
2018; Huang and Huang, 2023; Mohammed and Kora, 2023). It
involves randomly selected observations from the original dataset to
create a new training dataset. Every observation has an equal chance
of selection, and once selected, it is added back to the original
dataset, allowing for duplicate observations and exclusions. A
machine-learning model is then trained on the newly generated
dataset. A decision tree, random forest, or support vector machine
could be used. This model generates predictions for unseen data
based on the variability in the bootstrapped dataset. By randomly
sampling observations from an original dataset, bootstrapping
creates new training datasets iteratively, enabling the estimation
of a model’s prediction stability and uncertainty. The size of each
new dataset is the same as the original, but some observations may
be repeated while others are left out. Due to this sampling bias, the
underlying data may appear skewed and affect the model’s
generalizability, and without careful management, it may lead to
overfitting (Tsamardinos et al., 2018; Iba et al., 2021).

Multiple datasets are generated to simulate the complexity and
variability of real-world data (Salman et al., 2021). It improves the
models’ stability and uncertainty. When trained on different data
variations, models make more accurate predictions by considering
possible variations in the underlying data. The method is proper
when a limited number of datasets are available (Ahmed et al., 2023;
Millard and Richardson, 2015; Chen T. R et al., 2021; Michelucci and
Venturini, 2021). Combining predictions from multiple models
improves overall performance and reduces overfitting. The

variability and uncertainty in machine learning models can be
distinct using it. Considering the range of possible outcomes
facilitates decision-making by quantifying the uncertainty
associated with the predictions (Rao, 2000; de Zarzà et al., 2023).

These methods exemplify the CDP-based models in algorithms
for improving data analysis by incorporating the inherent variability
of complex systems.

1.5.4 Predictions are improved by using variability
in the CDP

The CDP enables improving prediction by accounting for
systems’ variability. In intensive care units (ICUs), predicting in-
hospital cardiac arrest allows for prompt interventions to improve
patient outcomes. The prediction is improved by a machine
learning-based real-time model based on HRV measures (Lee
et al., 2023). Similarly, intra-individual cognitive variability is a
measure of fluctuations in cognitive performance. The variability of
thinking, memory, and other behaviors is associated with
neurodegenerative disorders such as Alzheimer’s (Bangen et al.,
2019; Halliday et al., 2018).

Functional connectivity (FC) is derived from functional
magnetic resonance imaging and is a “fingerprint” of cognitive
performance and mental health. FC varies significantly across
scans and contains biological information. The functional
network connectivity (FNC) was extracted using cross-scan FC
stability analysis, demonstrating an ability to identify a child
from a large group. Cross-scan FNC stability predicted children’s
behavior, with higher stability associated with better cognitive
performance, longer sleep duration, and less psychotic
expression. Children’s connectivity profiles are intrinsically
variable and exhibit reliable variability regardless of brain
development. It is helpful to use cross-scan connectivity stability
to draw inferences about a child’s cognitive and psychiatric
development (Fu et al., 2023).

It is common for cardiac disease to affect the heart non-
uniformly. Among these characteristics are focal septal or apical
hypertrophy with reduced strain in hypertrophic cardiomyopathy,
replacement fibrosis with akinesia in infarcted coronary arteries, and
a pattern of scarring in dilated cardiomyopathy. Cardiovascular
magnetic resonance imaging (CMR)-derived heterogeneity
biomarkers facilitate earlier diagnosis, better risk stratification,
and more accurate treatment prediction. There are two
heterogeneity measures: the mean absolute deviation of the
regional standard deviation on native T1 and T2 and the
standard deviation of the time to maximum regional radial wall
movement (Hesse et al., 2023). The results show how out-of-range
variability can serve for the early detection of diseases.

Continuous and dynamic fluctuations in blood pressure levels,
blood pressure variability (BPV) refers to the standard deviation of
repeated measurements, the coefficient of variation (standard
deviation divided by the mean), and metrics considering changes
from measurement to measurement. There is a link between BPV
and stroke patients’ outcomes. In acute stroke patients without
thrombolysis, elevated systolic BPV is associated with poorer
outcomes, such as functional disability, mortality, and
neurological deterioration before stroke recurrence. A higher risk
of mortality and functional disability is associated with higher
diastolic blood pressure variability (Chen et al., 2023).
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Overall and central obesity burdens and variability are
associated with higher all-cause and cardiovascular mortality
among men. Women with general obesity and cumulative and
variable central adiposity have a higher risk of all-cause mortality
(Kohansal et al., 2023).

Based on these data, predictions can be improved by using CDP-
based variability algorithms. A digital twin is a virtual representation
of a physical object. Including variability in CDP-based digital tween
models improves their prediction accuracy in complex systems and
enables better monitoring and management of malfunctioning
systems (Sigawi and Ilan, 2023).

1.5.5 Improve the efficiency of systems by using
CDP-based variability

Based on the CDP, systems malfunction results from an
inadequate variability caused by borders that fail to respond
adequately to environmental perturbations. Functionality can be
improved by regulating the degree of variability (Ilan, 2022a;
Ilan, 2023b).

The concept of the CDP was introduced in earlier studies, which
showed that physiological variability occurs within a specific range
known as the “critical zone.” Beyond this zone, the scale-invariant
and nonlinear patterns of physiological variability begin to break
down, leading to system dysfunction. In the case of heart rate
variability (HRV), it has been shown that emergencies in this
critical zone stem from regulatory mechanisms of the central
nervous system (Ivanov et al., 1998). It is suggested that this
zone is crucial for health, as driving variability out of the critical
zone results in clinical perturbations.

Light therapy improves sleep quality and inter-daily stability,
which measures the strength of circadian rhythms, thereby reducing
intraday variability and measuring how often someone transitions
between rest and activity. There is an improvement in symptoms
associated with Alzheimer’s disease after using light therapy (Zang
et al., 2023). The data support the CDP-based concept that
constraining variability can improve functionality.

The digital pill improves response to medications and medical
devices using CDP-based algorithms by incorporating variability into
protocols (Ilan, 2021a). CDP-based second-generation AI algorithms
have three levels designed to improve responsiveness, overcome
tolerance to therapies, and prevent partial or complete loss of
effectiveness of chronic therapies (Ilan, 2021a; Ilan, 2020c; Ilan,
2020d; Ilan, 2022d; Hurvitz and Ilan, 2023). Similarly, chronicity
and repeatability are associated with loss of functionality in other
areas of life, such as work burnouts and sports activity (Gelman
et al., 2022). In the first level of the algorithm, an open-loop
platform, variability is introduced into interventions without regard
to outcome. The range of variability is predefined by the user or the
system manager (Sigawi et al., 2023; Gelman et al., 2023).

In the second level, a closed-loop system regulates the variability
based on the outcome. Algorithms are designed to reach predefined
outcomes and continuously adapt to reduce or increase the
variability to maintain a high degree of functionality under
changing conditions. The degree of variability is tailored to a
target person or system and personalizes the algorithm output.
As a dynamic platform, it constantly adapts to internal and
external changes in each subject or target system (Ilan, 2021a;
Ilan, 2020d; Ilan, 2022d; Hurvitz and Ilan, 2023).

At the third level, the algorithm receives additional inputs from
quantifying the variables in the target system (e.g., HRV, BPV). The
algorithm regulates the degree of variability based on these dynamic
inputs. The third level enables a sophistication of the output
variability by bringing it closer to the dynamic inherent
variability of a system. CDP-based second-generation AI systems
provide a platform for improving the functionality and efficiency of
all systems of nature by using personalized variability signitures
(Gelman et al., 2022; Kessler et al., 2020; Ishay et al., 2021a; Kolben
et al., 2021; Kenig et al., 2021; Azmanov et al., 2021; Potruch et al.,
2020; Isahy and Ilan, 2021; Khoury and Ilan, 2019; Khoury and Ilan,
2021; Kenig and Ilan, 2019; Ilan, 2019f; Gelman et al., 2020; Ishay
et al., 2021b; Ilan and Spigelman, 2020; Hurvitz et al., 2021; Ilan,
2021b; Azmanov et al., 2022; Hurvitz et al., 2022; Kolben et al., 2023;
Adar et al., 2023; Ilan et al., 2019).

1.6 The CDP defines human behavior as
being driven by randomness

Including random processes in decision-making avoids the
inevitable repetition inherent in human-made decisions. Mixing
randomness with predictability is known as a “mixed strategy.”
(Randomness to optimize your decision, 2023).

London Underground strike in February 2014 helped
commuters find better routes. As a result of the strike, many
commuters were forced to experiment with alternative routes
randomly, and 5% adopted them permanently. Many commuters
failed to modify their work journey to find the optimal commute.
They settled for a passable trip to avoid the risk of extended
commutes that might result from randomly experimenting with
their journeys. The strike’s randomizing effect led some commuters
to find better routes in the long run (Rauch and Larcom, 2015).

When faced with an excessive choice, randomness can solve
“analysis paralysis.” (Randomness to optimize your decision, 2023).
As a result of consumers’ freedom of choice, a competitive
environment is supposedly created, driving innovation and
efficiency and improving the overall consumer experience.
Randomly minimizing the choices can lead to a better result.
Fewer choices may seem counterintuitive, but it can be beneficial
since fewer choices translate into higher sales (Randomness to
optimize your decision, 2023). Consumers can experience anxiety
from the fear of missing out (FOMO) on a better opportunity to the
loss of presence in a chosen activity and regret from making the
wrong choice (Kim et al., 2020; Alfina et al., 2023). Consumers can
feel that no experience is genuinely satisfactory with somany choices
and “analysis paralysis.” According to the paradox of choice, the
greater the options, the less likely potential customers are to
complete a purchase (Randomness to optimize your decision,
2023; Karlık, 2020; Khan et al., 2022; Kinjo and Ebina, 2015).

Wealth inequality may reflect “pure randomness.”When people
are wealthy, it is because they are lucky, a result of randomness. Even
if everyone followed the same rules and had equal talent, a string of
chance events determined the ultimate distribution of wealth in
society (Boghosian, 2023; Li et al., 2019). Wealth distribution arises
from complex stochastic processes, but empirical evidence shows
that it follows universal power laws. These laws describe the
distribution of wealth among individuals, companies, and
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countries, indicating that wealth distribution is not random. This
phenomenon is related to the Matthew effect, which suggests that
the rich tend to get richer (Coelho et al., 2008).Wealth accumulation
at the personal, corporate, or national level is stochastic; however, it
is not random (Terwijn, 2016; Li et al., 2016; Flanigan et al., 2021;
Abrahams et al., 2023; Vossen and Hofmans, 2021).

Another example is choosing a panel that can represent a
population. In mini-public selection methods, participants are
selected randomly rather than based on filters or personal
connections (Stone et al., 2023). The definition and exploration
of the design space of randomness may help determine which
properties of randomness support legitimacy (Terwijn, 2016).
The challenge is quantifying this randomness’s conceptual
normative properties and determining which properties can be
achieved by efficient algorithms. The design space of randomness
in a selection algorithm must be defined to determine what
randomness remains available after imposing representation
constraints (Li et al., 2016). Random algorithms distribute the
probability across multiple panels. A panel distribution can
determine what randomness is available after the quotas are
imposed (Flanigan and Procaccia, 2023). Due to this relationship
between the panel distribution and individual selection probabilities,
the selection algorithm can allocate selection probabilities across
pool members. All pool members cannot have equal selection
probabilities. It is possible to design the selection algorithm to
minimize the disruption caused by envy within the pool
(Flanigan et al., 2021). By shaping the likelihood of these groups
being well-represented, the available randomness can promote the
representation of additional groups in random ways. It is possible to
select any measure of closeness to equal selection probabilities using
algorithms (Flanigan and Procaccia, 2023). Nevertheless, there is a
challenge in ensuring representation through the randomness of
selection algorithms (Author Anonymous, 2023).

Individuals’ self- and other-rated personality variability is
related to their job performance (Abrahams et al., 2023; Vossen
and Hofmans, 2021). Within-person variability, above mean-level
personality, positively correlated with self-rated job performance.
Within-person variability rated by others was negatively associated
with other performance ratings. Interactions with mean-level
personality were observed, with less adaptive personalities
showing adverse effects of variability and more adaptive
personalities showing positive effects. It appears that perceptions
of within-person personality variability can influence performance

evaluations beyond personality traits, although its desirability varies
according to an individual’s personality traits (Abrahams et al.,
2023). The data further supports the CDP-based notion that the
degree of variability impacts performance in a personalized way.

In summary, the CDP provides a platform that underlies the
function of all systems. Per this principle, inherent variability is
mandatory for proper function, and system malfunction is an
inappropriate functioning of the variability’s boundaries designed
to enable adaptability to perturbations. The CDP-based algorithms
that implement and regulate the degree of variability in systems can
improve their accuracy and predictability and are explored to
improve systems’ functionality. Future studies will explore using
CDP-based platforms to improve system efficiency and
overcome failures.
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