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In this mini review, we propose the use of the Julia programming language and its
software as a strong candidate for reproducible, efficient, and sustainable
physiological signal analysis. First, we highlight available software and Julia
communities that provide top-of-the-class algorithms for all aspects of
physiological signal processing despite the language’s relatively young age.
Julia can significantly accelerate both research and software development due
toits high-level interactive language and high-performance code generation. It is
also particularly suited for open and reproducible science. Openness is supported
and welcomed because the overwhelming majority of Julia software programs
are open source and developed openly on public platforms, primarily through
individual contributions. Such an environment increases the likelihood that an
individual not (originally) associated with a software program would still be willing
to contribute their code, further promoting code sharing and reuse. On the other
hand, Julia’s exceptionally strong package manager and surrounding ecosystem
make it easy to create self-contained, reproducible projects that can be instantly
installed and run, irrespective of processor architecture or operating system.

digital signal processing, physiological signals, complexity measures, Julia, time series
analysis, reproducible, open science

1 Introduction

Progress in modern physiological signal processing relies on research software tools that
support general digital signal processing procedures and measurements within reproducible
workflows. However, as the field advances, old software is susceptible to being outdated,
inaccessible (due to licensing fees or expired download links), or unusable because of
decaying infrastructure that renders such tools inoperable. To mitigate this issue, the field
needs modern tools and infrastructure that are designed to fulfill three criteria:

1. Encourage the reuse and maintenance of existing infrastructure.
2. Easily allow software composition and extensions to accommodate new methods.
3. Berooted in, and by design and adoption, follow open-source and open science principles.

Proprietary software typically fails to meet these criteria. For example, proprietary
platforms are typically closed source (e.g., MATLAB) and do not allow users to extend or
maintain software by themselves but only through paid sponsorship. In contrast, the Python
programming language, which is highly popular in academia, satisfies all three of
these criteria.
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In this mini review, we discuss how the Julia programming language
(Bezanson et al. 2017; Bezanson et al. 2012) is a strong candidate that also
addresses these criteria and can be advantageous for open science in
physiological signal processing. When compared with Python, Julia has
better computational performance for typical user-written code
(Bezanson et al, 2017), which becomes particularly important in
physiological signal processing, where time series hypothesis testing is
common (see Section 3). The design of Julia empirically leads to stronger
software composition, similar to what is seen in Python packages
(Karpinski, 2019; White, 2020). In addition to these two points, Julia
also has a plethora of existing software for digital signal processing
workflows (some of which are unique to the language), has excellent
interoperability with other programming languages, showcases strong
code reuse throughout its ecosystems, offers exceptional reproducibility
infrastructure, and is based on overwhelmingly open and community-
based software development practices.

2 Digital signal processing
2.1 File I/O

The start of a typical DSP analysis workflow is file I/O, which is
straightforward within Julia. The FileIO ecosystem provides I/O
machinery for a variety of data formats (hierarchical data, imaging,
etc.) unified into one standardized interface, while the JuliaHealth
organization (and associated groups) provides support for specialized
physiological data formats. In Julia, most data loading operations return
data in the form of a “dataframe.” First originating in R and popularized
further through the tidyverse (Wickham et al., 2019) and pandas (Wes,
2010) ecosystems, this data structure in Julia is implemented through
the package DataFrames.jl (Bouchet-Valat and Kaminski, 2023) and
further described by the interface package Tables.jl. Because of this,
several ecosystems across Julia have opted to support this interface,
allowing the ready application of various software methods to signals
and simplifying one’s workflow needs.

Furthermore, some particular physiological data I/O capabilities
within Julia are

1. Medical Imaging Data: DICOM.jl and DICOMTree,jl for
reading, writing, and viewing DICOM image data and
associated metadata; NIfTLjl for reading MRI NIfTT files, and
BIDSTools.jl for working with the Brain Imaging Data Structure.

2. Time series: NeuroAnalyzer.jl (Wysokinski, 2024) supports the
ability to load EEG, MEG, NIRS, MEP, and other body sensor
data, and KomaMRL;jl (Castillo-Passi et al.,, 2023) supports
loading of MRI signals and image formats.

3. Patient Medical Records: FHIRClient.jl for connecting to FHIR
servers and building SMART on FHIR applications, EDF.jl for
manipulating ~ EDF/EDF+ and BDF  files, and
OMOPCDMCohortCreator.jl (Zelko et al, 2024) for
working with OMOP CDM formatted patient databases.

Finally, Julia provides support for other data formats used broadly
across different ecosystems. For example, one of the most common
data formats, “delimited files” (such as CSVs and TSVs), is broadly
supported by CSV,jl (Quinn et al, 2023). For data formats from
proprietary tools (where the format is publicly disclosed), there is
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support in Julia for several tools such as XLSX.jl for Microsoft Excel,
ReadStatTables.jl for STATA files,and MAT.jl for the various versions
of MATLAB mat files. Additionally, for other more specialized data
formats, there are tools like HDF5.jl for hierarchical data files, Arrow.jl
for Apache Arrow binary files, and packages such as Tar,jl for other
compressed data files. Finally, if support for a particular format is not
existent or robust enough within Julia, one can use a variety of
interoperability packages from Julialnterop to supplement one’s
Julia workflow with other ecosystems.

2.2 DSP in Julia

Building upon the compositional aspects of Julia, several tools
have been created to analyze signals or time series within Julia such as

1. Traditional DSP methods: DSP.jl (Kornblith et al., 2023) is the
largest package with a collection of “traditional” DSP algorithms.
It includes periodogram and parametric estimation, filter design
and filtering methods, window functions, convolutions, and
more.  AdaptiveFiltersjl ~ provides  adaptive
Additionally, SignalAnalysisjl complements
DSP.jl with additional functionality such as time-frequency

filtering.
and extends

analysis, Wigner-Wille distributions, or DEMON spectra.

2. Signal alignment and comparison: Signal Alignment.jl attempts
to align signals either through shifting or warping methods
(DynamicAxisWarping.jl; Bagge Carlson and Chitre (2020)
provided the time warping methods used within
SignalAlignment.jl). SpectralDistances.jl (Bagge Carlson and
Chitre, 2020) also examines signals primarily in the frequency
domain via optimal-transport distance metrics as an extension
to Distances.jl.

3. Direct spectral transforms: Julia has several packages for
transforming time series into spectral space: FFTW.jl and
AbstractFFTsjl for standard Fourier transforms, NFFT.jl
(Knopp et al.,, 2023), LPVSpectral,jl (Bagge Carlson et al.,
2017); 2,
transforms, and Wavelets.jl for wavelet transforms.

4. Noise

SignalDecomposition.jl is used for de-noising signals via

and FastTransformsjl for non-equidistant

reduction and signal decomposition:

decomposition, and KissSmoothing,jl is used for smoothing

(other tools like convolutions and wavelet transforms can also

be used directly for smoothing). For multidimensional data,

there is SingularSpectrumAnalysis.jl, while principal
component analysis exists within MultivariateStats.jl.

5. Hypothesis testing: HypothesisTests.jl provides a plethora of
standard statistical tests. Time seriesSurrogates.jl (Haaga and
Datseris, 2022) combined with ComplexityMeasures.jl ($3)
provides tests for determining the nature of the system
generating the signals. Associations.jl (Haaga and RomeoV,
2024) provides several methods for independence and
dependence testing between signals.

6. Optimization: Julia’s flagship optimization package, JuMP
(Lubin et al, 2023), along with its subpackage, Convex.jl
(Udell et al, 2014, can be used to solve a variety of
optimization problems that arise during DSP workflows,

resolve to a specialized

eliminating the need to

optimization package.
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In addition to these general DSP tools, specific physiological
signal analysis tools also exist such as
1. Neurophysiological

signal  processing:

(Wysokinski, 2024) is a robust Julia toolbox for reviewing

NeuroAnalyzer.jl

neurophysiological data. It provides several methods including
loading recordings for EEG, MEG, NIRS, MEP, and other body
sensors; processing methods (ICA, PCA, NIRS, etc.); analysis
of specific neurological responses (ERPs, EROs, etc.);
visualizations; and more.

2. MRI signal simulation: KomaMRLjl (Castillo-Passi et al., 2023)
is a Julia package for highly efficient MRI simulations. It
focuses on simulating scenarios that could arise in pulse
sequence development and offers several methods and
comprehensive tutorials for MRI signal analysis.

2.3 Toolboxes and code reuse

It is common that in other programming ecosystems,
physiological digital signal processing toolboxes exist. For
example, for neurophysiological signal processing, there is
EEGLAB (Delorme and Makeig, 2004) in MATLAB, and within
Python, there is mne-python (Gramfort et al., 2013). In Julia, there
exists NeuroAnalyzer.jl (Wysokinski, 2024) and KomaMRILjl
(Castillo-Passi et al., 2023). The BrainFlow toolbox (Parfenov
et al., 2023) also has a Julia implementation.

However, due to the strong inter-package communication,
facilitated largely by the language design and the multiple
dispatch system, functionalities that exist in one package can be
reused in another one. This often removes the need for creating
dedicated toolboxes that bring many tools together; in the majority
of cases, the tools already work together out of the box.

Additionally, due to Julia’s interoperability with other languages,
one may easily utilize, for example, Python packages within Julia
using PythonCalljl. The same applies to software written in C,
FORTRAN, R, MATLAB, and other programming languages. This
inter-operability makes Julia conducive to code reuse and a strong
candidate for sustainable software development.

3 Complexity measures for signal
processing

Complexity measures are one of the most well-established tools in
physiological time series analysis, as evidenced by hundreds of software
programs created for physiological complexity analysis (Mayor et al,
2021). Complexity measures are statistics derived from time series that
quantify some property of the underlying dynamics generating the time
series. They have been used to distinguish determinism from noise (Rosso
etal,, 2007), classify time series into classes with different dynamics (Zanin
and Olivares, 2021; Mayor et al., 2023), quantify directional associations
between time series (Vejmelka and Palus, 2008), and more.

Julia is the basis for the software ComplexityMeasures.jl (Datseris
and Haaga, 2024). It provides thousands of complexity measure
estimators out of the box, and a recent objective comparison
shows it to outclass alternative software programs in terms of
computational performance, reliability, total number of features,
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and extensibility (see Table 1 in the study by Datseris and Haaga
(2024)).
DynamicalSystems.jl (Datseris, 2018) software library for nonlinear

ComplexityMeasures.,jl is a component of the
dynamics and time series analysis. ComplexityMeasures.jl integrates
fully with Time seriesSurrogatesjl (Haaga and Datseris, 2022), a
highly optimized and, to the best of our knowledge, the most
extensive software program for surrogate hypothesis testing. The

combination of ComplexityMeasures.jl with Time
seriesSurrogatesjl is routinely 1,000x faster than alternatives
(Datseris ~ and ~ Haaga,  2024). These  aspects make

ComplexityMeasures.jl a unique advantage of the Julia language in
the context of physiological signal processing.

Perhaps even more relevant for this mini review however is that
ComplexityMeasures.jl follows an open community approach in its
development practices, and actively invites practitioners to become part
of the software by contributing their new algorithms to it directly [see
Conclusions in Datseris and Haaga (2024)]. This is particularly relevant
for open and reproducible science because 1) it can decrease
reproducibility issues in complexity measure applications and 2)
merge the currently disparate efforts on software for complexity
measures; so far, hundreds of such software programs have been
created, often with minimal differences between them, essentially
putting more effort into replication than into new progress.

Hence, by design, ComplexityMeasures.jl plays an instrumental
role in promoting open science in physiological signal processing. By
being well-documented, inviting practitioners with its open
development practices, and being exceptionally well-tested, it
provides a guarantee on maintaining high-quality and open-
source implementations of existing algorithms and enabling
trustworthy and reproducible physiological signal processing. For
more details, refer to Datseris and Haaga (2024) and the list of
software programs in the supplementary material provided by
Mayor et al. (2021) for further comparison.

The usage of ComplexityMeasures.jl is straightforward. A single
function called complexity (or entropy, depending on the
measure) may estimate the measure by taking as an input 1) the
measure to estimate and 2) the input time series (univariate,
multivariate, or spatiotemporal). As such, ComplexityMeasures.jl is
designed to be composable not only with the whole Julia ecosystem
but also with any programming environment due to its simple
interface. The code example in Section 6 shows its application
to EEG data.

4 Julia efficiency for
numerical computing

Another aspect of the Julia language that affects time series analysis
and beyond is the efficiency of getting work done with Julia itself. One
can quickly prototype algorithm implementations or analysis pipelines
within Julia due to its simple and high-level syntax. Sometimes, even
these prototype implementations within Julia can meet the performance
needs of individuals due to its robustly constructed just-in-time (JIT)
compiler. Then, by optimizing one’s code within Julia itself through
various approaches, highly performant code can be created that is
competitive at the level of languages that are commonly regarded as
high performance (i.e., C, Fortran, or Rust) (Godoy et al., 2023), without
the need for language extensions or re-writing code in another language.

frontiersin.org


https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2024.1478280

Datseris and Zelko

10.3389/fnetp.2024.1478280

Subject 1

Subject 2

complexity
[og}

FSoa

Perm-3 Wavelet Spectral Sample

FIGURE 1

Perm-3 Wavelet Spectral Sample

Exemplary time series analysis of EEG signals from one channel. EEG signals for two subjects are first decomposed into frequency bands (with “F"
standing for the Full EEG signal that has not been decomposed and only been passed through a denoising filter). For each signal and band, we estimate
various complexity measures, in particular order-3 permutation entropy (Bandt and Pompe, 2002), wavelet entropy (Rosso et al., 2001), spectral entropy
(Tian et al., 2017), and sample entropy (Richman and Moorman, 2000). See Listing 1 for the code that produced the figure.

5 Open and reproducible science
with Julia

5.1 Vibrant open-source community

One of the most crucial aspects of the Julia programming language is
not a technical contribution but rather the Julia community itself. There
are several official community platforms where Julia discussions and
collaborations take place, totaling tens of thousands of active participants
and hundreds of thousands of messages being shared. Additionally, as an
emergent property, the overwhelming majority of projects in the Julia
programming language are hosted publicly on GitHub, an international
platform fostering open-source code collaboration.

Within the Julia community, self-organized communities have
organically emerged to specifically leverage Julia for common tasks
across several domains. In particular, many tools for domains of work
and research are centered within these Julia “organizations,” such as

1. JuliaHealth: an organization that leverages Julia to improve
health and medical research. They organize monthly meetings
with organization members, and anyone interested in getting
started in research software development, conducting novel
health research, or sharing a question or work they have done
can join. Moreover, they centralize some smaller workgroups
focused on areas such as medical imaging, standards and
interoperability, and more within health research contexts.

2. Julialnterop: while Julia is still growing, Julialnterop exists to
bridge packages and workflows from other languages into Julia.
As a result, Julian are free to use their favorite tools from other
languages within Julia workflows while also maintaining a
presence within these other language communities.

3. JuliaML: utilizing Julia’s priority support for numerical methods,
JuliaML gathers for monthly community meetings to discuss the
latest developments in machine learning research. In these
meetings, development discussions are common to triage
what various members are developing and what they need
within the JuliaML ecosystem for their work.

4. JuliaDynamics: an umbrella organization for Julia software
related to nonlinear dynamics, nonlinear time series analysis,
and complex systems. They organize monthly meetings
showcasing interesting applications of the software in real-
world problems and discussing future developments for the
organization and its software.

Frontiers in Network Physiology

These “organizations” are not incorporated in any official
sense but serve as gathering points for interested practitioners
and volunteers to coalesce tools they have been developing and
share expert insights. To the best of our knowledge, other
languages generally do not have as strong social coherence. For
example, in Python, we could not find such self-organized
organizations for DSP or Health, perhaps because functionality
tends to be aggregated into huge infrastructures like NumPy,
making it daunting for individuals to become involved. In
contrast, within the Julia community, this self-organization is
much more common and robust; practically, every (sub) field of
science has an associated Julia GitHub organization that is self-
organized and not owned by a corporation or large research
group. This may be facilitated by characteristics of Julia, such
as multiple dispatch and the subsequent package communication it
provides, allowing small projects to grow while still being part of a
greater whole. These aspects of Julia result in a low contribution
barrier: a researcher can easily turn their scripts into published
source code within a registered Julia package.

5.2 Package manager

One of the biggest strengths of the Julia language is its “package
manager,” Pkg,jl, which is a Julia software program that installs “packages”
(individual Julia software). Hence, installing new packages happens from
within the language itself and allows full access to all of Julia’s infrastructure
during installation. Pkg,jl is the only package manager in Julia, and it
defines and records dependencies in only one way.

A critical feature of Pkg.jl is its support for “environments.”
Julia environments are self-contained Julia projects that have
their own list of dependencies and installed packages. This
allows one to use different versions of the same software
package across Julia environments. The latest version of one
package can be used within new projects, while older project
environments can safely continue to use older versions in old
projects, greatly alleviating dependency hell problems
(Wikipedia contributors, 2024).

Each Pkg.jl environment is governed by two configuration files:
Project.toml and Manifest.toml. The Project.toml is a user-created
file that declares the direct dependencies of the project, optionally
declaring compatibility bounds. The Manifest.toml is a Julia-
generated file that lists the current full dependency tree of the
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environment and is updated each time any package update is done
in the environment. The Manifest.toml file can be sent to another
user, who can then instantiate an identical environment (with
respect to the package versions) as the original created
environment.

Pkg.jl also does exceptionally well in a problem that older
programming languages still struggle with: robust installation. It
provides the “artifact system,” provisioned via Yggdrasiljl and
BinaryBuilder.jl. An “artifact” within Julia is any raw data file or
precompiled binary dependency (i.e., a piece of software program
that exists from outside of Julia). Developers may distribute these
artifacts during the installation of their package by utilizing this
system. As a result, installing an “artifact” from scratch is not a
problem that every single user of one’s Julia software has to solve;
rather, it is a problem that needs to be solved once by a software
developer through configuring the needed artifacts. The user then
“simply installs” their Julia package, and the artifacts are shipped to
them during the installation. Additionally, the artifacts are versioned
in the same way as normal packages and hence are also included in
the aforementioned Manifest.toml file, further
reproducibility.

enabling

5.3 Other projects fostering sharing and
reproducibility

In addition to Pkg.jl, Julia has a couple of highly popular projects
to further facilitate scientific reproducibility. Plutojl is a
programming notebook alternative to Jupyter (Kluyver et al,
2016) that places a strong focus on the reproducibility and
accessibility of the code. It solves some of the reproducibility
problems related to Jupyter, such as hidden variables or
translating a notebook to pure source code, and it also provides a
reactive environment for accelerating code development and/or
scientific workflows.

DrWatson (Datseris et al., 2020) is scientific project assistant
software. It simplifies and accelerates managing a scientific
software project by setting up simulations or processing
Like Pluto.l, it

and reproducibility

workflows. places a strong focus on

accessibility and provides several
functionalities for making a scientific project more robust and
easier to share and reproduce. DrWatson also has the benefit of
being completely non-invasive in contrast to many other similar
software programs [see comparison provided by Datseris et al.
(2020)]. DrWatson is used like a typical Julia package: a user may
use any of its exported functions in their source code or scripts

without altering any of the surrounding code.

6 Example application

As a simple application, we showcase a code snippet that
performs two actions: first, it decomposes an input EEG time
series into time series containing frequencies from the
characteristic frequency bands: 6, 6, a, 8, y, using NeuroAnalyzer.jl
(Wysokinski, 2024). This is done for two input EEG time series from
two different subjects obtained from A Resting-state EEG Dataset for

Sleep Deprivation (Xiang et al., 2024). Then, for each time series and
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some of the frequency bands, we estimate various complexity
measures via ComplexityMeasure.jl (Datseris and Haaga, 2024).
The result is presented as a barplot in Figure 1, and the code
that produced it is provided in Listing 1.

# Load packages, for example
using ComplexityMeasures # v3.7.0
using DelayEmbeddings # v2.8.0

using NeuroAnalyzer # v0.24.10

# Loads an EEG recording, filters it, and splits it into
# brainwave bands
function decompose_eeg(set_file; channel = 2, time = 20)
eeg = import_set (set_£file);
NeuroAnalyzer.filter! (eeg, fprototype=:fir, ftype=:hp,
cutoff=0.5, ch = eeg.locs[!, 1])
s, _, _ = bpsplit(eeg, ch = eeg.locs[!, 1])
full = eeg.data[2, l:timexsr(eeg), 1]
delta = s[1l, channel, l:timexsr(eeg), 1]
theta = s[2, channel, l:timexsr(eeg), 1]
alpha = s[3, channel, 1l:timexsr(eeg), 1]
beta = s[6, channel, l:timexsr(eeg), 1]
gamma = s[9, channel, l:timexsr(eeg), 1]

return [full, delta, theta, alpha, beta, gamma]
end
# complexity measures to use
# defined as functions of input signal and delay time
measures = (
(x, T) —> entropy_normalized(OrdinalPatterns(; m = 3, 7), x),
(x, T) —> entropy_normalized(WaveletOverlap(), x),
(x, T) -> entropy_normalized(PowerSpectrum(), x),
(%,

T) —> complexity normalized(SampleEntropy(x; m = 2, 7), X),

)

# perform the actual timeseries decomposition

subj_1, subj_2 = decompose_eeg. (["subj_l.set", "subj_2.set"]);
bands_idxs = [1, 2, 3, 4, 5, 6] # Bands to use
# for each signal and band estimate complexity
for (j, ts) in enumerate((subj_1, subj_1))
for (k, m) in enumerate (measures)
for (n, i) in enumerate (bands_idxs)
s = ts[i]
7 = estimate_delay(s, "mi_min", 1:100
spacing = 1/ (length(bands_idxs)+1
q = m(s, 7)
# barplot quantity ‘gq‘
# (see online for plotting code)

end

Listing 1. Example code listing for Figure 1.

See the online reproducible codebase (Datseris and Zelko, 2024)
associated with this paper for the code that loads the time series, as
well as the full dependency tree for the packages used to produce the
final figure.

7 Conclusion

We believe that the adoption of the Julia programming language
can significantly increase accessibility and reproducibility in
physiological signal processing while promoting a sustainable
ecosystem based on collaboration and code reuse. Julia can
accelerate the development of new methods and scientific
progress, in general, due to its flexible syntax, available libraries,
high performance, and package interoperability. Two similar
discussions to our paper, arriving at similar conclusions
regarding the positives of using Julia, were recently conducted in
the context of high-energy physics by Eschle et al. (2023) and biology

by Roesch et al. (2023).
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