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To date, there is no neurophysiologic or neuroimaging biomarker that can
accurately delineate the epileptogenic network. High-frequency oscillations
(HFO) have been proposed as biomarkers for epileptogenesis and the
epileptogenic network. The pathological HFO have been associated with areas
of seizure onset and epileptogenic tissue. Several studies have demonstrated that
the resection of areas with high rates of pathological HFO is associated with
favorable postoperative outcomes. Recent studies have demonstrated the
spatiotemporal organization of HFO into networks and their potential role in
defining epileptogenic networks. Our reviewwill present the existing literature on
HFO-associated networks, specifically focusing on their role in defining
epileptogenic networks and their potential significance in surgical planning.
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1 Introduction

The evolution in the conceptualization of epilepsy as a network pathology propelled the
endeavor to identify neurophysiological and neuroimaging biomarkers to delineate and
map epileptogenic networks. High-frequency oscillations (HFO) are considered biomarkers
of epilepsy (Jacobs et al., 2008; Frauscher et al., 2017; Jacobs et al., 2012; Sharifshazileh et al.,
2021; Burelo et al., 2021). They are associated with epileptogenesis and ictogenesis (Zijlmans
et al., 2012; Roehri and Bartolomei, 2019; Roehri et al., 2018; Li X. et al., 2021; Bragin et al.,
2004; Bragin et al., 2007; Santana-Gomez et al., 2019; Jiruska et al., 2010; Xu et al., 2016;
Ferrari-Marinho et al., 2016). High-frequency oscillations are present at high rates in ictal
onset areas and “epileptogenic zones,” and their resection is associated with favorable
postoperative outcomes (Höller et al., 2015; Burnos et al., 2016; Amiri et al., 2016; Zijlmans
et al., 2011; Worrell et al., 2004; Chen et al., 2021; Cho et al., 2014; Jacobs et al., 2010;
Akiyama et al., 2011; van’t Klooster et al., 2015; van Klink et al., 2014; Fujiwara et al., 2012;
Wu et al., 2010; Jiruska et al., 2017).

Epileptogenic networks are conceptualized to have a hierarchical organization, ranging
from microscale circuits to macroscale networks (Zaveri et al., 2020; Barot, 2020). To study
epileptogenic networks on a smaller scale or at the level of local neural circuitry, it is
essential to investigate HFO (Barot, 2020). Local microscale networks, comprising
pyramidal cells and interneurons, generate HFO (Shamas et al., 2018; Jefferys et al.,
2012; Helling et al., 2015; Righes Marafiga et al., 2021; Shiri et al., 2016). Physiological
and pathological ripples (R, 100–250 Hz) and fast ripples (FR, 250–500 Hz) are generated by
a variety of neural microcircuits through mechanisms that can be distinct, overlapping, or,
in certain cases, similar (Bragin et al., 2007; Ylinen et al., 1995; Bragin et al., 2011; Lai et al.,
2023; Liu et al., 2022; Buzsáki, 2015). Therefore, it is reasonable to conceptualize HFO as
small-scale networks that evolve into larger-scale networks.
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Initially, HFO were considered spatially restricted without the
ability to “propagate” or “organize within networks or highly
connected clusters” (Cuello-Oderiz et al., 2017; van Diessen et al.,
2013a). Micro- and macro-electrode recordings, non-invasive
studies, and connectivity analyses support the presence of “HFO
hubs,” “HFO networks,” and “HFO propagation” (van’t Klooster
et al., 2015; van Klink et al., 2014; van Diessen et al., 2013a; González
Otárula et al., 2019; Xu N. et al., 2021; Ortiz et al., 2018;
Korzeniewska et al., 2014; Zweiphenning et al., 2016; Weiss et al.,
2022; Weiss et al., 2019). These findings raise the question of
whether surgical failure risk can be mitigated by adequate
disconnection of “critical” HFO-generating networks or
“HFO hubs.”

Isolated HFO, “HFO hubs,” and “HFO networks” exhibit
dynamic changes comparable to those observed in epileptogenic
networks, including changes associated with arousal states and pre-
ictal and post-ictal phases (Worrell et al., 2004; Halász et al., 2019;
Staba et al., 2004; von Ellenrieder et al., 2017; Bagshaw et al., 2009;
Halász and Szűcs, 2020; Song et al., 2016; Epstein et al., 2014; Inoue
et al., 2020; Fisher et al., 1992; Zweiphenning et al., 2019; Birk et al.,
2021). Despite this variability and dynamic nature, the localization
and morphology of the “HFO networks” remain constant and
centered around the foci that initiate seizures (Fisher et al., 1992).

This review addresses our understanding and knowledge gaps
regarding “HFO networks” and “HFO hubs,” their spatiotemporal
organization, correlation with foci initiating seizures, and
association with surgical outcomes. The presented evidence
substantiates the importance of multimodal investigation,
integrating neuroimaging data, electrophysiological recording,
and connectivity measures in studying “HFO networks,” “HFO
hubs,” and “HFO clusters.”

2 Mechanisms of HFO generation from
cellular to network levels

The generation of HFO involves myriad mechanisms (Jiruska
et al., 2017; Jefferys et al., 2012). A single neuron cannot solely and
sufficiently generate HFO over a broad spatial range, seen as a
prominent spectral power peak corresponding to a focal EEG event
(Jefferys et al., 2012). Intrinsic cellular and synaptic characteristics
are essential to generate and sustain oscillations in the HFO range,
particularly FR, at a neural network level. One proposed mechanism
is principal cell action potentials or synchronized inhibitory
postsynaptic potentials with sparse pyr with sparse pyramidal cell
firing (Jiruska et al., 2017; Jefferys et al., 2012). The synchronized fast
firing of these interconnected neurons leads to the formation of
high-frequency spikes, recorded as HFO.

An alternative hypothesis is the “out of phase” theory for
pathological HFO generation, particularly FR. Multiple
subpopulations of synchronized cluster neurons fire with phase
delays or lag. This results in a net FR frequency band for these
subpopulations that fire as individual cluster units at lower
frequencies with phase lag (Jiruska et al., 2017; Jefferys et al.,
2012). The complex network connectivity patterns of the “hub
neurons” and the distinct populations of cell clusters, primarily
the principal cells and the interconnected neural populations,
influence the functionally “out of phase” firing and, ultimately,

the generation of FR (Jiruska et al., 2017; Santana-Gomez et al.,
2022). The phase difference may be secondary to the complex
spatiotemporal interaction of various current dipoles in the
extracellular field, leading to the formation of population HFO
spikes (Jefferys et al., 2012). Firing of these neurons at a specific
latency can contribute to the same spike event (HFO) population;
otherwise, an independent HFO (particularly FR) cycle may arise if
the firing occurs at a later point in time. This phenomenon
elucidates the non-synaptic mechanism by which functionally
similar neuronal clusters generate HFO, primarily FR. Other
potential mechanisms for generating FR include the
asynchronous firing of diverse networks of neurons consisting of
highly active interneurons and pyramidal cells (Jiruska et al., 2017).

Furthermore, the morphological alteration of neurons due to
increased extracellular glutamate levels, high intracellular calcium
levels, deregulation of the signaling pathway, and organelle
dysfunction can lead to cell loss, subsequent axonal sprouting,
and activity-dependent synaptic reorganization (Santana-Gomez
et al., 2022). These morphological neuronal changes alter the
connectivity pattern, reinforce excitatory connections between
neurons, and form pathologically interconnected neurons (PIN).
These PIN are hypothesized to generate hypersynchronous cyclic
bursts of population spikes that are pathologically robust, as
evidenced by HFO recordings in the 200–300 Hz range. These
PIN indicate neuronal disturbances, and their development is linked
to epileptogenesis and epilepsy (Santana-Gomez et al., 2022; Bragin
et al., 2000; Li L. et al., 2019). These topologically different clusters of
neurons can be recruited “out of phase” with varying lags, leading to
the generation of HFO (Jefferys et al., 2012). In animal model studies
with an episode of status epilepticus caused by an intra-hippocampal
kainic acid-induced lesion and traumatic brain injury, PIN clusters
are formed at local sites and at locations that are distant from the
induced-lesioned areas (Li L. et al., 2019; Li L. et al., 2021).
Consequently, these focal PIN clusters create widespread PIN
and increase in the HFO rates. Similarly, pathological HFO can
induce the emergence of remote HFO, and along with cross-
frequency coupling, they can contribute to epileptogenesis
(Gelinas et al., 2016).

3 Recording HFO at the cellular and
network levels

Various types of intracranial contacts are used to record HFO
(Wang et al., 2020; Bragin et al., 1999). Hybrid micro-
macroelectrode contacts, consisting of conventional clinical
macroelectrodes typically used for intracranial investigation as
part of surgical workup in conjunction with microwires at the tip
of each depth electrode for research purposes, are commonly used to
record HFO (Worrell et al., 2008).

In contrast to macroelectrodes, which provide more
comprehensive anatomical coverage, microelectrodes have more
restricted spatial coverage for recording single-unit activity
(Wang et al., 2020). Microelectrodes capture a broader spectrum
of frequency ranges (R, FR, and ultrafast ripples) than
macroelectrodes, leading to greater number of HFO events
(Wang et al., 2020; Bragin et al., 1999; Worrell et al., 2008). This
is primarily due to the focal sampling advantage of microelectrodes,
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making them particularly advantageous for capturing HFO,
particularly FR, which are typically microscale events with a very
local propagation or spatial distribution. Hence, microelectrodes are
more suitable than macroelectrodes for capturing HFO, particularly
FR (Worrell et al., 2008; Barth et al., 2023; Curot et al., 2023;
Despouy et al., 2019; Despouy et al., 2020; Chari et al., 2020). The
spatiotemporal distribution of FR is quantified through hybrid
recording, and its spatial scales are quantitatively distinct from R
(Worrell et al., 2008). This observation elucidates why FR are
present on a single macroelectrode contact but absent on the
immediate neighboring contacts, raising questions about the
clinical implications of this phenomenon on surgical planning
(i.e., undersampling of the macroelectrodes in contrast to
microelectrodes).

The design of microelectrodes has evolved from 1 mm to
0.05 mm spacing to enhance the recording of the very focal HFO
events (Worrell et al., 2008; Chari et al., 2020; Blanco et al., 2011;
Yang et al., 2021). These microelectrodes record multiscale single-
unit or multiunit neuronal activity with improved spatial resolution
and signal visualization (Worrell et al., 2008; Despouy et al., 2019;
Despouy et al., 2020; Chari et al., 2020; Blanco et al., 2011; Yang
et al., 2021; Kondylis et al., 2014). To improve the recording of HFO
events that are not present in conventional hybrid recordings,
current hybrid micro-macroelectrodes utilize tetrodes, which are
bundles of microwires, rather than a single microwire neural
electrode (Curot et al., 2023; Despouy et al., 2019; Despouy et al.,
2020). Recordings from tetrodes confirms the exceedingly confined
nature of HFO, especially FR. Novel microelectrocorticographic
arrays are employed for intraoperative recording, confirming that
macroelectrodes capture only about 44% of the HFO events
recorded when using the novel arrays (Barth et al., 2023). These
innovative arrays can capture HFO on single, multiple, contiguous,
and non-contiguous microcontacts.

4 Analysis of HFO

The computational analysis of HFO entails several steps.
Initially, data acquisition is conducted. This is followed by data
pre-processing (such as EEG data extraction, frequency filtering,
signal thresholding, wavelet transformation, and template
matching). Next, post-processing data analysis is conducted,
encompassing spatial mapping and clustering of HFO events,
spectral analysis of HFO features, and visualization of the
topographic distribution of HFO to discern physiological and
pathological features. Ultimately, data are interpreted to
contextualize the findings within a clinical framework.

A critical step in the pre-processing phase is data extraction.
Initially, select the EEG epoch using the institutional native EEG
reader software. Typically, multiple epochs of 5–10 min or a single
epoch of 15–30 min are selected, ensuring they are at least 1 hour
(typically 4–6 h) away from seizures, as the rates and characteristic
features of HFO vary according to their proximity to the ictal period
(Malinowska et al., 2015; Pearce et al., 2013). The chosen epochs
should include periods with minimal artifacts and exhibit the
highest prevalence of HFO, namely, during slow-wave sleep or
non-rapid eye movement (NREM) rather than during
wakefulness or REM states (Frauscher et al., 2017; von

Ellenrieder et al., 2017; Bagshaw et al., 2009; Gliske et al., 2018;
Dümpelmann et al., 2015). After clipping the EEG epoch (video may
be removed at this point or during export), it is exported and
converted to. edf format using either native reader conversion
software, other EDF conversion tools, or Python/MATLAB
scripts, ensuring a de-identified format for data pre-processing.

Following data extraction, HFO detection is accomplished
through visual annotation, automated detection, or a
combination of automated detection followed by visual
validation. Although visual annotation reduces false positive
detections (e.g., artifacts), it is highly time-consuming and lacks
reproducibility due to poor inter-rater agreement; in contrast,
automated detectors exhibit more detections with higher false
positive rates but are more reproducible and efficient (Roehri and
Bartolomei, 2019; Chen et al., 2021; Gliske et al., 2018; Burnos et al.,
2014; Ren et al., 2019; Charupanit et al., 2018; Jacobs et al., 2009;
Spring et al., 2017; Nariai et al., 2018; von Ellenrieder et al., 2012;
Staba et al., 2002; Blanco et al., 2010; Liu et al., 2018; Thomas et al.,
2023). That said, the predominant methodologies for visual
detection encompass the following steps (Burnos et al., 2016; Li
et al., 2022; Wang et al., 2022; Zelmann et al., 2009; Worrell et al.,
2012; Zelmann et al., 2012; Ye et al., 2024; Remakanthakurup Sindhu
et al., 2020; Sindhu, 2023).

1. Implement the desired bandpass filter parameters (e.g., LFF =
250 Hz and HFF = 500 Hz for FR) and expand the window to
0.5 and 0.8 s.

2. Identify a singular HFO event by discerning distinct
oscillations from the interictal baseline background activity.
Note that there is no definitive threshold for percent change in
amplitude or amplitude difference between baseline interictal
background activity and HFO event amplitude. Also, there is
no consensus regarding HFO signal onset and offset.
Nevertheless, an amplitude range of 10–1,000 µV is used to
identify an HFO event.

3. Select a single HFO event with at least four oscillations (some
centers utilize three oscillations), distinguishing it from
background activity. The duration of HFO events varies,
with R ranging from 100 to 1,000 milliseconds and FR from
30 to 50 milliseconds, as do their frequency band ranges.

4. Measure the interevent duration, which must be a minimum of
25 milliseconds; two HFO events are considered independent if
the interval difference is at least 25 milliseconds.

5. Recognize the presence of various HFO morphologies,
including regular (consistent frequency band range and
static amplitude) and irregular (a combination of R and FR
frequencies with variable amplitude peaks).

Many automated detectors use MATLAB (RIPPLELAB,
HFOApp, EPINETLAB), Python (MNE-HFO), and EEGLAB
algorithms (MATLAB-based) (Zhou et al., 2022; Navarrete et al.,
2016; Quitadamo et al., 2018; Zhang et al., 2024a). Many academic
and research-based institutions use their own automated detectors,
which are coded with parameters that they deem critical (von
Ellenrieder et al., 2017; von Ellenrieder et al., 2012). Automated
detector development necessitates advanced programming skills and
the input of clinical epileptologists to ensure that the detection
parameters generate clinically relevant data rather than just
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statistically, mathematically, or algorithmically significant data.
Automated detector algorithms should include parameters such
as threshold (establishing cut-off values to accept a specific
oscillation burst as a detection), minimum duration of event,
minimum time between events, window size for the root mean
square (RMS) amplitude, minimum number of peaks or oscillations,
and other findings that may be critical to minimizing false positives
(Mendoza et al., 2023). Please be advised that certain other
parameters (such as polarity, slope of oscillations, and latency in
the propagation of HFO) are critical; however, they may not be
included in these automated detectors.

One of the most important questions is how to choose the most
suitable automated detection algorithm (Charupanit et al., 2020).
Currently, no single automated detection tool is the most reliable.
Maltseva et al. conducted a comparison of 11 automated detectors
by analyzing 30-min epochs from the N2 sleep state of 15 patients
who were undergoing intracranial and scalp EEG recordings
(Maltseva et al., 2023). The detectors did not demonstrate
superior performance in their original recording methods (e.g.,
developed for scalp use and later employed for intracranial
detection). In general, the detections from scalp and intracranial
EEG studies were comparable, with no detector exhibiting
superiority over the others. The agreement was substantial when
identifying areas with higher HFO rates, despite the low inter-rater
agreement when identifying individual HFO events.

As an alternative to the previously stated points, some centers
advocate for the simultaneous use of multiple automated detectors
given their comparable performance to increase the likelihood of
accuracy and reduce the number of false positives (Zelmann et al.,
2012; Maltseva et al., 2023). Meanwhile, other centers perform visual
validation after automated detection to ensure high specificity and
eliminate false positives.

Deep machine learning algorithms and models serve as an
alternative for detecting HFO and analyzing their characteristics,
dynamic patterns, and spatiotemporal distribution (Zhou et al.,
2022; Navas-Olive et al., 2022; Navas-Olive et al., 2024; Shoeibi
et al., 2021; Nadalin et al., 2021; Zhao et al., 2020; Zuo et al., 2019; Xu
Z. et al., 2021; Hagen et al., 2021; Zeimarani et al., 2020; Amiri et al.,
2016). These algorithms and models offer enhanced accuracy in
characterizing HFO and demonstrate reliability in artifact rejection.
They can be trained to replicate expert labeling and differentiate
between various HFO based on specific features, thereby enhancing
understanding of the distinctions between physiological and
pathological states and their associations with cognitive tasks,
epileptic networks, and surgical outcomes. Machine learning
encompasses various algorithms and models, including
convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and long short-term memory (LSTM) networks.

Deep machine learning algorithms enhance HFO detection via
two methodologies: supervised and unsupervised training. These
models necessitate less rigorous manual engineering features
compared to automated detector development. They enhance the
efficiency of analyzing complex and large datasets. In supervised
learning models, including neural networks, linear regression,
decision trees, and support vector machines, annotated or labeled
datasets, referred to as “input data” (e.g., tracings marked with HFO
and non-HFO events), are provided to the algorithm to train the
model based on the identified/labelled features of the events (output

data). Upon learning the relationship between the input and output
data, the model extracts and utilizes these identified features to
generate predictions for unknown datasets. Subsequently, the model
is subjected to validation and testing with a new set of HFO data. Ma
et al. employed a supervised CNN algorithm to train the model to
identify HFO. The model demonstrated its ability to effectively
identify HFO, surpassing traditional detection methods in terms of
detection accuracy and minimizing false positives (Ma et al., 2019).

Meanwhile, unsupervised learning (including autoencoders and
clustering algorithms) involves training a model on unlabeled data.
This approach enables the model to discern intrinsic or hidden
features and patterns without explicit feedback, thereby learning
from the fundamental patterns present in the data.

Zhang et al. utilized a reverse engineering approach to analyze
labeled HFO events on intracranial EEG (Zhang et al., 2022a). Their
model demonstrated ability to differentiate HFO features associated
with epileptogenic and non-epileptogenic regions. In another study,
Zhang et al. employed a weak supervision approach to characterize
the morphological features of physiological HFO (Zhang et al.,
2022b). Their model demonstrated high accuracy and efficacy in
distinguishing between various types of physiological HFO
compared to conventional methods. The model learned the
pertinent features of the raw data, eliminating the need for
manual feature extraction. Validation was performed on an
independent dataset to confirm the model’s capacity to generalize
to new and unlabeled data. The approach markedly decreased false
positives relative to traditional methods.

Variational autoencoders represent another example of a learning
model (Higgins et al., 2021). Zhang et al. conducted a multi-center
study involving 185 patients with epilepsy who underwent
intracranial investigation (Zhang et al., 2024b). A total of
686,410 HFO were analyzed and classified into three categories: a)
morphologically defined putative pathological HFO (mpHFO), b)
morphologically defined putative non-pathological HFO, and c)
morphologically defined artifacts of extracerebral origin. The study
indicated that mpHFOwere associated with spike and originated from
seizure onset zones. The removal of mpHFO demonstrated a greater
predictive value for postoperative seizure freedom compared to the
resection of the seizure onset zone alone. The HFO originating from
the seizure onset zone exhibited similar characteristics across different
anatomical regions, in contrast to the physiologic HFO, which
displayed distinct features compared to HFO from seizure
onset zones.

Machine learning models have similarly advanced the
understanding of hippocampal sharp-wave ripple (SWR) events
(Navas-Olive et al., 2022; Navas-Olive et al., 2024; Nadalin et al.,
2021; Kulkarni et al., 2019; Aizpurua et al., 2016). These models
enable the differentiation of physiological SWR during cognitive
tasks from pathological events by facilitating the visualization and
clustering of input data. This approach aids in examining the
interactions among various types of R that emerge during
memory processing. Large datasets were analyzed with clustering
algorithms to categorize hippocampal HFO according to various
neural states, such as sleep-related SWR versus hippocampal FR
(Sebastian et al., 2023). Therefore, the topological analysis of these
SWR will contribute to understanding their function in memory
processing and how pathological FR in the hippocampi can disrupt
physiological neural activity.
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It is still uncertain which machine learning algorithm and model
to use in the analysis of HFO, as well as the appropriate format for
the “input data,” similar to automated detectors. Although visual
annotation or visual validation of automated detections is
considered the current gold standard, data augmentation is a
novel approach proposed to address the challenges encountered
when using machine learning algorithms and models due to the
heterogenous nature of the limited number of datasets. Data
augmentation involves artificially enhancing and expanding the
original dataset, thereby increasing the “synthetic” number of
HFO events available for additional neural network training
(Schlafly et al., 2024). This technique can assist in training deep
machine learning algorithms to detect HFO with high precision and
reliability, while enhancing the reproducibility of analyses (Nariai
et al., 2018; Hagen et al., 2021; Schlafly et al., 2024; Boran et al., 2019;
Li XHY. et al., 2019; Korshunova et al., 2017; Dubey et al., 2022;
Rasheed et al., 2021; Wei et al., 2019; Medvedev et al., 2019).

5 Invasive recording of HFO

5.1 Intracranial monitoring (subdural
contacts and depth electrodes)

Most of the data regarding HFO are derived from intracranial
recordings. However, over the years, intracranial EEG (iEEG)
studies have been paired with non-invasive (e.g.,
magnetoencephalography, MEG) and invasive (e.g., single pulse
electric stimulations, SPES) modalities to overcome the sampling
limitations of iEEG and to provide a more spatial context for HFO
analysis. The data from iEEG indicates that FR are localized events
closely associated with epileptogenic zones and seizure onset areas.
Unlike non-invasive modalities, FR are readily captured through
intracranial recording (Jacobs et al., 2010; Akiyama et al., 2011;
Schevon et al., 2009). In contrast, R are more widespread events that
can be easily recorded using invasive and non-invasive methods
(von Ellenrieder et al., 2016a; Tamilia et al., 2020). Recently, HFO
greater than 500 Hz have been recorded; they are spatially very focal
pathological phenomena, significantly more restricted than FR and
R (Hao et al., 2021; Brázdil et al., 2023). They are hypothesized to be
better biomarkers for epileptogenic zones. Reduced or weakly
coupled networks in the epileptogenic tissue can generate very
high-frequency (500–1000 Hz) or ultra high-frequency
(>1000 Hz) HFO (Přibylová et al., 2024).

Initial data from iEEG explored HFO as solitary events and
revealed an association between interictal HFO rates and seizure
onset zones (Jacobs et al., 2008; Zijlmans et al., 2012; Ferrari-
Marinho et al., 2016; Wu et al., 2010). Nevertheless, HFO are not
static phenomena at a given focus; instead, they propagate or exhibit
organization, distribution, or clustering throughout the brain
(González Otárula et al., 2019; Korzeniewska et al., 2014; Jahromi
et al., 2021; Tamilia et al., 2018; Song et al., 2024). High-frequency
oscillations form a sequential pathway on iEEG recordings by
traversing various cortical regions (distribution contingent upon
frequency band) within a very brief timeframe (González Otárula
et al., 2019; Tamilia et al., 2018; Cai et al., 2021).

The term “HFO propagation” has been extensively used in the
literature to denote the sequential occurrence of HFO at any

frequency range across various contiguous and non-contiguous
contacts within a specified timeframe. Jahromi et al. described
HFO as having onset contacts (displaying the first HFO event) or
spread contacts (displaying HFO events lagging the onset contact)
based on their temporal involvement in the propagating sequence
(Jahromi et al., 2021). They demonstrated that propagating HFO
patterns exhibited a common HFO onset region, determined to be a
predictor of seizure onset and resection zones. The entire HFO
propagation zone had higher sensitivity in predicting the resection
zone than individual HFO events.

Song et al. observed that interictal HFO fired at significantly
higher rates in the seizure onset zone than in the non-seizure onset
areas in patients with refractory mesial temporal lobe epilepsy (Song
et al., 2024). In their cohort, seizures arose from the amygdala and
propagated to the hippocampus. The amygdala and hippocampus
had higher HFO rates interictally than the lateral temporal
neocortex. The HFO were coupled with theta oscillations,
significantly more in the amygdala, hippocampus, and, to a lesser
extent, the lateral temporal neocortex. During the immediate pre-
ictal state, HFO rates increased in the amygdala, with a significantly
high coupling rate between HFO and theta oscillations. During the
ictal phase, the HFO firing rate increased dramatically in the
hippocampus compared to the amygdala and the lateral temporal
neocortex. Their findings revealed the dynamic nature of interictal-
ictal HFO, mirroring the ictal onset and early propagation pathways.
Furthermore, they proposed the coupling of interictal HFO with
theta oscillations as a potential biomarker for the seizure onset zone.

Otarula-Gonzalez et al. described HFO network characteristics
(González Otárula et al., 2019). These networks were defined by the
temporal sequence of HFO events, displaying variable latencies
between contact pairs. Each patient had more than one
independent R-network but only one FR-network. The
R-networks were longer, while the FR-networks were shorter.
The source contacts in the R-network were variable and had
more contacts than the FR-networks, which had limited source
contacts. The earliest contact in the network had higher R and FR
rates than the farthest, which had the lowest rates. The initial source
contact was resected more frequently than the remaining source and
non-source contacts of the R- and FR-networks. Nonetheless, all
source and non-source contacts of the FR-networks were restricted
to the seizure onset zone, unlike the R-networks. There was no
difference in the proportion of the resected source channels and the
non-source channels for both R and FR. However, the first source
channel was resected in a similar ratio to the channel with the
highest HFO rate because the first source channel often
corresponded to the channel with the highest HFO rate. The
investigators concluded that the resection of the first source
channel was not superior to the resection of channels with the
highest HFO ratio.

Cai et al. demonstrated that HFO sequences exhibited a highly
consistent and repeatable propagation pattern (repetitive instances
of similar electrode contacts within the same patient) across various
organizational HFO clusters (Cai et al., 2024). These HFO clusters
had a variety of spatiotemporal pathways across patients that
engaged various cortical regions over extended periods. Some
channels exhibited a bimodal pattern of sequential order within a
given HFO network/sequence, with instances of either leading or
lagging, suggesting variability in the recruitment order within a
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given HFO sequence. The HFO recruited core, defined as contacts of
propagation, had a significant overlap with the seizure onset zone.

Furthermore, higher HFO rates and more prevalent HFO
sequences were noted in seizure onset zones than in non-seizure
onset areas. However, the entire HFO sequence rather than HFO
rate had predictive power in identifying the seizure onset area and
epileptogenic zone and predicting surgical outcomes (Cai et al.,
2024). Additionally, the epileptogenic zone was more precisely
defined by the entire HFO sequence, including the propagation
pathway, as opposed to the HFO onset contacts alone within a given
sequence. This observation was contrary to the finding in Tamilia
et al.‘s study where the R onset zone was critical for alignment with
the seizure onset zone as opposed to the entirety of the R zone (Ren
et al., 2019). While 40% of the HFO sequences originated outside or
near the seizure onset zone, even in seizure-free patients following
resection, unfavorable outcomes were noted when the clinically
defined seizure onset zone corresponded to the channels that
were recruited later in the HFO sequence, underscoring the
importance of the entirety of the HFO sequence in delineating
the area initiating seizures (Cai et al., 2024). This implied that the
ictogenic focus extended beyond the traditionally defined seizure
onset zone in intracranial studies. The findings in Cai et al.’s study
emphasized that the closer the whole HFO sequence aligned
spatially with the clinically presumed epileptogenic zone, the
higher the likelihood of attaining seizure freedom.

Moreover, connectivity analyses confirmed the presence of
initiation and suppression mechanisms for HFO propagation
(Cai et al., 2024). The connectivity measures differed in regions
involved in HFO sequences with overlapping seizure onset zones
compared to the peripheral non-seizure onset areas. There was a
high synchrony of oscillations in the regions initiating HFO
sequences, coupled with a prominent inward information flow
from the periphery to the HFO core zones to halt and suppress
HFO propagation. There was a noticeable increase in coherence
within the seizure onset zone and the HFO zone compared to the
periphery (non-seizure onset foci), implying elevated levels of
synchronization between the HFO zone and the seizure onset
zone during propagation.

The findings above underscore the significance of pivoting from
analyzing HFO as isolated events to probing their dynamic
spatiotemporal organization in relation to epileptogenic networks
and lesions. The ultimate goal is to integrate these findings into the
surgical decision-making process.

5.2 Intraoperative electrocorticography

The predictive value of HFO in determining postoperative
outcomes has been explored in numerous studies using
intraoperative electrocorticography (iEcog) (van ’t Klooster et al.,
2017a; Hussain et al., 2017; Hussain et al., 2016; van Klink et al.,
2021; Peng et al., 2021). Resection of FR was highly predictive of
postoperative seizure outcome in a pediatric cohort with lesional
epilepsy followed for a median of 4 years (Hussain et al., 2017;
Hussain et al., 2016). Incomplete resection of the FR was associated
with seizure recurrence within 6 months. The superiority of HFO
over epileptiform discharges in guiding resection and predicting
surgical outcomes was demonstrated by van ’t Klooster et al. (2015).

Furthermore, removing the distant pre-resection HFO was not
considered necessary for improving postoperative outcomes. The
investigators believed that distant HFO were secondary to
propagation from HFO foci that were present pre-resection and
abolished with disconnection of the epileptic network.

van Klink et al. (2014) displayed that the resection of R, R on
spikes, and spikes did not impact the outcome. However, only pre-
resection FR, with twice as many FR in the resected area compared
to the non-resected areas, was associated with a favorable outcome.
The study’s intriguing finding was the de novo emergence of R in the
sensorimotor cortex in patients with good outcomes, which was
likely attributed to the disconnection from the epileptogenic zone
through resection, leading to the functional release of the dependent
sensorimotor area and regaining functionality, with the de novo
emerging R possibly serving as a neurophysiological biomarker.
van’t Klooster et al. determined that the presence or absence of post-
resection FR, rather than the percentage of resection of pre-resection
FR and R, was a predictor of postoperative outcome (van ’t Klooster
et al., 2017a). Meanwhile, van Klink et al. showed that patients with
tumor-related epilepsies had favorable outcomes when FR were
present within the tumor and peritumoral areas but not outside the
resection margin (van Klink et al., 2021). The persistence of FR on
post-resection iEcog was associated with poor outcomes.

One fundamental limitation in iEcog analysis is inadequate
topographic sampling (e.g., lack of sampling of the bottom of the
sulcus cortical dysplasia), resulting in the absence of pre-resection
FR (Hussain et al., 2017). Thus, the post-resection FR does not
necessarily imply “de novo” events; rather, it suggests that the
previously undersampled area with FR was exposed following
resection (van ’t Klooster et al., 2017a). Surgical manipulation
does not trigger the emergence of “de novo” FR, unlike
epileptiform discharges (van Klink et al., 2014). This observation
bolsters the case for detecting HFO rather than epileptiform activity
and using them for guiding resection.

The multi-center, single-blinded, non-inferiority, randomized
controlled trial by Zweiphenning et al. (2022) refuted the previously
reported results, showing that the spike-based customized resection
outperformed the HFO-based tailored resection in an uncorrected
analysis for confounding factors but did not confirm the non-
inferiority of HFO. The study findings were inconclusive after
accounting for confounding variables. In the subgroup analysis,
HFO-based resections were not inferior to spike-based resections in
tailored extratemporal lobe cases. The results for the temporal lobe
subgroup were inconclusive.

Maccabeo et al. (2022) investigated the role of HFO-based,
iEcog-guided resections in patients with neocortical lateral
temporal lobe epilepsy, sparing the amygdalo-hippocampal
complex. The study did not offer insight into which individuals
would benefit from additional HFO-based iEcog-guided amygdalo-
hippocampal complex resection. Nonetheless, low post-resection R
rates in the mesiotemporal area and older age at epilepsy onset were
predictors of a favorable outcome. Patients with poor outcomes had
high pre- and post-resection R rates in areas distant from the
resection cavity and residual R in the resection cavity. High post-
resection R rates in the lateral neocortex were trending toward a
favorable outcome. The findings of this study were uninterpretable
because of the lack of morphological patterns to distinguish between
physiological or pathological R; hence, the authors could not
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comment on the post-resection R rates in the lateral neocortical
areas or foci distant from the resection cavity. They could not
confidently assert that these could have been physiological R that
emerged after disconnection from the epileptic network. The
percentage of HFO removal within the resection cavity was not a
relevant predictor of outcome.

Peng et al. (2021) found that HFO resection did not impact
outcomes, but their pre-resection within the cortical malformation
areas was associated with worse outcomes. Pediatric patients with
cortical malformations exhibited a higher pre-resection HFO
prevalence in the center of the dysplastic lesion in contrast to
tumor cases with peritumoral HFO. One plausible explanation
was that the pre-resection FR were indicators of disease severity
in patients with focal cortical dysplasia.

The results presented not only highlight the significance of
employing more comprehensive and innovative arrays during
iEcog to increase the sampling yield and better understand HFO
but also analyze the morphological differences between pre- and
post-resection R and FR as indicators of the ability of cortical regions
to regain functionality (akin to a release phenomenon) following
disconnective surgery.

5.3 Stimulation induced evoked responses

While most studies have investigated spontaneous HFO, only a
handful have examined evoked HFO, triggered by SPES. Single-
pulse electric stimulation elicits pathological delayed responses
associated with seizure onset zones and physiological early
(within 100 ms following stimulation) responses (Mouthaan
et al., 2016). Single-pulse electric stimulations induce abrupt
synchronization of interconnected neurons, evoking delayed
responses that occur later than 100–1,000 ms after stimulation.
These responses contain pathological evoked HFO (80–500 Hz)
specific to seizure onset zones (Valentín et al., 2002; van ’t Klooster
et al., 2011; van ’t Klooster et al., 2017b; Alarcón et al., 2012).

Mouthaan et al. (2016) analyzed early evoked responses greater
than 80 Hz in areas of seizure onset and propagation in 12 patients
undergoing iEEG. Early evoked responses were strongly associated
with the seizure onset zone as opposed to non-seizure onset zones,
separated by several sulci. Stimulation of seizure onset areas evoked
early responses in areas involved with seizure propagation. Only one
patient had evoked responses in the FR range; all others were in the
R range. Contacts with high early evoked response counts in the R
band had a high specificity for seizure onset channels. The
investigators proposed mapping the epileptic network using both
early and delayed responses. This finding contradicted prior
knowledge, which suggested that evoked early responses were
unrelated to seizure onset zones (Valentín et al., 2002; Valentín
et al., 2005a; Valentín et al., 2005b).

van ’t Klooster et al. (2017b) reported evoked HFO in 10 patients
undergoing iEcog. Two patients without spontaneous FR had
evoked FR in the seizure onset zone. Ripples appeared
spontaneously in all patients. Ripples were more frequent in
functional and electrographically “silent” regions outside the
seizure onset zone, irrespective of whether they were evoked or
spontaneous, but particularly when evoked. The percentage of

resected evoked or spontaneous HFO did not impact the
surgical outcome.

Quantitative EEG analysis was employed, utilizing time-
frequency information for three frequency ranges (10–80 Hz,
80–250 Hz, and 250–500 Hz) to analyze evoked responses during
SPES in 9 patients undergoing iEEG (van ’t Klooster et al., 2011).
Four patients had a good outcome, while 5 had a poor outcome. Five
out of the seven patients with less than 50% of their FR removed had
poor outcome, suggesting that time-frequency analysis of the SPES
could serve as a new biomarker to identify the epileptogenic cortex.
Only two patients, with 94% and 100% removal of the evoked FR
area, achieved seizure freedom at 1-year follow-up. Meanwhile, R
showed less specificity when identifying seizure onset zones. This
suggested that evoked FR were a better marker for the seizure onset
zone than R and spikes.

While evidence remains sparse, analyzing evoked HFO is worth
exploring. It would provide ancillary data to complement
spontaneous HFO and their relationship with the epileptogenic
network, seizure onset zones, propagation pathways, and
surgical outcomes.

6 Evidence from non-invasive
monitoring

6.1 Scalp EEG

Scalp EEG can detect HFO, particularly in pediatric patients,
because of their skull thickness (Zelmann et al., 2014; Shibata and
Kobayashi, 2018; Noorlag et al., 2022). Simultaneous scalp and
intracranial EEG recordings revealed that HFO detected on the
scalp EEG were generated by multiple small cortical sources or
varying cortical cluster populations firing HFO asynchronously
within a short latency at different foci and generating R on scalp
EEG (Zelmann et al., 2014; Kuhnke et al., 2019; Pizzo et al., 2016;
Tao et al., 2007; Oishi et al., 2002). Hence, synchronously activated
contacts spanning 4–10 cm2 would not be necessary to generate focal
R on scalp EEG. Furthermore, due to spatial undersampling, iEEG
could miss R detected onMEG or high-density (HD) EEG (Zelmann
et al., 2014). Nonetheless, scalp EEG may be restricted by myogenic
artifact and a low signal-to-noise ratio. The HFO amplitude and
rates detected by scalp EEG are lower than those of iEEG. Ripples are
detected more frequently than FR on scalp EEG.

Pathological HFO have been identified in premature neonates
with seizures and perinatal brain injury given their skull thickness
(Noorlag et al., 2021). Nevertheless, the investigators could not
demonstrate the predictive value of these HFO in terms of
epileptogenesis and outcome.

Klotz et al. (2021) demonstrated that R outperformed spikes and
spike R in predicting the development of epilepsy in 56 pediatric
patients who experienced their first unprovoked seizures and were
followed for 12 months. The R and spike R rates were significantly
higher than the spikes in the subgroup of patients who developed
epilepsy. Nevertheless, R were the sole event that demonstrated a
higher predictive value than the others, making it a more promising
potential marker for epileptogenesis on scalp EEG following the first
unprovoked seizure in pediatric patients.
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Noorlag et al. (2022) conducted a systematic review, revealing
that scalp HFO were associated with focal epilepsy, reflected the
severity of epilepsy, and were noted in epileptic encephalopathies
with impaired cognitive function. Most patients had HFO co-
occurring with spikes, and the HFO onset preceded the onset of
spikes. A minority displayed HFO overriding spikes. Additionally,
spikes exhibited a greater degree of propagation than HFO. The
scalp HFO were less sensitive than spikes and gamma frequency
activity in localizing the presumed epileptogenic zone. The
concordance between the epileptogenic zone and HFO was
enhanced through HD-EEG. Poor surgical outcomes were noted
in patients with widespread HFO or resection of a smaller
percentage of the HFO area.

Tamilia et al. (2020) identified HFO during simultaneous scalp
HD-EEG and MEG recording and compared the results to non-
simultaneous iEEG findings in pediatric patients undergoing
surgical evaluation. There was concordance between R identified
on HD-EEG and iEEG. Resection of R overriding spikes, not R
without spikes, predicted a good surgical outcome for HD-EEG and
MEG. The study confirmed that MEG and HD-EEG could localize
with high-precision pathological HFO (R with spikes), whose
resection had a higher likelihood of favorable outcomes. Ripples
without spikes, unlike R on spikes, were in areas sparing the
resection cavity, likely representing physiological events.

The evidence presented above substantiates the utility of scalp
and HD-EEG in investigating epileptogenesis and epileptic networks
in the pediatric population.

6.2 Magnetoencephalography

The utility of MEG in detecting HFO has increased due to its
spatial coverage, which is more extensive than that of iEEG sampling
(Vasilica et al., 2023; Tamilia et al., 2017). However, the higher rate
of artifact and lower signal-to-noise ratio of MEG, compared to
iEEG, may limit its ability to explore HFO. Virtual electrodes are
better at detecting HFO than physical sensors (Nissen et al., 2016).
The number of HFO detected in the center of the seizure onset zone
is higher than in the areas farthest from the seizure onset zone when
virtual sensors are employed. van Klink et al. adopted virtual
electrodes with beamforming techniques in conjunction with
HD-EEG and detected more R than the physical sensors, thereby
enhancing the localization of the epileptogenic zone (van Klink et al.,
2018; van Klink et al., 2019). In contrast to other studies, MEG
yielded fewer R than HD-EEG during the simultaneous acquisition
of data (Tamilia et al., 2020; Dirodi et al., 2019). Simultaneous scalp
EEG and MEG combined with time-frequency maps and isolated
islands of R on spectral analysis can exclude artifacts and optimize
the yield of recording HFO (Papadelis et al., 2016). When 12 adult
and pediatric patients underwent simultaneous SEEG and MEG, the
number of HFO detected was not statistically different between the
two studies (Vasilica et al., 2023). Nonetheless, MEG showed
significantly higher HFO frequencies than SEEG; however, the
former displayed poorly shaped HFO compared to SEEG. The
concordance of MEG-identified HFO with other invasive and
non-invasive modalities has been investigated and correlated with
surgical outcomes. Vasillica et al. reported a 58% concordance
between SEEG and MEG during simultaneous data acquisition

(Vasilica et al., 2023). Seizure freedom was achieved in 85% of
patients with concordant MEG and SEEG HFO findings. Okamura
et al. demonstrated that 60% of the 15 patients with neocortical
lesional epilepsy who underwent resective surgery had concordant
equivalent current dipole (ECD) and FR (201–330 Hz) on the
gradient magnetic oscillation topography (GMOT) (Okamura
et al., 2023). Meanwhile, 87% of the patients had FR around
their epileptogenic lesions. The region with the highest power in
the FR band on GMOT also displayed a power of >50 Hz on iEEG
and iEcog. Four patients with bilaterally scattered ECD were able to
achieve lateralization through GMOT analysis in the FR band,
implying that these two modalities could be complementary for
improved lateralization. The epileptogenic area (determined by
iEEG or iEcog) and the area of resection had significantly higher
power in the high-frequency band (70–330 Hz) relative to the other
areas of the brain.

The spatiotemporal organization of HFO was investigated using
MEG. Tamilia et al. examined the spatiotemporal propagation of
interictal R in pediatric patients undergoing surgical workup
(Tamilia et al., 2021). The investigators identified the R onset
zone, defined as the initiating or driving node of the entirety of
the R network, and the R zone, encompassing the channels recruited
following the onset from a given R onset node. The R onset areas and
distribution detected and constructed using virtual MEG sensors
were compared to the R onset areas and R zones on the iEEG and
HD-EEG. More R propagation was detected on iEEG than on MEG
or HD-EEG. Higher amplitude R on IEEG were detected better on
MEG and HD-EEG than low amplitude R. The R onset zone was
estimated to represent the epileptogenic zone. The resection of the R
onset zone resulted in a favorable outcome at the individual level,
whereas the resection of the R zone did not impact the outcome. The
propagation characteristics of the R zone did not influence the
surgical outcome.

Epileptic networks were also analyzed using MEG. Yin et al.
demonstrated that patients with insular epilepsy exhibited aberrant
effective connectivity in both insular-based networks (involving the
insula with seizure onset) and whole-brain connectivity based on
interictal HFO with spikes analysis using MEG when compared to
health controls (Yin et al., 2020). Aberrant connectivity differed
between the left and right insula. Additionally, the authors suggested
that HFO-based altered networks could serve as a potential
biomarker for investigating epileptic networks in insular epilepsy.

Shi et al. (2023) used MEG to establish that the distribution of R
in lateral and medial temporal lobe epilepsies differed significantly
from non-temporal lobe epilepsy. The medial temporal lobe had
higher R rates than the lateral temporal lobe, followed by the non-
temporal lobe. In patients with medial and lateral temporal lobe
epilepsies, R were initially observed in the temporal lobe, followed by
the parietal and occipital lobes, and finally, in the frontal lobe.
Meanwhile, in non-temporal lobe epilepsy, the R clustered in the
frontal lobe, followed by the parietal and occipital lobes.
Furthermore, the R firing rate varied significantly among these
three distinct epilepsy types. Non-temporal epilepsies exhibited
significantly higher R channel spatial connectivity than lateral
temporal epilepsies, while medial temporal epilepsies had the
lowest connectivity. Meanwhile, the medial temporal lobe had a
significantly higher clustering coefficient than the lateral temporal
lobe, with the non-temporal lobe having the lowest. The highest R
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ratio was found at the surgical resection site, with a higher degree of
centrality. The authors concluded that HFO rates, HFO distribution,
spatial connectivity, and clustering coefficient varied substantially
among epilepsy types, locations, and pathologies. Moreover, they
suggested that R could be pathological biomarkers involved in
seizure initiation and propagation based on their
distribution pathways.

Magnetoencephalography has also been utilized to study ictal
activity and ictal source localization using HFO and correlating
them with surgical outcomes. Ramachandrannair et al. studied
epileptic spasms in 5 patients, combining MEG, scalp EEG, and
iEEG findings acquired non-simultaneously (Ramachandrannair
et al., 2008). Although most interictal scalp EEG findings were
unilateral, the ictal onset on scalp EEG revealed generalized high-
amplitude slow waves superimposed with fast waves, with one
patient showing hemispheric electrodectrement. Unilateral
interictal MEG spike source (MEGSS) clusters were noted in all
patients and overlapped with the ictal onset zone identified on iEEG.
Ictal activity on iEEG was typically regional, irrespective of the
symmetrical clinical spasms. On iEEG, ictal HFO (150–250 Hz) was
regional and brief but sustained and superimposed with slow waves.
The clinical onset of spasms was preceded by ictal HFO, with
inconsistent spikes, polyspikes, and sharp waves at the HFO
onset. The highest HFO occurrence was observed prior to and
during spasms. Ictal HFO localized over the Rolandic region in
four patients and over the frontal region in one patient. Four patients
had additional ictal HFO in contiguous or remote areas. Ictal HFO
on iEEG correlated with the MEGSS clusters, with only two patients
demonstrating complete overlap. The rest had high concordance
rates between MEGSS clusters and ictal HFO on iEEG. Three
patients were seizure-free following resection. One patient
had >90% and another 50%–75% seizure reduction. The authors
suggested that a subset of patients with focal epileptic spasms could
be identified and achieve a favorable surgical outcome by employing
a similar multimodal approach.

Tenney et al. (2014) observed significant power changes in
patients with childhood absence epilepsy at the time of seizure,
characterized by 3–4 Hz generalized spike-wave discharges across a
range of spectra (1–20 Hz, 20–70 Hz, and 70–150 Hz). High-
frequency oscillations were observed at the start, end, or
throughout the seizures, as well as inconsistently between
patients and within the seizures of the same individual. Gamma
frequency band activity was more anteriorly localized in the frontal
lobe, lateral prefrontal, and orbitofrontal cortex, whereas the lower
frequency bands were observed over the posterior cortex, primarily
the parietal lobe and the thalamus. The HFO were restricted to the
thalamus and the prefrontal and orbitofrontal cortices. The HFO
were less likely to be localized in the parietal, occipital, and temporal
regions. Thus, the source localization during absence seizures
corroborated the existence of distinct low- and high-frequency
bands between the frontal and parietal corticothalamic networks.
Whether distinct networks synchronized at the onset of spike-wave
discharges remained undetermined.

Given the increasing use of MEG and its optimal spatial
coverage, despite its limitations in recording all HFO events, it is
essential to integrate this non-invasive modality into the study of
HFO in conjunction with iEEG and compare it with areas of ictal
onset and propagation, epileptogenic lesions, and surgical outcomes.

6.3 Transcranial magnetic stimulation

A few studies have investigated HFO using transcranial
magnetic stimulation (TMS). Solomon et al. demonstrated that
single-pulse TMS trials at the dorsolateral prefrontal cortex
induced theta oscillations in the frontolimbic cortices (precentral,
cingulate, and anterolateral frontal) and suppressed higher
frequency activity (including at R range) in the frontal (cingulate
gyrus), insula, and temporal (superior and middle temporal gyri and
hippocampus) areas that were not directly associated with the
cortically stimulated sites (Solomon et al., 2024). The
investigators concluded that TMS stimulations of specific cortical
regions induced changes in neural activity, evoking signals that
spread from local to distant brain regions. While the use of TMS
remains limited, it would serve as a potential tool in studying
connectivity by analyzing high-frequency bands >100 Hz.

7 Connectivity analyses using invasive
and non-invasive modalities

Earlier, the prevailing perspective was to examine channels with
high HFO rates and various brain regions generating HFO at varying
frequencies and durations (Jacobs et al., 2012; von Ellenrieder et al.,
2017; Gliske et al., 2018; Jacobs et al., 2018a; von Ellenrieder et al.,
2016b; Frauscher et al., 2018). Although FR are recognized as
biomarkers of epileptogenic tissue, seizure freedom is not always
achieved by resecting all the tissues that generate FR (Weiss et al.,
2023). Hence, it is crucial to identify other complementary measures
to augment the chances of identifying the ictal onset zone and to
map the epileptogenic network, the resection of which will lead to a
high likelihood of seizure freedom. Amassed evidence has shown
that HFO are a component of a local network discharge (Lin et al.,
2024). Network-based studies have demonstrated that networks at
high-frequency ranges can help comprehend epileptic networks,
serving as a reliable tool for assessing seizure onset zones, and
epileptogenic zones and predicting surgical outcomes. Epileptic
tissue in high-frequency bands (R and FR ranges) can be
functionally isolated or disconnected from other brain regions, as
revealed by connectivity analyses (Zweiphenning et al., 2016;
Zweiphenning et al., 2019; Ibrahim et al., 2012).

Numerous studies have demonstrated that the seizure onset
zones were functionally isolated interictally and became more
connected during seizure progression (Nissen et al., 2016; Burns
et al., 2014). The functional isolation of the channels consisting of
gamma-frequency band networks and displaying HFO could be a
compensatory mechanism to thwart seizure initiation and halt ictal
propagation (van Diessen et al., 2013a; Kramer et al., 2008;
Khambhati et al., 2015; Ibrahim et al., 2013). The functional
isolation of HFO-generating tissues that included networks with
gamma-band frequency, the positive association between networks
with FR band eigenvector centrality (EC) and the number of spikes,
and the increase in the FR band networks EC in the resected tissue
could be a surrogate biomarker for the underlying epileptogenic
tissue, generating pathological HFO on a microscale network level
that propagated to wider areas during a seizure on a macroscale level
(Korzeniewska et al., 2014; Fuertinger et al., 2016). Given the
enhanced functional connectivity needed to generate FR, the
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assumption was that there would be local functional integration of
channels covering these areas, at least in the FR band (van Diessen
et al., 2013a; Ibrahim et al., 2013). Ictal recordings from iEEG
confirmed the increase in synchronization and “hub status” of
the epileptogenic tissue (van Mierlo et al., 2013; Varotto et al.,
2012; Wilke et al., 2011). Interictally, epileptogenic networks
exhibited higher centrality measures in the epileptogenic zone
and lower centrality measures in the seizure onset zones (van
Diessen et al., 2013a; Varotto et al., 2012; Wilke et al., 2011; van
Diessen et al., 2013b; Warren et al., 2010).

Zweiphenning et al. (2016) examined the value of high-
frequency network parameters in identifying epileptogenic tissue
and guiding resection in patients with temporal lobe epilepsy
undergoing iEcog. They investigated areas with HFO and
analyzed functional connectivity across all frequency bands
during periods of no epileptiform activity. The FR band EC was
higher in channels with spikes than without spikes. Gamma-band
EC was lower in channels with HFO (R and FR) than in channels
without events. The authors displayed functional isolation of
networks with gamma-band that showed HFO. Moreover, they
demonstrated that focal enhanced connectivity in the channels
with FR-band functional networks. This was in accordance with
the current observation that FR arose from neuronal clusters that
became hyperexcitable due to pathologically reduced interneuron-
mediated inhibition and fired synchronously but slightly out of
phase. Consequently, resecting areas generating HFO that were
functionally isolated in the gamma band would be a possible
approach to achieving seizure freedom. The gamma-band
functional isolation of that area would reflect the reduced
interneuron-mediated inhibition of the HFO-generating tissue.

Samfira et al. (2024) found that connectivity measures were
consistent across all channels in the interictal phase, with no hub at
any specific frequency, in all pediatric patients with spasms using
scalp EEG data. Spatiotemporal dynamic connectivity changes were
seen only during clinical spasms. The investigators demonstrated
increased connectivity in the FR band (251–400 Hz) at the clinical
onset of spasms. During spasms, connectivity in the FR band
increased, displaying sustained strengthening in an
anteroposterior gradient, maximal in the posterior region
(parieto-occipital), reflecting an increase in FR network
connectivity following the clinical onset of spasms. The
centroparietal area served as the FR network hub based on its
maximum closeness centrality. The centroparietal region
facilitated information flow within the network, particularly
during seizure propagation. The anteroposterior gradients
observed in the arousals and awake states of the control group
(patients without spasms) were comparable to the posterior >
anterior gradient in the closeness centrality during spasms. This
finding suggested similarities between the arousal and spasm
networks. Additionally, the investigators proposed that the hub
channels in the centroparietal region could be surgically targeted
to disrupt ictal propagation within the epileptic network based on
the connectivity measures.

Ibrahim et al. (2013) investigated the relationship between
pathological HFO and the dynamics of network connectivity
during seizures. The epileptogenic cortex’s functional connectivity
during seizures was frequency-dependent, and the expression of
pathological HFO by discrete regions of the epileptic network was

associated with specific connectivity patterns. The mean
pathological HFO amplitudes of contacts within the seizure onset
zone were significantly higher than those outside the seizure onset
zone. The seizure onset zone was functionally disconnected at higher
frequencies but relatively hyperconnected at lower and slower
frequencies. Seizure onset contacts were more deeply embedded
in the network (higher clustering coefficient) andmore likely to be in
network hubs (higher EC) than non-seizure onset contacts at slow
frequencies. The seizure onset zone was strongly disconnected from
the network at higher frequencies (gamma, R, and FR). At the ictal
offset, there was no difference in functional connectivity between the
seizure and non-seizure onset areas, implying that loss of
disconnection in the fast frequency bands occurred at seizure
termination. These findings were concordant with the expanding
body of evidence that pathological HFO generation is associated
with out-of-phase and aberrant firing of pathological neuronal
clusters. This was also congruent with the disconnection of the
epileptogenic cortex during ictal onset from surrounding non-
epileptogenic tissues to impede ictal propagation (Jiruska et al.,
2010; Warren et al., 2010). Hence, the epileptogenic cortex could
recruit widespread regions during a seizure via interaction mediated
by long-range slow rhythms that are relatively hypersynchronized to
the seizure onset zones. Therefore, ictal pathways could be mapped
based on the topographic disconnection of the high-frequency
activity bands and hyperconnectivity in the delta-theta bands in
areas corresponding to brain regions that are identified as ictal onset
zones or epileptogenic tissue. Paradoxical hypersynchronization
occurred at low frequencies in the seizure onset zone, while
concurrent disconnection occurred at higher frequencies in the
same zone at seizure onset. It is still uncertain whether HFO are
critical components of the epileptic network or byproducts of the
epileptic network.

Recent studies have implemented graph-based theoretical
analysis to study the spatial geometry of the FR generators in
conjunction with defining HFO characteristics to establish the
role of HFO hubs and networks in determining the ictal onset
zones and predicting surgical outcomes (Weiss et al., 2023). Ibrahim
et al. (2013) analyzed ictal connectivity networks at varying
frequency bands using graph-based theoretical analysis. At the
ictal onset and early propagation, Ibrahim et al. noted a
reduction in interregional functional connectivity at frequencies
greater than 30 Hz within the epileptogenic tissue and an
increased pathological envelope amplitude (i.e., an increase in the
tendency toward epileptogenicity). The pathological HFO and the
network phase synchrony were interrelated, confirming the
frequency-dependent functional connectivity of the epileptogenic
tissue and its dynamic changes during ictal onset and propagation.

Stergiadis et al. (2024) utilized graph-based theoretical network
measures (betweenness centrality, clustering coefficient, local
efficiency, strength, and EC) to investigate the functional
connectivity of the iEEG signal in the HFO band to identify
biomarkers to map the epileptogenic zone, the resection of which
would lead to seizure freedom. Channels with the highest HFO
count acted as hubs for the HFO network. The FR-generating tissue
displayed significantly high betweenness centrality, EC, and
strength, implying the influence of this node in the network and
highlighting its hubness. Graph-based results for the FR showed a
negative correlation between the local network parameters and the
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FR rates. The authors posited that the tissue-generating HFO in the
FR range was likely extremely hyperexcitable, and as a compensatory
mechanism, there was a decrease in specific local metrics to regulate
and counteract this aberrant neuronal activity and isolate the FR-
generating tissue. They concluded that spatially close nodes are
simultaneously connected to each other and to a third node.
Accordingly, the FR-generating tissue and seizure onset zone
were expected to have a tight interconnection closeness
centrality score.

Weiss et al. (2023) used graph-based theoretical measures to
demonstrate that the resection ratio of the areas exhibiting FR did
not correlate with postoperative seizure freedom. Instead, favorable
outcomes were correlated with the FR rate-radius resection
difference (RDRRD), a spatial measure of the distance calculated
between two contacts occurring at the edge of the resection margin,
and the FR mutual information (MI), a temporal measure using the
timing of events to measure functional connectivity. These FR
network spatiotemporal graph-based theoretical measures
improved the accuracy of the predictive value of FR resection.

Lastly, Weiss et al. (2022) demonstrated that non-responders or
patients with poor surgical outcomes had decentralized FR networks
with widespread, dispersed, highly active, and non-synchronized
individual FR-generating nodes. This finding implied that patients
would continue to experience seizures even if a portion of the FR
network was obliterated or disconnected. A responder or seizure-
free patient would likely exhibit very focally connected FR hubs
organized in networks within the seizure onset zones, and the
resection of these critical and focal HFO hubs would yield
seizure freedom. Additionally, including HFO rates within seizure
onset zones was insufficient to predict the surgical outcome
accurately. Moreover, HFO rates did not differ in determining
seizure onset zones between responders and non-responders,
except FR > 350 Hz and FR on spikes. In contrast to the low
spectral content of FR in the seizure onset zone of the non-
responders, the FR rates in the responder group exhibited a
higher spectral content in the seizure onset zones. The authors
then analyzed RDDRD (which excluded the seizure onset zone) and
MI (based on the propagation concept of HFO and long-range
synchronization of nodes). These measures distinguished
responders from non-responders more accurately when FR >
350 Hz were excluded, as FR > 350 Hz were more often in the
seizure onset zone of responders compared to non-seizure onset
zones in non-responders. Most non-responders possessed FR
networks with a longer characteristic path length, higher nodal
strength among non-seizure onset zone nodes relative to seizure
onset zone nodes, and lower mean local efficiency in the non-seizure
onset zone. This observation corroborated the hypothesis that non-
responders had decentralized epileptic networks and asynchronous
FR-generating sites that were broadly distributed and consisted of
hyperexcitable FR-generating nodes. The FR-generating nodes and
seizure onset zones in these non-responders were largely discordant.

The above data corroborate the correlation between the epileptic
network, ictal onset areas, and HFO, particularly at FR ranges. The
spatiotemporal dynamic nature of HFO is evident in the dynamic
changes observed during an ictal event, despite the uncertainty
regarding whether they are directly involved in ictal onset,
propagation, and termination or are secondary phenomena. The
fact that regions with HFO in a specific frequency band are isolated

interictally and exhibit increased connectivity at the time of seizure
onset merits their investigation as a marker of ictogenesis and the
epileptogenic network. In addition, these high-rate HFO-generating
areas are isolated from the peripheral tissues as a compensatory
mechanism to mitigate their hyperexcitability and aberrant firing.
Furthermore, some patients with surgical failure exhibit a
decentralized epileptic network with a wide range of FR-
generating sites. Therefore, applying connectivity measures is
essential in the surgical decision-making process, as they can
help clinicians select surgical options, such as resection,
thermoablative therapy, or neuromodulation (thalamic
versus regional).

8 High-frequency oscillations and
postoperative seizure outcome

The clinical significance of HFO has been assessed through the
analysis of postoperative seizure outcomes (Table 1) (Höller et al.,
2015; Cho et al., 2014; Akiyama et al., 2011; van ’t Klooster et al.,
2015; Fujiwara et al., 2012; Cai et al., 2024; van ’t Klooster et al.,
2017a; Hussain et al., 2017). Several single-center studies have
demonstrated concordance of interictal HFO with areas of ictal
onset with higher HFO rates in seizure onset areas than non-seizure
onset areas (Höller et al., 2015; Hussain et al., 2016; van Klink et al.,
2021; Peng et al., 2021; Zweiphenning et al., 2022). Complete
removal of the HFO-generating areas resulted in favorable
outcomes (Cho et al., 2014; Jacobs et al., 2010; Akiyama et al.,
2011; Fujiwara et al., 2012; Wu et al., 2010; van ’t Klooster et al.,
2017a; Maccabeo et al., 2022; Mouthaan et al., 2016). Haegelen et al.
observed that the rates of HFO (R and FR) were higher in areas of
seizure onset than in areas outside the seizure onset zone in temporal
lobe epilepsy cases but not in extratemporal cases (Haegelen et al.,
2013). The resection of these high HFO rate areas in temporal lobe
epilepsy cases resulted in favorable surgical outcomes. Results were
inconsistent in terms of predictive value of outcome when
considering non-rate related HFO characteristics. Grestl et al.
demonstrated that HFO alone had better predictive value than
spike with overriding HFO and, to a lesser extent, spikes alone
(Valentín et al., 2002). Meanwhile Shi et al. showed that ILAE
1 outcome was achieved in patients who had higher mean spike-R
rate in the resection cavity than non-removed tissue (van ’t Klooster
et al., 2011). In neocortical epilepsy, resection of the areas, including
FR and R overriding spikes, was associated with favorable outcomes
compared to R alone (van ’t Klooster et al., 2017b). The results of
these single-center studies were refuted in a multi-center study
conducted by Jacobs et al. (Sebastian et al., 2023). The authors
concluded that HFO were not reliable markers for epileptogenic
tissue and possibly were an unreliable predictor of postoperative
outcome. However, their analysis had methodological limitations
that might have skewed results, including the lack of differentiation
between physiologic and pathological HFO.

The results of numerous systematic reviews and meta-analyses
have been inconsistent. Wang et al. conducted a systematic review
and meta-analysis derived from 47 studies including 1,026 patients
with R and FR (Wang et al., 2024). Patients who underwent
complete resection of the HFO regions (both R and FR)
exhibited a greater likelihood of achieving seizure freedom
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TABLE 1 Summary of studies investigating HFO resection and its correlation with post-operative outcomes.

Study Sample
size

Age
(yrs)

Epilepsy etiology Epilepsy
type

EEG
MEG

Sampling
rate

EEG
type

HFO
range

Detection Ictal
interictal

Clinical implication F/u
period

(months)

Ochi et al.
(2007)

9 4–17 NL; heterotopia; CL; FCD Neocortical IC 1000 Hz SD R VA Ictal, pre-ictal Presence of contacts with
high ictal HFO prevalence
within the resection area was
associated with pos-surgical
seizure freedom

11–23

Cho et al. (2014) 15 12–44 NL; cortical dyslamination;
FCD; DNET; astrocytoma;
HS; gliosis; fibrocalcific
neurons

Neocortical IC 2000 Hz SD; D R; FR AD + post-
processing to
reject false
positives

Interictal Seizure freedom was
significantly associated with
resection of areas with high
rate HFO.

18–34

Jacobs et al.
(2010)

20 21–57 NL; bilateral HS, gliosis;
FCD; oligodendroglioma;
SWS; neocortical atrophy;
TSC; PNH

Mesial
temporal;
neocortical

IC 2000 Hz D R; FR VA Interictal Ratio of removed to non-
removed HFO contacts was
higher in patients with a
good outcome than in those
with a poor outcome
(significantly higher in R
than in FR)

13–37

Akiyama et al.
(2011)

28 1–18 NL; gliosis; FCD;MD; TSC;
heterotopia; HS;
polymicrogyria

Mesial
temporal;
neocortical

IC 1000 Hz SD; D R; FR AD followed by
visual validation

Interictal Regions exhibiting high R
rates were larger than those
displaying high FR rates. A
more extensive removal of
areas with higher FR
prevalence was substantially
associated with favorable
post-operative seizure
outcome. A complete
resection of areas with high-
rate R often improved post-
operative outcome

24

van ’t Klooster
et al. (2015)

54 12–30 HS; tumor with glial
component; CM; other

Mesial
temporal;
neocortical

iEcog 2,048 Hz SD R; FR AD followed by
visual validation

Interictal Residual FR in the post-
resection area were
associated with seizure
recurrence, especially with
higher median rate of FR
than in patients with good
outcome

17–35.8

van Klink et al.
(2014)

14 3–37 NL; HS; FCD; TSC;
cavernoma; DNET; CM;
gangloglioma;
astrocytoma; encephalotic
cyst

Mesial
temporal;
neocortical

iEcog 2048 Hz SD R; FR AD followed by
visual validation

Interictal FR, R diminished after
resection. Most FR were in
resection cavity. Patients
with favorable outcome had
post-resection R without
spikes especially in
sensorimotor cortex,
implying recovery of

NA

(Continued on following page)
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TABLE 1 (Continued) Summary of studies investigating HFO resection and its correlation with post-operative outcomes.

Study Sample
size

Age
(yrs)

Epilepsy etiology Epilepsy
type

EEG
MEG

Sampling
rate

EEG
type

HFO
range

Detection Ictal
interictal

Clinical implication F/u
period

(months)

physiological function after
disconnection from
epileptogenic nidus

Fujiwara et al.
(2012)

44 9–25 NL; FCD; TSC; gliosis;
chronic inflammation

Neocortical IC 2000 Hz SD R; FR AD Ictal Ictal HFO were present in
pediatric patients with FCD.
Resection of ictal HFO was
associated with favorable
outcome

NA

Wu et al. (2010) 30 0.67–20.67 NA Neocortical iEcog 2000 Hz SD FR VA Interictal Complete resection of pre-
resection FR was associated
with favorable outcome

20–33

González
Otárula et al.
(2019)

15 16–55 NA NA IC 2000 Hz D R; FR Visual marking to
direct
parameters AD

Interictal HFO exhibited a network
phenomenon feature. FR
networks were restricted to
seizure onset zones unlike
the R networks (source
within seizure onset zone).
First source channels in
network were highest in the
HFO rate, hence, resection
of source of network did not
necessarily determine
outcome but rather contact
with highest HFO rate

10–77

Thomas et al.
(2023)

83 NA NL; HS; tumor; CL;
traumatic brain
injuries; FCD

Mesial
temporal;
neocortical

IC 512 Hz,
1,024 Hz,
2,048 Hz

D R AD + VA Interictal Seizure freedom was
achieved when the ratio of
the mean spike-gamma rate
in wakefulness was higher in
the resected as opposed to
the non-resected region. The
wakefulness spike-gamma
outperformed the R

NA

Tamilia et al.
(2018)

20 1.8–17.8 NL; DNET; ganglioglioma;
TSC; FCD;
encephalomalacia;
encephalitis

Neocortical MEG/
HD-
EEG; IC

≥600 Hz (IC)
400 Hz (MEG)

HD-
EEG;
MEG;
SD

R AD Interictal Resection of area with
ripples-on-spikes predicted
good outcome on both HD-
EEG and MEG, unlike
removal or ripples alone,
which had no predictive
value

12–48

Cai et al. (2024) 40 14–60 NA NA IC 500–2000 Hz NA R; FR AD Interictal Favorable surgical outcomes
were noted in cases of
concordance between HFO-

>12

(Continued on following page)

Fro
n
tie

rs
in

N
e
tw

o
rk

P
h
ysio

lo
g
y

fro
n
tie

rsin
.o
rg

13

H
e
rlo

p
ian

10
.3
3
8
9
/fn

e
tp
.2
0
2
4
.14

6
2
6
72

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2024.1462672


TABLE 1 (Continued) Summary of studies investigating HFO resection and its correlation with post-operative outcomes.

Study Sample
size

Age
(yrs)

Epilepsy etiology Epilepsy
type

EEG
MEG

Sampling
rate

EEG
type

HFO
range

Detection Ictal
interictal

Clinical implication F/u
period

(months)

sequences that alighned with
the seizure onset zones

van ’t Klooster
et al. (2017a)

54 15 (M) HS; glioneural tumors,
FCD; TSC, gliosis;
cavernoma

Mesial
temporal;
neocortical

iEcog 2048 Hz SD R; FR AD Interictal Persistence of pre-resection
FR predicted poor outcome.
Pre-resection events without
taking any account the post-
resection HFO had no
impact on outcome

25 (median)

Hussain et al.
(2017)

60 2.7–13.4 NA Neocortical iEcog 2000 Hz SD FR VA Interictal Incomplete resection of FR
generating areas was
associated with post-
operative seizure recurrence
or poor outcome

31.2–79.2

Hussain et al.
(2016)

30 4.7–13.2 NA Neocortical iEcog 2000 Hz SD FR VA Interictal Complete FR removal was
associated with favorable
pos-operative outcome

25.7–79.0

van Klink et al.
(2021)

41 0.83–50 Ganglioglioma; DNET;
extraventricular
neurocytoma; glioma

Mesial
temporal;
neocortical

iEcog 2048 Hz SD R; FR AD followed
by VA

Interictal FR occurred in higher rates
in the tumor and
peritumoral tissue. FR
outside resection cavity and
on post-resection iEcog was
associated with poor
outcome

29–41

Peng et al.
(2021)

34 3–17 FCD; TSC; MD; HS; gliosis;
astrocytroma; DNET;
ganglioglioma; cavernoma;
arachnoid cyst; SWS;
benign tumors; pilocytic
astrocytoma

Mesial
temporal;
neocortical

iEcog 800–2048 Hz SD, D R AD Interictal R rates were higher in
patients with cortical
malformation than non-
cortical malformation cases.
Patients with seizure
recurrence had residual pre-
resection R in the post-
resection cavity

27–80

Zweiphenning
et al. (2022)

78 9.2–39 NL; tumor; vascular
malformation; HS; FCD;
gliosis; TSC

Neocortical iEcog 2048 Hz SD R; FR VA Interictal HFO-guided resection was
not non-inferior to spike-
guided resection during
iEcog
In extratemporal cases, HFO
showed non-interiority to
spikes

12

Maccabeo et al.
(2022)

24 3–48 NL; low-grade
developmental tumors;
cavernoma;

Lateral
temporal
neocortical

iEcog 2048 Hz SD R; FR VA Interictal Poor outcomes were noted
in patients with high rates of
pre-resection R and residual

24.3–70.5
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TABLE 1 (Continued) Summary of studies investigating HFO resection and its correlation with post-operative outcomes.

Study Sample
size

Age
(yrs)

Epilepsy etiology Epilepsy
type

EEG
MEG

Sampling
rate

EEG
type

HFO
range

Detection Ictal
interictal

Clinical implication F/u
period

(months)

encephaloclastic cysts;
gliosis; FCD

R outside the resection
margin. Residual FR was
also associated with
unfavorable outcome

van ’t Klooster
et al. (2017b)

12 8–40 CM; heterotopia; tumor;
FCD; HS; TSC; gliosis;
encephalomalacia

Neocortical iEcog 2048 Hz SD R; FR VA SPES evoked
responses-
interictal

Evoked HFO, mainly FR,
were useful markers for
epileptogenic zone and their
partial removal could be
associated with poor
outcome

Kuhnke et al.
(2019)

24 14–63 NL; DNET, cystic lesion;
encephalocele; FCD;
ganglioglioma; cavernoma,
posttraumatic brain injury;
gliosis; atrophy; HS

Mesial
temporal;
neocortical

Scalp;
IC

2000 Hz SD; D R; FR VA Interictal R and FR were significantly
higher in the seizure onset
zones than non-seizure
onset zones. Rates of HFO
were lower in scalp than
intracranial EEG. In most
patients, scalp HFO
occurred in the same area as
intracranial HFO.
Extent of area on scalp EEG
with HFO was broader than
in those with poor than good
outcome

12

Tamilia et al.
(2021)

28 9–16 NL; FCD; HS; tumor; TSC;
encephalomalacia;
polymicrogyria

Mesial
temporal;
neocortical

HD-
EEG/
MEG;
IC

MEG (600,
1,000, or
2000 Hz)

HD;
SD; D

R AD Interictal Virtual R onset zone was
closer to resection in
patients with good outcome
than poor outcome.
Percentage of R onset zone/
R zone resection was higher
in good than poor outcome
patients
Resection of virtual R onset
zone and not the virtual R
zone predicted good
outcome

13–36.5

Jacobs et al.
(2018a)

52 0.5–62 NL; Encephalocele, FCD,
HS, DNET, Gliosis, TSC;
atrophy; Rasmussen’s
encephalitis; cyst;
polymicrogyria

Mesial
temporal;
neocortical

IC 2000 Hz SD; D R; FR Initial brief visual
validation of AD
then remaining
all AD

Interictal Resection of HFO
generating tissue did not
reliably predict post-surgical
outcome at an individual
level. At a group level,
removal of HFO generating
area was correlated with
seizure free outcome

12
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TABLE 1 (Continued) Summary of studies investigating HFO resection and its correlation with post-operative outcomes.

Study Sample
size

Age
(yrs)

Epilepsy etiology Epilepsy
type

EEG
MEG

Sampling
rate

EEG
type

HFO
range

Detection Ictal
interictal

Clinical implication F/u
period

(months)

Weiss et al.
(2023)

23 18–70 NL; encephalomalacia; HS;
PNH; prior ATL; prior
resection; arachnoid cyst;
temporal FLAIR
hyperintense signal and
mild enhancement; extra-
temporal T2 FLAIR
hyperintense signal

Mesial
temporal;
neocortical

IC 2000 Hz D FR AD; graph-based
theoratical
models

Interictal FR resection ratio did not
correlate with postoperative
outcome; the FR
(especially >350 Hz) rate-
distance difference metric
was significantly correlated
with post-operative outcome

0.2–60

Lin et al. (2024) 28 5–59 FCD; gliosis; HS; glioma;
DNET; tumor-NFI

Mesial
temporal;
neocortical

IC 4,096 Hz SD; D R; FR AD Interictal HFO were demonstrated to
be as part of a network event
and not solitary events.
Incorporating network
features, such as centrality
index and spatio-temporal
pattern of HFO, was more
predictive of seizure
outcome than HFO rate
alone

NA

Haegelen et al.
(2013)

30 16–58 HS; polymicrogyria;
hippocampal atrophy
Temporal cyst; post-
resection cavities; cortical
tubers; arachnoid cyst;
porencephalic cyst; PNH;
meningioma; FCD

Neocortical IC 2000 Hz SD; D R; FR VA Interictal Surgical outcome was better
in the whole group and
temporal lobe epilepsy
patients but not the
extratemporal lobe epilepsy
cases where high rates of
HFO were included in
resection cavity

9–72

Kerber et al.
(2013)

22 8–57 FCD Neocortical IC 1024 Hz SD; D R; FR VA + AD Interictal R and FR were significantly
higher in areas of seizure
onset. In seizure-free
patients, the resected areas
had significantly higher rates
of FR compared to other
brain areas

>12 months

Okanishi et al.
(2014)

10 2.7–18.4 TSC Neocortical IC 2000 Hz SD; D R; FR AD + VA Interictal Patients with multiple tubers
and seizure onset zones had
also multiple foci of high-
rate R and FR. Resection of
areas with high-occurrence
rates of R and FR was
associated with good
outcome

19–76

Weiss et al.
(2015)

46 9–54 NL; HS; cavernoma; gliosis;
pilocytic astrocytoma;

IC 500–1000 Hz SD; D High gamma
(80–150 Hz)

VA + AD Ictal Extent of resection of seizure
onset zone and the early sites

0.75–6.5
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TABLE 1 (Continued) Summary of studies investigating HFO resection and its correlation with post-operative outcomes.

Study Sample
size

Age
(yrs)

Epilepsy etiology Epilepsy
type

EEG
MEG

Sampling
rate

EEG
type

HFO
range

Detection Ictal
interictal

Clinical implication F/u
period

(months)

DNET; MD; FCD; chronic
vascular changes; hyaline
astrocytopathy

Mesial
temporal;
neocortical

that display phase-locked
high gamma activity is
associated with post-
operative outcome

Li et al. (2021c) 16 3–54 Gliosis; HS; FCD Mesial
temporal;
neocortical

IC 512–1024 Hz D 30–150 Hz Graph measures Ictal Resection of critical hubs
(high frequency) was
associated with favorable
outcomes. High frequency
hubs were significantly
higher in resected areas and
were noted in the early/
middle part of the ictal
activity. Low frequency hubs
emerged in the late part of
the ictal activity

NA

Fedele et al.
(2017)

20 17–52 FCD; Gliosis; HS; glioma;
ganglioglioma; cavernoma

Mesial
temporal;
neocortical

IC 4000 Hz SD; D R; FR AD + VA Interictal Resection of the HFO area
(high-rate R co-occurring
with FR) was associated with
post-operative favorable
outcome

10–46

Fedele et al.
(2016)

14 NA NA NA iEcog 2048 Hz SD R; FR AD + VA Interictal FR identified by AD post-
resection retrospectively
were able to correlate with
poor surgical outcome

>12

AD, automated detector; ATL, anterior temporal lobectomy; CL, cystic lesion; CM, cortical malformation; D, depth; DNET, dysembryoplastic neuroepithelial tumor; FCD, focal cortical dysplasia; FR, fast ripple; F/u, Follow-up; HD, High-density; HS, hippocampal

sclerosis; IC, intracranial recording; iEcog, Intraoperative electrocorticography;M,median;MD, microdysgenesis; NA, not available; NL, Non-lesional; PNH, periventricular nodular heterotopia; R, ripple; SD, subdural; SEEG, stereoelectroencephalography; SPES, single

pulse electrical stimulation; SWS: sturge weber syndrome; TSC, tubers due to tuberous sclerosis complex; VA, visual annotation; YRS, years.

*Neocortical, Extra-temporal and temporal.
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compared to those who did not have complete removal of HFO. In
patients undergoing iEcog-guided tailored resection, complete FR
removal demonstrated greater efficacy in achieving seizure freedom
in cases of extra-temporal lobe epilepsy compared to those with
temporal lobe epilepsy. Additionally, patients with lesional MRI
findings and complete resection of focal regions exhibited a higher
likelihood of achieving seizure freedom compared to those with non-
lesional cases. Qu et al. (2024) demonstrated that the complete
removal of R and FR-generating tissues was significantly better
than incomplete removal. This was also the case for partial
removal, which outperformed no removal of HFO areas. However,
the authors did not factor in the spatiotemporal extent of the resected
HFO (their location outside the area of ictal onset or the association
with an MRI lesion), which is essential to study HFO as an
electrophysiological biomarker that can map the boundaries of the
epileptic network rather than merely identifying the “sampled” ictal
onset area. The findings of Qu et al.’s meta-analysis were contrary to
Gloss et al.’s Cochrane review, which found that HFO resection did
not impact surgical outcomes (Gloss et al., 2017). Wang et al. (2024)
displayed that favorable surgical outcomes were attained more often
with complete resection (at least ≥80%) of areas generating HFO than
with incomplete resection of HFO areas, similar to Qu et al. (2024)
findings. Furthermore, the complete removal of FR areas was better at
achieving favorable outcomes in patients with extra-temporal lobe
epilepsy than in those with temporal lobe epilepsy. Nonetheless, this
analysis had several limitations, including the absence of a consistent
definition of “resection area,” the ambiguity regarding the location of
the resected HFO area or contacts (e.g., contiguous versus non-
contiguous contacts) concerning the area of ictal onset, the extent
of the resection area and its congruence with the area of ictal onset and
early propagation, and the topographic distribution of HFO and their
organization into a consistent hierarchical distribution. Höller et al.
(2015) meta-analysis showed that the frequency of the HFO rather
than the number of channels displaying HFO were related to
surgical outcome.

It is conceivable that HFO “hubs” exist and maintain synaptic
and direct connections to remote HFO sites (van Diessen et al.,
2013b). Through low-frequency EEG rhythms (e.g., delta or theta
waveforms), these interconnected sites can coordinate activity with
HFO hubs. Consequently, severe epilepsy forms may have multiple
HFO hubs implying strong modulatory effect on remote area. This
implies that resection of all the HFO hubs or their neuromodulation
will be associated with high likelihood of seizure freedom
(Zweiphenning et al., 2019).

van ’t Klooster et al. (2015) found that patients with focal refractory
epilepsy who underwent resection had recurrent postoperative seizures
when residual FR were noted on iEcog. The authors did not mention
the association of the residual FR with the resected HFO. Had residual
FR in the resection margins been synchronous with the resected FR,
this would have substantiated the hypothesis that HFO with
spatiotemporal organization, otherwise described as “propagation”
or “network,” mirrored the epileptic network. It would also have
questioned whether extending resection to include residual FR in
the resection margin would have improved the outcome. The
absence of residual post-resection FR in patients with recurrent
seizures was another unexplained finding. The authors observed
Engel 3 and 4 outcomes in patients with a high number and broad
area of FR, substantiating question of the extent of FR resection areas

(Cho et al., 2014; van ’t Klooster et al., 2015; Kerber et al., 2013;
Okanishi et al., 2014; Bragin et al., 2003; Zijlmans et al., 2009).

Okanishi et al. (2014) demonstrated that patients with tuberous
sclerosis complex and multiple tubers had multiple segments
(referring to contiguous channels) of seizure onset contacts, as well
as high rates of interictal R and FR. These segments showed a wide
distribution of HFO across multiple lobes (e.g., temporo-parieto-
occipital) and epileptic networks. Resection of areas with high R
and FR occurrence rates predicted outcomes more accurately
(statistically significant) than the resection ratio of contacts
involved in seizure onset. Only 3 out of the 10 patients attained
Engel I outcomes, and the remaining attained Engel II-IV outcomes.
The study did not elaborate on the characteristics of the “HFO
segments,” their spatiotemporal extent, or their correlation with
the entirety of the epileptic network (onset and propagation). It
also did not explicitly define the concordance between high HFO
occurrence and the seizure onset zone. The authors suggested that, in
this context, highHFO occurrence would be a better surrogatemarker
of the epileptic network than the seizure onset zone.

Recent studies looked at combined HFO rates and HFO network
measures to predict surgical outcomes. Lin et al. (2024)
demonstrated that HFO are not isolated events but components
of a local epileptiform network. Including the HFO rate-based
seizure onset predictive measures led to a trend toward a better
outcome but did not achieve statistical significance. To enhance the
likelihood of accurately predicting a favorable surgical outcome, the
authors combined HFO network properties with HFO rate analysis
and the seizure onset zone. Consequently, the probability of a
positive outcome was increased for patients who underwent
palliative surgery (resection of less than 80% of the seizure onset
zone) when the HFO network analysis was incorporated into the
HFO rate. Furthermore, the authors acknowledged that network
analysis of HFO can be challenging due to the variability of HFO
detections. If an HFO is detected on one channel, there might be no
detections on the immediate neighboring channels.

Tamilia et al. (2018) demonstrated the spatiotemporal
propagation and hierarchical organization of R into onset and
propagation zones (the appearance of R on subsequent contact
with a lag) in pediatric patients. The mean rate of R onset
contacts within the resection cavity and their removal was
associated with a favorable outcome. The postoperative outcome
was not affected by the R spread zone, isolated R contacts (lacking
propagation), or any spike zone (spike source contact and its
propagation contacts). The authors proposed that the R onset
nodes could serve as a potential biomarker for epileptogenic
tissue and a predictor of surgical outcomes in pediatric patients.
Their findings confirmed that the areas of R onset were more
epileptogenic than the R spread zone.

Some explored coupling of HFO with lower-frequency
oscillations and its impact on surgical outcome. The resection of
areas revealing coupling of HFO and low-frequency oscillations
during seizures or sleep could yield favorable outcomes (von
Ellenrieder et al., 2016b; Iimura et al., 2018; Nonoda et al., 2016;
Motoi et al., 2018; Amiri et al., 2019; Weiss et al., 2015). Cross-
frequency coupling between pathological HFO and theta-alpha
rhythms was significantly elevated in the seizure onset zone than
in non-epileptic regions (Ibrahim et al., 2014). Early phase-locked
high-frequency gamma activity during the ictal phase could be
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associated with a favorable postoperative outcome (Weiss et al.,
2015). In the meantime, delta-modulated coupling to HFO was
essential in identifying the epileptogenic zone in neocortical
extratemporal lobe epilepsy (Guirgis et al., 2015). This analysis
was also applied to scalp EEG, where cross-frequency coupling
predicted seizure onset zones and localized the epileptogenic
source (Li et al., 2016; Jacobs D. et al., 2018). As a result,
determining HFO activity in conjunction with low-frequency
activity was a more effective way to investigate ictal onset areas.
However, the high-frequency hubs were involved in initiating
seizures, not the low-frequency hubs, and predicted surgical
outcomes (Li C. et al., 2021). The high-frequency hubs localized
to the resected channels and emerged several seconds after seizure
onset. The outcome would be poor if the high-frequency hubs were
widely distributed and outside the resection at an early age. During
the early and middle stages of the seizure, the high-frequency hub
had significantly higher strength in the resected regions than in the
non-resected areas. As for the low-frequency hub, increased strength
inside the resected region at a later seizure stage was associated with
Engel I. The early transition from pathological high-frequency hubs
to the later emergence of low-frequency hubs was displayed in cross-
frequency coupled networks. Stronger low-frequency and high-
frequency hubs within the resection region had been associated
with favorable outcomes.

The previous results suggest a correlation between HFO and
surgical outcomes; however, the methodological variation in these
events and their acquisition modality (e.g., invasive versus non-
invasive or subdural versus depth contacts) renders a comparative
analysis challenging. Additionally, the evidence favors the
investigation of HFO as a network phenomenon rather than
isolated events, integrating the analysis of cross-coupling of
frequencies that are lower in range than the HFO range as well
as connectivity measures as described in the prior section.

9 Challenges and future perspectives

Identifying a reliable surrogate biomarker for epileptogenic
networks is crucial, notably since the incidence of surgical
failures has not diminished over time. High-frequency

FIGURE 1
An illustration of the spatiotemporal organization of the HFO
network. (A) Demonstration of intracranial macroelectrode contacts
as part of the surgical workup in a patient with non-lesional
pharmacoresistant epilepsy of unknown etiology and clinical
semiology lateralizing and localizing to the right frontal and temporal
areas. First row: MRI brain showing the implanted intracranial
contacts. The red arrows indicate foci consistently involved in theHFO
(R range) network, predominantly at the onset of the HFO network
sequence. Throughout the recording, the HH and D contacts were
predominantly synchronous. Second row: MRI reconstructions show
R-range HFO networks primarily found in the frontal lobe (blue and

(Continued )

FIGURE 1 (Continued)

red) and the base of the temporal lobe (orange). The blue
contacts represent the most common contacts within the HFO
network, which occur concurrently with the basal temporal areas. The
red dots indicate a second network population in the anterior
frontal lobe (B). (B) Five illustrative images depict the twoHFO network
sequences consistently present throughout the recording period. In
network one, the contacts were HH1-2, D3-11, and EE1-3. The
precedence of one versus the other contacts was variable, but the
contact that emerged first in the sequencewas consistently HH1/HH2.
The contacts in the second network were A3/A5 and B4/B5. The red
brackets denote the first channels in the sequence (numbered 1); the
green brackets represent the second channels in the sequence
(numbered 2); and the blue brackets represent the last channels in the
sequence (numbered 3). (C) Both networks (one defined by magenta
brackets and two by purple brackets) occurred simultaneously and
independently. It is unclear if the concurrent occurrence was
coincidental or if a single mechanism triggered the two networks
simultaneously.
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oscillations are a potential biomarker for epileptogenic networks,
and additional rigorous investigation is warranted. It is evident that
HFO are not isolated occurrences; they have hierarchical
organization and exhibit spatiotemporal variations (Figure 1).
Hence, it is worthwhile investigating HFO on a network scale to
tackle surgical failures, particularly in challenging scenarios such as
non-lesional and poorly localized epilepsies.

The latest innovative tools, such as optogenetic and chemogenic
techniques, can be used to explore the spatiotemporal dynamics of
dysfunctional neuronal activity and PIN involved in generating
HFO. Chvojka et al. (2024) utilized optogenetics to study HFO in
a murine model of neocortical epilepsy with focal cortical dysplasia
(FCD) type II. Pathological HFO (up to 800 Hz) were generated by
the FCD and propagated outside the lesion. Foci in the contralateral
hemisphere also generated HFO independent of the FCD lesion,
implying widespread network dysfunction in patients with
FCD. The neurons carrying the mTOR mutation and expressing
channelrhodopsin-2 represented functionally interconnected and
active FCD network components (Jiruska et al., 2017; Chvojka et al.,
2024; Ibarz et al., 2010). This novel approach was intriguing because
it localized the epileptogenic or seizure-generating tissue and
mapped the HFO networks, which were spatially not limited to
the seizure onset zone and the FCD lesion but extended to include
distant non-lesional regions in the ipsilateral and contralateral
hemispheres.

However, there are still significant obstacles to studying HFO.
These factors include the absence of consensus in definitions (such
as morphology, amplitude, duration, frequency, interevent
intervals), terminologies (such as cluster, propagation, sequence,
zone), modalities used (MEG, iEcog, scalp EEG, SEEG versus
subdural contacts), analysis methodologies (rates, graph based
theoretical analysis), sampling rates, features that differentiate
between physiologic and pathological R and FR to avoid any bias
in analysis, variability in the automated detectors and their set

threshold for detections that increase rates of false positive
detections, undersampling in select study types, and the need for
further improvement of other non-invasive modalities, as well as the
time-consuming nature of visual analysis.
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