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For patients with refractory epilepsy, the seizure onset zone (SOZ) plays an
essential role in determining the specific regions of the brain that will be
surgically resected. High-frequency oscillations (HFOs) and connectivity-based
approaches have been identified among the potential biomarkers to localize the
SOZ. However, there is no consensus on how connectivity between HFO events
should be estimated, nor on its subject-specific short-term reliability. Therefore,
we propose the channel-level connectivity dispersion (CLCD) as a metric to
quantify the variability in synchronization between individual electrodes and to
identify clusters of electrodes with abnormal synchronization, which we
hypothesize to be associated with the SOZ. In addition, we developed a
specialized filtering method that reduces oscillatory components caused by
filtering broadband artifacts, such as sharp transients, spikes, or direct current
shifts. Our connectivity estimates are therefore robust to the presence of these
waveforms. To calculate our metric, we start by creating binary signals indicating
the presence of high-frequency bursts in each channel, from which we calculate
the pairwise connectivity between channels. Then, the CLCD is calculated by
combining the connectivity matrices and measuring the variability in each
electrode’s combined connectivity values. We test our method using two
independent open-access datasets comprising intracranial
electroencephalography signals from 89 to 15 patients with refractory
epilepsy, respectively. Recordings in these datasets were sampled at
approximately 1000 Hz, and our proposed CLCDs were estimated in the
ripple band (80–200 Hz). Across all patients in the first dataset, the average
ROC-AUC was 0.73, and the average Cohen’s d was 1.05, while in the second
dataset, the average ROC-AUC was 0.78 and Cohen’s d was 1.07. On average,
SOZ channels had lower CLCD values than non-SOZ channels. Furthermore,
based on the second dataset, which includes surgical outcomes (Engel I-IV), our
analysis suggested that higher CLCD interquartile (as a measure of CLCD
distribution spread) is associated with favorable outcomes (Engel I). This
suggests that CLCD could significantly assist in identifying SOZ clusters and,
therefore, provide an additional tool in surgical planning for epilepsy patients.
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1 Introduction

Epilepsy is a neurological disorder characterized by a tendency
to have spontaneous seizures Milligan (2021); Dredge (2022). With
3 million adults and 470.000 children affected by epilepsy in 2015 in
the United States, this condition is the fourth most frequent
neurological disorder (Zack and Kobau, 2017). Despite its
prevalence, only 36.36% of the patients diagnosed with epilepsy
report successful management of their condition via the use of
medications or surgery, and this ratio seems to be unaffected by
factors such as age or sex (Kobau et al., 2023).

When multiple anti-seizure medications fail to control seizures,
patients are deemed to have drug-resistant epilepsy (DRE), and they
may consider surgery in the hopes of achieving seizure freedom.
Current surgical treatments are based on the concept of an
epileptogenic zone (EZ), defined as “the area of cortex that is
necessary and sufficient for initiating seizures and whose removal
(or disconnection) is necessary for complete abolition of seizures”
(Jehi, 2018; Lüders et al., 2006; Rosenow and Lüders, 2001). There
are currently no biomarkers to delineate the EZ before the surgery;
therefore, the brain region in which seizure activity first occurs,
known as the seizure onset zone (SOZ), is often used as the best
evidence for determining which regions to remove. However,
removing the identified SOZ alone is often not enough to achieve
complete independence from seizures in DRE patients (Jehi, 2018).
Considering that localizing the SOZ is challenging, even for
experienced clinicians (Li et al., 2021), there is a need to develop
new biomarkers to improve SOZ localization and provide additional
evidence of regions within the EZ. This study focuses on the former
task by providing a new biomarker based on intracranial EEG
(iEEG) connectivity to assist in SOZ identification.

High-frequency oscillations (HFOs) are often defined as
distinguishable spontaneous bursts with frequencies ranging
between 80 Hz and 500 Hz, consisting of at least four cycles
(Zijlmans et al., 2017). While these oscillations are observed in
normal physiological processes (Lachaux et al., 2012), changes in
HFO properties can be associated with seizure-generating tissue
(often termed “pathological HFOs”) (Cimbalnik et al., 2018), and
seizure dynamics (Schönberger et al., 2019). Although several
cellular and network mechanisms are hypothesized to generate
pathological HFOs (Jiruska et al., 2017), the precise role of HFOs
in seizures remains an active area of research.

HFO rates have shown promise in identifying the SOZ
(Thomschewski et al., 2019; Charupanit et al., 2020). However,
their potential as SOZ biomarkers and the relationship between
HFOs and the SOZ is still under debate (Lee et al., 2020), as some
studies reported inconsistent findings (Jacobs et al., 2018). It is
important to note that technical factors, such as frequency filter
design and identification algorithms, may influence HFO detection
and interpretation (Bénar et al., 2010; Park and Hong, 2019).

Nevertheless, some HFO properties have been shown to be
valuable, as studies have demonstrated that HFO rates are often
higher in SOZ channels across different lesion types (Jacobs et al.,
2009). In addition, other features such as peak frequency (Cimbalnik
et al., 2018), pulse amplitude (Karpychev et al., 2022), duration
(Staba et al., 2002), and phase-amplitude coupling (Amiri et al.,
2016) or frequency-dependent entropy (Sato et al., 2019) have also
been explored as potential SOZ biomarkers.

Recently, it has been observed that HFOs can exhibit consistent
propagation patterns, suggesting that brain connectivity may play a
role in their generation. This is consistent with the idea of epilepsy as a
“network disease” (Jehi, 2018; Li Hegner et al., 2018), e.g., even focal
seizures can introduce disturbances in connectivity in large brain
regions (Zentner, 2020, p. 384). Consequently, a measure of
connectivity in the ripple band (80–200 Hz) has been used to
identify brain regions to target for resection during epilepsy
surgery (Fedele et al., 2017). Connectivity in interictal periods has
also been used to predict of the efficacy of a potential resection area,
with efficiency varying by frequency band (Shah et al., 2019).

This paper proposes a method for measuring electrode
synchronization in high frequencies as a candidate biomarker of
SOZ channels (Figure 1). First, we identify high-frequency bursts in
the ripple band (80–200Hz) that follow themorphological definition of
an HFO. We enhance this search by including a two-step filter to
minimize the effect of artifacts, attenuate pulses with short durations,
and filter the signal within narrow frequency bands. Then, we combined
connectivity between electrodes across different frequencies into a single
connectivity matrix. We use as a biomarker the dispersion of the
connectivity values observed at each channel. We validated our
procedure in two open-access datasets with sampling frequencies of
approximately 1000 Hz. Abnormal synchronization patterns observed
through this biomarker are associated with the SOZ.

2 Methods

2.1 Gabor transform as a HFO-like kernel

Definitions of HFOs differ in the literature, and when evaluating
the results, the exact frequency interval, filter settings, and
identification method need to be taken into consideration.
(Zijlmans et al., 2017). However, we can generally consider an
HFO to be a transient burst from which at least a finite number
of consecutive cycles are readily distinguished from the surrounding
background. When simulating these oscillations, they are often
modeled as the result of multiplying a sine wave with a Gaussian
envelope (Donos et al., 2020):

h* t;f0, σ( ) � g t, σ( )sin 2πf0t( ) (1)
where g(t, σ) is a Gaussian envelope with its shape controlled
through a dispersion parameter σ such that g(t, σ) � exp(−1

2 (t
σ)2).

A notable property of this model (Equation 1) is its potential for
extension by considering that the oscillatory component is a
complex value:

h t;f0, σ( ) � g t, σ( )exp j2πf0t( ) (2)

With this notation, a high-frequency burst h(t;f0, σ) is also the
kernel of a Gabor, or Morlet, transform. Then, the kernel function of
a Gabor transform can be used to model and isolate high-frequency
bursts that fit the definition of an HFO. This interpretation allows us
to extrapolate several properties from high-frequency bursts. For
instance, by convolving the signal with a Gabor kernel of frequency
f0, we recover the time τ of any burst with the same frequency,
h(t − τ;f0, σ), while bursts at other frequencies will be attenuated.

In this paper, we propose to use the following scaled
Gabor kernel:
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h t;f0, σ( ) � 1����
2πσ2

√ g t, σ( )exp j2πf0t( ) (3)

This formulation ensures time and frequency properties (with
closed-form solutions) that allow us to select an optimal dispersion
σ. Formal descriptions and proofs of the Gabor kernel
(Equations 2, 3) properties are included in Supplementary
Appendix A. A summary of the main properties involving the
Gabor dispersion is shown in Table 1.

2.2 Gabor kernel as a frequency and
pulse filter

We can configure the Gabor kernel to attenuate pulses with a lower
duration than desired, thus complying with the number of oscillations
required by the HFO definition. Let C be the number of cycles at a
frequency f0 that we assume is the minimum to be considered a valid
pulse. Then, let B be the pulse width such that B � C

f0
.

Without loss of generality, assume a unit input amplitude. Then
a Gabor kernel with dispersion σ will ensure an output amplitude
equal to or higher than 0.988 for a pulse duration equal to or higher
than 5σ. For alternative levels of output amplitude, the equations are
provided in Supplementary Appendix A2. A similar dispersion-
controlling procedure was suggested in (Waldman et al., 2018)
where f0

σ � 7 is recommended without further rationale.
We should note that Gabor dispersion σ also has an impact on

the filter frequency response, where a larger dispersion implies a
narrower filter in the frequency domain. Let us define the frequency
bandwidth Δf as the range of frequencies within which the filter has
a gain equal to or greater than a specified cutoff gain ηf. Typically
ηf � 1

2 in filter design applications (Semmlow, 2004, pp. 14–15).
Subject to this cutoff, the frequency bandwidth is described by

Δf � 2πσ( )−1
�������
−2 logηf

√
≈
0.588705

2πσ
(4)

Proof of this approximation is included in Supplementary
Appendix A1.

2.3 Morphological burst matching (MBM)

Artifacts and other iEEG events, such as epileptiform discharges,
DC shifts, and sharp transients, have a broadband spectrum that

spans to high frequencies (Bénar et al., 2010). Due to their broad
frequency ranges, these signals are sometimes identified as “candle”-
shaped in the time-frequency decomposition (Waldman et al.,
2018). Some of them have a spectrum in the range 2–120 Hz
(Sanei and Chambers, 2007, p.26) with the potential to overlap
with the ripple band, 80–200 Hz. In contrast, true HFOs tend to have
power concentrated around specific frequencies (morphologically
described as “blobs” or “islands”) (Waldman et al., 2018).

An MBM filter uses two parallel filters in an iterative process to
mitigate broadband oscillations while highlighting narrowband
oscillations (Figure 2). It starts by constructing two Gabor filters
(Equation 3) with the same central frequency f0. The first, a
narrowband (NB) filter, is configured with a dispersion σ− such
that it attenuates pulses with fewer cycles than our goal. The second
is a wideband (WB) filter, controlled with a dispersion σ+ that
intends to resemble the original signal while capturing the
bandwidth, where we still expect to see the effect of the artifact.

Then, we create a new envelope (instantaneous amplitude) by
taking the minimum value at each time point t between the
envelopes of the filtered signals:

Acommon t( ) � min A x−
f0

t( ){ },A x+
f0

t( ){ }{ } (5)

where x−(t) � h(t;f0, σ−) p x(t), x+(t) � h(t;f0, σ+) p x(t), and
A{x·

f0
(t)} is the instantaneous amplitude of the analytic signal of

x·
f0
(t)(t).
Finally, we can assemble the filtered signal as the combination of

the new envelope (Equation 5) and the instantaneous phase of the
NB filtered signal:

xf0 t( ) � Acommon t( )exp jP x−
f0

t( ){ }( ) (6)

where P{x−
f0
(t)} is the instantaneous phase of the analytic signal of

x−
f0
(t)(t).
This process can be iterated several times by using the output of

the previous iteration as the next input. The total number of
iterations is named as the filter order.

2.4 Binary sequence reflecting burst times

Let Y(t) be the multivariate time series that contains the iEEG
signals of P channels: Y(t) � {y1(t), y2(t), . . . , yP(t)}. To generate
a set of binary sequences for a channel k, we start by calculating the
envelope (instantaneous amplitude) of a filtered signal xf0(t)
around a frequency f0 (Equation 6):

AYk,f0 t( ) � A xf0 t( ){ } (7)

Then, a threshold τk is defined as an estimate of the maximum
value Mk,f0 such that τk � ατMk,f0, with the factor α setting the
strictness of the threshold. We propose using an estimation of the
maximum reference value across fixed non-overlapping intervals of
Tτ time points:

Mk,f0 � E max AY,f0 t + ]( ){ }]�Tτ

]�0([ ] (8)

The advantage of using this estimator is its ability to mitigate the
impact of extreme values observed due to artifacts that were not
attenuated with the MBM filter.

TABLE 1 Design parameters for a Gabor kernel filter. The approximated
expressions are determined under the following assumptions: a) the
bandwidth is defined as the interval where the spectrum is equal to or
greater than half of itsmaximum value, b) the amplitude in the filtered pulse
is equal to or greater than 98.8% of the unfiltered amplitude, c) the
transient duration is defined as the interval over which the signal exceeds
25% of its filtered maximum amplitude. Further information on these
expressions is found in Supplementary Appendix A1.

Parameter Approximated expression

Frequency bandwidth Δf ≈ 0.1874 σ−1

Minimum duration without attenuation B* ≈ 5σ

Relative transient duration for large pulses Δt ≈ 0.674σ

Relative transient duration for short pulses Δt≥ 1.665σ
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This threshold value is then used to create a high-frequency
binarized sequence (HFBS), Bk,f0(t), for the k-th channel. The
envelope AYk,f0 is (Equation 7) binarized using a threshold τk
(estimated with Equation 8):

Bk,f0 t( ) � I AYk,f0 t( )≥ τk[ ] (9)

where I[Θ] is the indicator function that returns 1 only when
Θ is true.

2.5 Cross-frequency binary connectivity

The HFBS signals for P channels filtered at a frequency f0

constitute a multivariate time series
Bf0(t) � {B1,f0(t), B2,f0(t), . . . , BP,f0(t)}. Our approach involves
using a covariance matrix as a functional connectivity metric

(Aqil et al., 2020; Razi and Friston, 2016) on the binarized signal
(Equation 9), defined as Cf0 � [BT

f0
(t)Bf0(t)]. In this context,

covariance provides a measure of synchronization between the
binarized pulses (Ombao and Pinto, 2022).

The MBM filter and cross-frequency binary connectivity are
designed to operate on single frequencies with an inherent frequency
tolerance. Therefore, we gathered covariance matrices for a specific
set of F frequencies Θf � f1, f2, . . . , fF to quantify the variation in
a specific range of frequencies.

To represent an aggregate connectivity matrix across the Θf

frequencies, we assign a weight w(Cfi) to each matrix Cfi, such that
we can create a cross-frequency covariance matrix as a
weighted average:

Σ � ∑F
i�1

w Cfi( )Cfi (10)

FIGURE 1
Calculation process of the channel-level covariance dispersion (CLCD) metric. For each iEEG channel, (A) the morphological burst matching (MBM)
is applied in the target frequency fk , which involves two parallel filters working with different bandwidths to mitigate the impact of wideband artifacts.
Then, (B)we use a Hilbert transform to estimate the envelope of the filtered signal. The envelope is then followed by a thresholdingmethod to generate a
binary sequence known as the high-frequency binary sequence (HFBS). (C) Next, we estimated the covariance matrix for the HBFS sequences at
frequency fk over all iEEG channels. Subsequently, we collect the covariances from all frequencies of interest f1, f2, . . .fk . We combine all of thosematrices
into a cross-frequency binary connectivity (CFBC) matrix. (D) Finally, we calculate the CLCD score from the CFBC matrix. Note that HFBS sequences
describe burst pulses occurring at a particular frequency that is less susceptible to be generated by artifacts (with spectrum in the same frequency band).
Therefore, HFBS rates may differ from HFO rates as described in the literature.
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This formulation allows us flexibility in the strategy to combine the
connectivitymatrices. If we assume that all covariancematrices have the
same impact, the weight should be constantw(Cfi) � 1 for all matrices.
However, we can also use the weight tominimize the impact ofmatrices
containing outliers, such as abnormal values or sparsity. A simple
metric that can be used to quantify this is the standard deviation of the
items in such matrices. Therefore, we suggest using the weight
w(Cfi) � 1

std(Cfi) that penalizes matrices with those outliers. We
should remark that this weighting rule will only attenuate abnormal
values that happen in some, but not all, frequencies.

2.6 Channel-level covariance
dispersion (CLCD)

The combined connectivity matrix Σ (Equation 10) provides
information about the synchronization between each pair of
channels i and j through the σ i,j. Thus, for each channel k, the
vector of covariances {σk,1, σk,2, . . . , σk,P} quantifies its relationship
with every other electrode. We can summarize this vector by

measuring its dispersion using the sample standard deviation of
its values:

~ηk �
1

P − 1
∑P
m�1

σk,m − 1
P
∑P
i�1

σk,i⎛⎝ ⎞⎠2

� std σk,1, σk,2, . . . , σk,P{ }( )
(11)

This metric quantifies the variability in connectivity that
channel k experiences in the system. Thus, a channel with
similar connectivity to all other channels will have a lower
score than channels that have different connectivity values with
a specific subgroup of electrodes. We hypothesized that the SOZ
channels would exhibit anomalous connectivity values compared
to the non-SOZ (nSOZ) channels, which could be reflected as
abnormal CLCD values.

Then, we defined the channel-level connectivity dispersion
(CLCD) as the z-score of the metric η̂k (Equation 11):

nk � ~ηk −∑P
m�1~ηm

std ~η1, ~η2, . . . , ~ηP{ }( ) (12)

FIGURE 2
Calculation process of a second-order MBM filter. The first step involves concurrently using two filters: one narrowband filter (A) based on the
number of oscillations required for an HFO and a wideband filter (B). Envelopes are estimated from both signals and then merged. Merging (C) is
performed bymultiplying by the phase of the wideband-filtered envelope and the amplitude narrowband-filtered envelope. The process may be iterated
several times (D), with the number of iterations referred to as the filter order. At the right, we show an example of the application of the MBM filtered
using a simulated signal. HFO are highlighted in blue with a label “h”. Artifacts are highlighted in red: start of a spike and slowwave, or spike (“a”), end of the
spike (“a*“), fast-transient (“b”), DC shift (“c”).
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3 Dataset

To evaluate CLCD scores as a candidate marker of the SOZ, we use
two open-access datasets that contains iEEG recordings from patients
with drug-resistant focal epilepsy. The first dataset, CHM,was collected at
Children’s Hospital of Michigan andHarper University Hospital, Detroit
Medical Center (Sakakura and Eishi Asano, 2023; Sakakura et al., 2023).
Recordings from these patients were collected at 1000 Hz during 20 min
of slow-wave sleep in interictal periods separated at least 2 hours fromany
clinical-determined seizure event. All patients in this dataset had an
International LeagueAgainst Epilepsy (ILAE) class 1 outcome in their last
follow-up, implying that they were considered seizure-free without the
presence of any auras. We refer to (Sakakura et al., 2023) for further
details on the experimental setup, inclusion, and exclusion criteria.

Within this group of 114 patients, we focused on those who had
more than two SOZ channels in subdural grid electrodes. We use
these inclusion criteria because CLCD is a relative statistic that relies
on the values of all electrodes. Consequently, a low or nonexistent
number of SOZ channels might significantly distort our results. The
selected subset comprised 89 patients with an average age of
10.90 years (standard deviation: 5.73), of which 47.2% were
female. 65.2% had a visible MRI lesion. SOZ locations were
primarily identified in the temporal (49.4%), parietal (31.5%),
frontal (30.3%), and occipital (20.2%) regions.

We also used a second open-access dataset, HUP, collected at the
Hospital of the University of Pennsylvania (Bernabei et al., 2023a; b,
2022). This dataset consists of ictal and interictal recordings from
85 patients. Each patient had implanted subdural or depth electrodes or
a combination of both. Resection or laser ablation was used as a surgical
procedure. Surgery outcome was evaluated using the Engel scale at least
6 months after the intervention. We refer to (Bernabei et al., 2023b;
Bernabei et al., 2022) for additional details on the experimental setup.

The recordings in this dataset had frequency samplings between
500 Hz and 1024 Hz. To match the sampling frequency of the HUP
dataset, we selected only the subjects that had at least 1000 Hz as the
sampling rate with at least one identified SOZ channel. Then, the
subset used in our study comprised 15 patients with an average age of
31.87 years (standard deviation: 9.76), of which 53.3% were female.
33.3% had a visible MRI lesion, and 33.3% had a resection procedure.
Moreover, the patient outcomes reported were: Engel I-A (n = 4), I-B
(n = 4), I-D (n = 2), III-A (n = 4), IV-A (n = 1). Furthermore,
14 patients had implanted depth electrodes, and only a single patient
had a subdural electrode. Moreover, the electrodes weremainly placed
in the medial temporal lobe (60%) and temporal lobe (20%).

For each subject, we selected three non-overlapped 2-min
epochs of iEEG for our analysis, and we chose the frequency
singletons in the ripple band (80–200 Hz). Each MBM filter was
configured to penalize pulses of bursts with less than five oscillations
in each frequency, while the wideband filter was designed to have a
bandwidth of 25 Hz around each filtering frequency.

4 Results

4.1 MBM filter comparison

We simulated an EEG signal composed of a spike, three fast
transients, and a DC shift, along with a set of HFO oscillations with

different pulse widths at a central frequency of 150 Hz (Figure 3A).
Then we applied two filters: a 101-th-order FIR filter with a bandwidth
of 100 Hz and an S-transform kernel used as a filter. In addition, we
applied a third order MBM filter. The filtering results are compared in
Figures 3.B–D.

Furthermore, we assessed the capability of the filter to reconstruct
the original high-frequency pulse in the presence of artifacts. We
simulated three scenarios, each one denoting an HFO of 50 ms
duration with a unit amplitude followed by either a spike, a short
sharp transient (1 ms), or a fast sharp transient (3 ms). These scenarios
were designed to represent the influence of artifacts with a variable
signal-to-noise ratio in comparison to the true HFO pulse. Simulations
were performed using a sampling frequency of 1,000Hz.We considered
two HFO frequencies: 100 Hz and 200 Hz. The filters’ responses were
assessed for artifacts with amplitudes ranging from 0 (no artifact) to 10.
Thus, 264 combinations were evaluated, in total.

The estimated pulses were calculated using the binarization
procedure outlined in Section 2.4. In order to evaluate the filter’s
performance, we calculate the “effective total duration,” in which
correctly identified pulse durations were multiplied by a factor of +1,
while incorrectly identified pulse durations were mutiplied by a
factor of −1. Consequently, the effective duration turns negative
when the duration of false pulses exceeds that of the actual pulses.
An overview of the simulation results is shown in Figure 4.

Typical spikes, representative of epileptiform discharges, had
minimal influence on all filters except the S-transform, where the
impact was more noticeable. Nevertheless, abrupt transients
considerably impacted all filters except MBM, which demonstrated
remarkable stability against both classes of artifacts in the simulations.
This robustness of the MBM filter is a significant finding of our study.

4.2 Separability

Figure 5 illustrates the application of our CLCD scores in
identifying potential SOZ channels within grids of subdural
electrodes. A CLCD score is associated with every channel based
on its connectivity dynamics, as described in Section 2.6. We
hypothesized that extreme values would be associated with the
SOZ channels. Thus, in the rest of this section, we apply several
performance evaluation techniques to determine the separation
between the CLCD scores observed in SOZ and nSOZ channels.

First, we calculated the CLCD metric for the iEEG data from
each of the 89 patients with refractory epilepsy in the CHM dataset
and 15 patients in the HUP dataset. We should recall that the iEEG
signals were sampled at approximately 1000 Hz (CHM dataset:
1000 Hz, HUP dataset: 1000Hz and 1024Hz) and, consequently, the
CLCD metric was calculated on the ripple band (80–200 Hz) as
described in Section 3. For each subject, we calculated the CLCD
associated with the SOZ channels (SOZ-CLCD) and nSOZ channels
(nSOZ-CLCD). The absolute value of the difference between the
average SOZ-CLCD and the average nSOZ-CLCD for each subject
and epoch is depicted in Figure 6A (CHM dataset) and 7. A (HUP
dataset. We found an average of 0.85 and standard deviation of 0.54
(CHM) and an average of 0.86 with an standard deviation of 0.36
(HUP), indicating a notable difference between CLCD in SOZ and
nSOZ channels. We also evaluated the significance of the difference
between SOZ-CLCD and nSOZ-CLCD for each subject using the
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Wilcoxon-Mann-Whitney, or rank-sum, test. p-values for each
subject were adjusted for multiple comparisons using the
Benjamini-Yekutieli procedure. From this procedure, we found
that forty-nine subjects (55.06%) and thirteen subjects (86.66%)
exhibited a significant difference (p-value< 0.05) in the CHM and
HUP datasets, respectively.

To measure our method’s ability to classify SOZ and nSOZ
channels, we used two separability metrics. First, we calculated
Cohen’s d, often used for effect size analysis, which also provides
information about the amount of overlap between the SOZ-
CLCD and nSOZ-CLCD. Across subjects, the average Cohen’s
d was 1.05 (standard deviation: 0.77, Figure 6B) and 1.07
(standard deviation: 0.7457, Figure 7B) in the CHM and HUP
datasets, respectively.

Finally, we estimated the concordant statistic (c-statistic)
through the area under the receiver operating characteristic curve
(ROC-AUC). This metric assessed the CLCD’s capability to provide
a threshold that isolated SOZ clusters (Hand and Till, 2001). Results
for each subject are in Figure 6C; patients showed an average ROC-
AUC of 0.73 (standard deviation:0.13) in the CHM dataset and an
average ROC-AUC of 0.78 (standard deviation: 0.08) in the
HUP dataset.

4.3 CLCD magnitude in SOZ channels

The distribution of SOZ-CLCD and nSOZ-CLCD values across
the channels in all subjects is depicted in Figure 6D. The nSOZ

channels had an average CLCD of 0.059 (standard deviation: 0.774).
In contrast, SOZ channels averaged −0.550 (standard deviation:
0.826). In our dataset, CLCD values in SOZ were statistically
significantly lower than nSOZ channels (one-tailed rank-sum test,
p-value< 1e-5).

As expected, the distribution of the difference between nSOZ-
CLCD and SOZ-CLCD per subject and epoch (Figure 6E) was
positively skewed with an average of 0.570 and a standard
deviation of 0.851.

4.4 Separability and CLCD magnitude in
resected channels

The 15 patients in the HUP dataset used for validation also
contain information about resected (RES) and non-resected
(nRES) channels. Similar to the performance evaluation
procedure described in Section 4.2, we estimated the CLCD
associated with the resected channels (RES-CLCD) and the
non-resected channels (nRES-CLCD). Our method still denotes
differences between RES-CLCD and nRES-CLCD, and the pattern
is similar to the values observed when the CLCD values were
compared against the SOZ labels (Figures 7.A–C). The absolute
value for each subject and epoch has an average of 0.77 and a
standard deviation of 0.50 (Figure 8A). Cohen’s d values had an
average of 0.97 with a standard deviation of 0.75 (Figure 8B).
Moreover, the concordant statistic or ROC-AUC is 0.74 with a
standard deviation of 0.12.

FIGURE 3
Filtering effects of an (B) FIR(101), an (C) S-transform, and an (D)MBM filter with a (A) simulated signal composed of HFO pulses with a spike and slow
wave (spike), three fast transients (FTs), and a DC shift. Artifacts are highlighted in orange ellipses. Only the real component of the S-transform is plotted.
Note that the MBM filter automatically attenuated the artifacts.
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While the values in the non-resected channels are still
statistically significantly higher than in non-resected channels
(p-value< 1e-5, one-tailed rank-sum, Figure 8D), the magnitude
of the difference is considerably lower than when we only analyze
SOZ channels (Figure 7D). This disparity may have arisen due to the
inclusion of resected channels that were in non-seizure-generating
brain regions and the exclusion of previously channels classified as
SOZ, which could have led to supplementary clinical assessments
during surgery that were not reported in the validation dataset. This
discrepancy could explain the performance contrast in subject
HUP01, which shows a difference in the CLCD values in SOZ
and nSOZ channels but poor differentiation between CLCD in RES
and nRES. The opposite is true in subject HUP12, where the CLCD
values perform better at separating RES/nRES channels
(Figures 8.A–C).

4.5 CLCD and surgical outcome prediction

We also evaluate the predictive capability of the CLCD scores
in determining the surgical outcome. Note that by construction,
the CLCD scores inside a grid have a zero mean and a unit standard
deviation (Equation 12). Therefore, to aggregate all the values per
epoch per subject, we use the interquartile range (IQR), which
measures the spread of the observed CLCD values and it may be a
representative metric for comparing results between different
subjects. In addition, in order to mitigate the impact of outliers,
we calculate the z-score of the absolute CLCD values (at each
epoch), and we exclude any values where the z-score was above
+3 or below −3. The IQR was computed for this subset of filtered
values for each grid (Figure 9A). The patients with favorable
outcomes (F: Engel I) had an interquartile average of 0.76

FIGURE 4
Evaluation of the influence of artifacts in pulse reconstruction after filtering. Higher values indicate higher accuracy in reconstructing HFO-like
events in the presence of an artifact. The simulated signal consisted of a single HFO pulse lasting 50ms, followed by an artifact: (A) sharp transient, (B) slow
sharp transient, or (C) a spike with frequencies of 100 Hz and 200 Hz. Four filters were compared: S-transform, FIR(101), Butterworth (third order), and
MBM (third order). Artifacts’ amplitudes ranged from 0 (no artifact) to 10 times the amplitude of the HFO pulse. Y-axis represents the “effective pulse
duration” in milliseconds. This number is closer to the true pulse length (50 ms) when there are no artifacts present. However, it becomes negative when
the duration of artifact-caused pulses exceeds the estimated duration of the actual pulses.
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(standard deviation: 0.16), whereas the participants with poor
outcomes (P: Engel II-IV) had an average of 0.67 (standard
deviation: 0.17). Statistical significance was assessed using a
one-tailed rank-sum test (p-value: 0.044).

Additionally, we explore the relationship between the performance
of the CLCD score as an SOZ biomarker and the Engel scale. We
conducted the analysis on the same evaluation metrics described in
Section 4.2, where we evaluated the separability of CLCD-SOZ and
CLCD-nSOZ values. We observed a difference in the CLCD’s absolute
difference per subject and epoch (F: 1.01, P: 0.56, p-value: 6e-4), in the
Cohen’s d values (F: 1.26, P: 0.70, p-value: 1e-3), and in the separability,
ROC-AUC (F: 0.82, P: 0.70, p-value = 2e-4) values. As shown in
Figure 9C, D, all performance metrics consistently showed higher
CLCD separability magnitudes in patients with favorable outcomes
compared to those who demonstrated poor outcomes.

Our previous scores showed some difference in the performance
results when the resected channels were used instead of the SOZ labels.
We analyzed the association of the performance of CLCD-RES and
CLCD-nRES as a function of the Engel scores. We found that
performance metrics are still significantly higher in patients with
favorable outcomes (Figure 9C, D): in CLCD’s absolute differences
(F: 0.90, P: 0.52, p-value = 8e-3); in the Cohen’s d values (F: 1.15, P: 0.62,
p-value = 8e-3) and in the ROC-AUC (F: 0.77, P: 0.68, p-value = 0.014).

5 Discussion

This paper proposes a method that uses connectivity
information across burst-associated binary sequences at

different frequencies to generate a dispersion score (CLCD) for
each channel. We hypothesized that this score could assist in
delineating the SOZ.

As part of our approach, we developed an enhanced filter, MBM.
This filter is based on a Gabor kernel function and was used prior to
generating the binary sequences. Our mathematical proofs and
experimental simulations demonstrate that the MBM filter can
successfully attenuate specific categories of artifacts with large
spectral bandwidths, including spikes, sharp transient events, and
DC shifts, which are often challenging to remove using only
frequency-filtering methods. It is essential to acknowledge that
our MBM filter has limitations. For instance, additional
simulations are required to validate its efficacy in removing
muscle artifacts, since they were not included in our initial
analysis. Moreover, by construction, any waveform with a
spectrum overlapping our central frequency could be significantly
attenuated if its spectrum bandwidth is broader than the bandwidth
configured in the MBM filter. Suppose a physiological event
produces two bursts simultaneously, one in the ripple band and
another in the fast ripple band. In such a circumstance, an MBM
filter will attenuate both signals as they can be misinterpreted as
broadband artifacts. Nevertheless, with its constraints, an MBM
filter minimizes the likelihood of DC shifts and spikes affecting our
connectivity results, as they have been shown to be sources of
artifactual bursts in high frequencies (Lee et al., 2020). Our
MBM filter also enhances the differences in CLCD scores
between SOZ and nSOZ, when compared to FIR filters or the
root-mean-square HFO detection method (Staba et al., 2002) (see
Supplementary Material).

FIGURE 5
CLCD scores in subdural grids from subjects (A)CHM05, (B)CHM46, and (C)CHM01. Darker colors represent lower scores. Channels labeled as SOZ
are marked with a yellow bullet. ROC-AUC as a separability metric is also included for each electrode grid.
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The CLCD score assesses the degree of similarity in
synchronization between one electrode with respect to the other
electrodes in the subdural grid. SOZ channels will have extreme

values, denoting an abnormal behavior in the connectivity network,
that can be used as a biomarker. Our analysis (performed in signals
sampled at ~1000 Hz) revealed that the CLCD score, in both

FIGURE 6
Summary results on the 89 patients in the CHM dataset. (A) Absolute difference between average nSOZ-CLCD and SOZ-CLCD for each subject and
epoch. Statistical difference is assessed using a rank-sum test (p-values:*:<0.05, **:<0.01, ***:<0.001, ****:<0.0001). (B–C) Measures of separability
between SOZ and nSOZ channels are shown: Cohen’s d and ROC-AUC. (D) Distribution of CLCD values in SOZ and nSOZ channels. The median of the
nSOZ channels is statistically significantly higher than in SOZ channels (rank-sum test, p-value< 1e-5). (E) Distribution of the mean CLCD in nSOZ
channels subtracted from the mean in SOZ channels, for all epochs and subjects.
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datasets, estimated in the ripple band (80–200 Hz) reflects a distinct
synchronization pattern within the SOZ channels, leading to a
significant degree of separability, as shown by the AUC and

Cohen’s d values. On the scale suggested by Hosmer and
Lemeshow (Hosmer and Lemeshow, 2000, p.162), our average
AUC estimate is considered “acceptable”, or satisfactory, given

FIGURE 7
Performance results on the 15 patients in the HUP dataset using SOZ channels. (A) Absolute difference between average nSOZ-CLCD and SOZ-
CLCD for each subject and epoch. Statistical difference is assessed using a rank-sum test (p-values:*:<0.05, **:<0.01, ***:<0.001, ****:<0.0001). (B–C)
Measures of separability between SOZ and nSOZ channels are shown: Cohen’s d and ROC-AUC. (D) Distribution of CLCD values in SOZ and nSOZ
channels. Themedian of the nSOZ channels is statistically significantly higher than in SOZ channels (rank-sum test, p-value< 1e-5). (E)Distribution of
the mean CLCD in nSOZ channels subtracted from the mean in SOZ channels, for all epochs and subjects.
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that it is in the range between 0.7 and 0.8. At the same time, our
Cohen’s d values show that the distribution of CLCD scores in SOZ
and nSOZ overlaps less than 45% (Sullivan and Feinn, 2012). This

separability observed in both metrics confirms the ability of our
score to classify SOZ and nSOZ channels. These results are
consistent with the literature, as differences in the

FIGURE 8
Performance results on the 15 patients in the HUP dataset using resected channels. (A) Absolute difference between average nRES-CLCD and RES-
CLCD for each subject and epoch. Statistical difference is assessed using a rank-sum test (p-values:*:<0.05, **:<0.01, ***:<0.001, ****:<0.0001). (B–C)
Measures of separability between RES and nRES channels are shown: Cohen’s d and ROC-AUC. (D)Distribution of CLCD values in RES and nRES channels.
Themedian of the nRES channels is statistically significantly higher than in RES channels (rank-sum test, p-value< 1e-5). (E)Distribution of the mean
CLCD in nRES channels subtracted from the mean in RES channels, for all epochs and subjects.
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synchronization (cross-correlation) patterns in the ripple and fast
ripple band inside and outside the SOZ (Weiss et al., 2024a) have
also been reported. Although current performance assessments
denote that CLCD has the potential to be used as an additional
surgical tool, we recognize that it may have significant limitations as
a standalone approach for surgical guidance due to its current false
positive rate. However, the CLCD scores can be combined with
other methodologies and clinical assessments to improve the
identification of SOZ channels.

Our connectivity method can also be understood as a method to
construct a weighted undirected graph. Graph theory properties
have been explored in the literature as SOZ delineation biomarkers.
Weiss et al. showed that local efficiency, characteristic path length,
and nodal strength could provide a SOZ prediction accuracy,
measured through ROC-AUC, of 0.778 between different subjects
(Weiss et al., 2022), and can predict Engel scores with an ROC-AUC
between 0.68 and 0.82 (Weiss et al., 2023). These studies also noted
that accuracy can be improved by integrating machine learning
techniques along with their graph theory-based features (Weiss
et al., 2024b; 2022). Further work is required to integrate CLCD
with an interpretable machine-learning method that could enhance
the accuracy of the SOZ prediction.

It is important to highlight that the distribution of our CLCD
scores is consistent across the CHM and HUP datasets (Figures 6.E,
7.E). Similarly, the differences in the CLCD scores in SOZ and nSOZ
channels have a consistent pattern (Figures 6.D, 7.D). Given that
these datasets include populations with distinct age distributions
and originate from separate medical facilities, potential biases
inherent to each specific dataset, such as inter-rater variability in
assessing the SOZ channels that we used as a performance reference,
are mitigated. Although we advise being cautious in drawing strong
conclusions from these results due to the small sample size in the
HUP dataset, the diverse population characteristics in both datasets
speak to the robustness of our method.

On average, most subjects in the CHM dataset have lower CLCD
scores in the SOZ channels than in the nSOZ electrodes. However,
20 patients in CHM, and 2 patients in HUP, exhibit the opposite
phenomenon from a total of 89 and 15 patients, respectively. We
examined the possible confounding factors contributing to these
disparities by analyzing the patient demographics in the CHM
dataset. The results of this comparison are highlighted in
Figure 10. No discernible pattern was identified in relation to
age, SOZ location, or sex. Although earlier research has not
explicitly examined possible differences in synchronization

FIGURE 9
Relationship between the CLCD values and the outcome Engel scale in the HUP dataset. (A) Interquartile range of the absolute CLCD values as a
function of the surgical outcome. A favorable outcome (Engel I) is associated with larger range of CLCD magnitudes. (B–D) Variation of the separability
metrics with respect to the Engel scale as described in Figures 7, 8 comparing SOZ-CLCD and nSOZ-CLCD (left) and RES-CLCD and nRES-CLCD (right):
(B) Absolute difference for each subject and epoch, (C) Cohen’s d and (D) ROC-AUC. Mean and standard deviation are shown along each boxplot.
Statistical differences are assessed using a one-tailed rank-sum test (p-values:*:<0.05, **:<0.01, ***:<0.001, ****:<0.0001). Note that in all cases, the
higher the separability, the higher the likelihood of a favorable outcome.
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variability, discrepancies in the connectivity values have been
reported in the literature on interictal connectivity in iEEG:
Lagarde et al. found that functional connectivity is lower inside
the SOZ (and the propagation zone) in comparison with the other
channels (Lagarde et al., 2018). Similarly, Conrad et al. reported that
lower average connectivity metrics increase “the likelihood of an
electrode being in the SOZ” (Conrad et al., 2022). In contrast, Shah
et al. reported increased functional connectivity in the SOZ, also
associated with positive surgical outcomes (Shah et al., 2019). Higher
levels of synchronization or connectivity in the SOZ channels have
also been found in patients with focal cortical dysplasia by Varetto
et al. (Varotto et al., 2012). The large number of subjects in our
retrospective study may have emphasized this contrasting
difference. Nevertheless, our analysis recognized the classification
potential through the separation metrics, despite this effect. Thus,
this reemphasizes the hypothesis that SOZ channels have a unique
connectivity structure that differentiates them from the
other channels.

This study aims to analyze the potential use of our method in
facilitating the identification of SOZ channels. However, we can
also evaluate the relationship between our metric and the surgical
outcome after an intervention using the details provided in the
HUP dataset. Our current findings reveal that favorable
outcomes (Engel I) are associated with larger CLCD values
(Figure 7D). Furthermore, assuming that the SOZ channels
have been externally identified with other clinical procedures,
our CLCD score can also provide an enhanced prediction. Thus,
CLCD absolute differences, Cohen’s d, and separability (ROC-
AUC) are statistically significantly higher (rank-sum test, p-value
≤ 1e-5 in all cases) in patients that had a favorable outcome in
comparison with the subjects with a poor outcome (Figures
7.A–C). We may infer that the observed limitations of our
metric in accurately identifying the SOZ may be inherently
linked to the patient’s post-surgical recovery ability. Therefore,

there is an association between the likelihood of a favorable
outcome and the agreement level between our CLCD scores and
the clinically determined SOZ. Additional research is required to
confirm this association, as currently, there is a lack of a standard
for determining the SOZ, and therefore, it is highly clinician-
dependent. Further validation using resected information in a
larger dataset would be critical to minimize potential biases.

6 Conclusion

In this paper, we propose a candidate biomarker of the SOZ that
uses connectivity across binarized bursts at different frequencies to
estimate a dispersion score (CLCD) for each channel. The CLCD
metric quantifies the degree of similarity in the connectivity patterns
that each electrode exhibits.

To minimize the effect of spikes, DC shifts, and other fast
transient artifacts, we also develop a morphological burst
matching (MBM) filter that uses a non-linear process to
incorporate the information of two Gabor-based filters in
parallel. We evaluated the performance of the MBM filter by
measuring the pulse reconstruction accuracy as a function of the
signal-to-noise ratio. We compared the results with FIR,
Butterworth, and S-transform filters, and we observed that our
proposed filter is robust against broadband artifacts.

We assessed the ability of the ripple band CLCD score
(80–200 Hz) to detect SOZ clusters by retrospectively analyzing
two independent open-access datasets. Those datasets were
comprised of iEEG from 89 to 15 patients, respectively, with
recordings sampled at approximately 1,000 Hz. Our results
showed a separability between the CLCD scores in SOZ and
nSOZ. Using the second dataset, which contains surgical
outcomes (Engel I-IV), we found that the interquantile CLCD
scores are slighly higher in patients with a positive outcome.

FIGURE 10
Mean CLCD differences, with respect to the (A) SOZ location or region, (B,C) age and sex, and (C,D) proportion of SOZ channels and sex. Note that
no remarkable effect is observed between the covariates and the mean difference.
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We acknowledge the limitations of our current validation approach,
including the restriction of requiring more than one SOZ channel, the
variability of our metric given that a subset of patients denoted high
CLCD values in the SOZ, and our current dependence on the clinicians’
assessment for evaluating performance. We mitigated potential issues
regarding inter-rater variability by evaluating two distinct datasets from
different institutions. In both environments, our method produces a
similar and consistent response. On top of that, our results suggested
that extreme CLCD values are associated with a greater likelihood of a
favorable surgical outcome. However, a comparison to the resected
tissue in a larger data set would be an important future validation step,
as well as a long-term evaluation of our metric’s variability.
Nevertheless, our separability metrics indicate that SOZ channels
have a distinctive pattern even in the small subset of patients
analyzed. Although this type of behavior has been previously
reported in the literature, further analysis is recommended to
understand potential confounding factors that can be involved.

Overall, our findings show that CLCD is capable of identifying
patterns in SOZ channels by analyzing cross-frequency connectivity.
Consequently, it exhibits potential as a complementary tool to aid in
surgical planning by facilitating the delineation of the SOZ.
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