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Objectives: Current approaches to objective measurement of sleep disturbances
in children overlook the period prior to sleep, or the settling down time. Using
machine learning techniques, we identified key features that characterize
differences in activity during the settling down period that differentiate
children with sensory sensitivities to tactile input (SS) and children without
sensitivities (NSS).

Methods: Actigraphy data were collected from children with SS (n = 17) and
children with NSS (n = 18) over 2 weeks (a total of 430 evenings). The settling
down period, indicated using caregiver report and actigraphy indices, was
isolated each evening and seven features (mean magnitude, maximum
magnitude, kurtosis, skewness, Shannon entropy, standard deviation, and
interquartile range) were extracted. 10-fold cross-validation with random
forests were used to determine accuracy, sensitivity, and specificity of
differentiating groups.

Results: We could accurately differentiate groups (accuracy = 83%, specificity =
83%, sensitivity = 84%). Feature importance maps identify that children with SS
have higher maximum bouts of activity (U = −2.23, p = 0.026) during the settling
down time and a higher variance in activity for the children with SS (e.g.,
interquartile range, Shannon entropy) that sets them apart from their peers.

Conclusion: We present a novel use of machine learning techniques that
successfully uncovered differentiating features within the settling down period
for our groups. These differences have been difficult to capture using standard
sleep and rest-activity metrics. Our data suggests that activity during the settling
down period may be a unique target for future research for children with SS.
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1 Introduction

Actigraphy is a well-established method used to behaviorally
assess sleep and rest-activity patterns across the lifespan. Wrist
actigraphy uses a wrist-worn accelerometer to capture movement
and infer sleep using sleep-wake algorithms. Actigraphy provides a
home-based and less invasive option in sleep measurement
compared to the gold standard polysomnography (PSG) (Smith
et al., 2018). This is especially useful when examining sleep in
pediatric populations who would find a PSG, conducted in a lab
setting, invasive and disruptive.

Sleep health is a multidimensional characterization of sleep
including sleep satisfaction, daytime alertness, sleep timing,
efficiency, and duration (Buysse, 2014). While not all dimensions
can be characterized by actigraphy, sleep timing, efficiency, and
duration have been validated against PSG and normative values have
been collected across multiple pediatric populations (Galland et al.,
2018; Lamprecht et al., 2015; Meltzer et al., 2016; Ziegler et al., 2021;
Yavuz-Kodat et al., 2019). These variables provide an important
characterization of a child’s sleep period, from the moment of sleep
onset to the last awakening in the morning.

In recent literature, sleep behaviors have been proposed to be an
additional and highly relevant dimension for pediatric populations
(Meltzer et al., 2021). Sleep behaviors include bedtime routine,
parent-child interactions at bedtime, and bedtime timing. While
actigraphy derived variables like sleep onset latency, or the time it
takes to fall asleep, can give information about some sleep behaviors,
we were interested in examining actigraphy data during the settling
down period, a time after the bedtime routine during which a child is
preparing to sleep.

Sensory sensitivities are prevalent for individuals across many
neurodiverse groups (e.g., autism, attention-deficit hyperactivity
disorder). Interestingly, neurodiverse groups with high rates of
sensory sensitivities also report higher rates of sleep problems.
Research has hypothesized that this could be related to
differences in gating in the thalamus, sympathetic nervous system
activation Our previous work suggests that children with sensory
sensitivities (SS), specifically sensitivities to touch, report
significantly higher rates of sleep difficulties using questionnaires
compared to peers without sensitivities (NSS) (Hartman et al.,
2022). However, when examining traditional sleep period (e.g.,
efficiency, duration) and rest-activity rhythm variables (e.g., daily
variability in activity and rest), the only evident difference between
children with SS and NSS was the average time it took for the
children to settle down and fall asleep per caregiver report. We
found that children with SS took an average of 30min longer to settle
down prior to sleep than their NSS peers (Hartman et al., 2023).

Our goal in this secondary analysis was to use machine learning
techniques to analyze wrist actigraphy data from the settling down
period in more detail to identify specifically how children with SS
differ from their peers with NSS. Machine learning methodologies are
powerful tools for analysis of time series data like sleep actigraphy data
(Tilmanne et al., 2009). Current research uses machine learning
techniques for sleep-wake identification (Cho et al., 2019;
Rahikkala et al., 2019; Khademi, 2018; Khademi et al., 2019), sleep
quality estimation (Bitkina et al., 2022), insomnia analysis (Rani et al.,
2022) and isolated rapid-eye-movement sleep behavior disorder
detection (Brink-Kjaer et al., 2022).

By applying machine learning techniques, we aimed to create
and test a reliable, fast way to analyze the settling down period
using actigraphy and sleep diary data. We aimed to add to the ways
sleep behaviors might be measured in future studies. We
hypothesize that there are unique aspects of the settling down
period that contribute to the higher levels of reported sleep
disturbances for children with SS. Understanding what goes on
when the “lights go off” and children attempt to settle down to fall
asleep will guide future research for interventions in this unique
group of children.

2 Methods

This secondary data analysis uses actigraphy and sleep diary data
from an observational study which collected data across a two-week
period. All procedures for this initial study were approved by the
University of Pittsburgh’s Institutional Review Board
(STUDY20050082). All analyses were done using Python and its
libraries pandas (McKinney, 2010) and scikit-learn
(Pedregosa, 2011).

2.1 Participants

Children (6–10 years) and their caregivers were recruited across
the United States using flyers shared over social media, listservs, and
through the Pitt +Me research registry. Children were required to be
English speaking and without a significant behavior or sleep
diagnosis that impact their daily life (per caregiver report). The
caregiver was required to complete daily sleep diary questions
during their involvement of the study and report regular
involvement in their child’s bedtime routine (at least four nights
a week). Participants completed informed consent and data were
collected between September and December 2021 (COVID-
19 pandemic, Delta variant prominence).

The aim of the original study was to examine differences in sleep
health for children with SS compared to peers with NSS. Therefore,
two groups of children were recruited. Participants were included in
the SS group if their parent endorsed 5+/7 screening questions
[based off the Sensory Profile-2 (Dunn, 2014) tactile/oral tactile
sensitivity questions; provided as Supplementary Material in
previous manuscript (Hartman et al., 2022)]. Additionally, a
diagnosis of autism, attention-deficit hyperactivity disorder, or
Down’s syndrome excluded participants in both groups, as these
diagnoses have different neurological and medical components
beyond sensory sensitivities that may impact sleep. A
demographics survey was utilized to record key variables and
describe participants.

Demographics of the whole sample are reported in our previous
paper (Hartman et al., 2022). For this secondary analysis, a total of
35 children were able to complete the data collection protocol with
sufficient data for this analysis (at least four evenings of settling
down time data from actigraphy and sleep diary): 17 children with
SS and 18 with NSS (Table 1). The average age in both groups was
around 7.7 years. The SS group was majority male (65%) and white,
non-Hispanic (59%). The NSS group was majority female (61%) and
white, non-Hispanic (89%).
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2.2 Outcome measures and data collection

The wrist-worn ActiGraph GT9X (ActiGraph Corp, LLC,
Pensacola, FL) was used to collect motor activity using an
internal accelerometer, gyroscope, and magnetometer. Actigraphy
data collection was set at a sampling rate of 30 Hz to collect data with
60 s epoch lengths, collected continuously across 2 weeks.
Additionally, caregivers completed a morning and evening sleep
diary for the two-weeks of data collection. Sleep diary questions of
interest in this analysis included the timing of (i) the start of the
settling down and (ii) perceived sleep onset. For this secondary data
analysis, we included participants who had actigraphy and
completed sleep diary entries for at least four evenings/nights to
ensure that sufficient data was available for the analysis of the child’s
settling down experience.

A total of 227 evenings of data were collected from the SS group
with an average of 13.33 evenings per participant (SD = 2.44).
Children in the NSS group provided a total of 203 evenings of data
with an average of 11.27 evenings per participant (SD = 2.85).

2.3 Actigraph dataset and preprocessing

Raw actigraphy data was processed through ActiLife (Actigraph
Corp.), the accompanying proprietary software of the device. Vector
magnitude, or activity counts, per minute were extracted for each
participant. Sleep periods were first isolated using the Tudor-Locke
(Tudor-Locke et al., 2015) algorithm that labeled each minute as
“wake” or “sleep”. Then, the study team used a visual inspection and
the caregiver reported sleep onset/offset timing within the sleep
diary to adjust the identified sleep periods as needed. In the event
that the caregiver reported timing different by 30+ minutes, the

algorithm-identified time and visual inspection was prioritized. This
prioritization was chosen a prioi based on the recommendations
from the SBSM Guide to Actigraphy Monitoring (Ancoli-Israel
et al., 2015) and the possibility that caregivers may not be with
their child when they fall asleep and therefore may need to estimate
sleep onset timing. After the sleep periods were isolated, every
complete sleep period (no off-wrist time) was analyzed using the
Sadeh algorithm (Sadeh et al., 1994). The Sadeh algorithm is a
pediatric-specific algorithm that derives sleep variables from
identified sleep periods. These variables include sleep duration,
sleep efficiency, sleep onset and offset, among others. For this
analysis, we only used the sleep onset variable to isolate the
settling down period prior to the sleep period.

Next, we identified the start of settling down time within the
actigraphy data. During the initial data collection, caregivers were
interviewed and described their child’s regular bedtime routine.
Caregivers were instructed to write down the start of their child’s
settling down time each night in the sleep diary. This was
operationalized in this way: the time when the bedtime routine
had ended and the child is attempting to fall asleep. For this analysis,
we extracted (i) the reported start of the settling down period from
each sleep diary and (ii) sleep onset time indicated using the Sadeh
algorithm with the cleaned actigraphy data (as outlined above).
Using these time points, we cut and indexed the actigraphy data files
containing three-dimensional accelerometer data and vector
magnitude for each night per participant. Data files were labeled
by group status (SS or NSS). Average settling down length of time
was assessed using Hedges’ g effect size calculations, where g >
0.41 indicates minimal practical significance. (Ferguson, 2009). The
data were then separated into trials using rolling windows to
populate the dataset and to create features (see Classification
results section below). Then, features were extracted from all of

TABLE 1 Participant demographics.

Sensory Sensitive Group (n = 17) Non-sensitive Group (n = 18) p values

Age (SD)

Child Age 7.65 (1.77) 7.72 (1.45) 0.504

Parent Age 38.59 (3.73) 39.11 (3.95) 0.333

Child Sex (%)† 0.127

Male 11 (65%) 7 (39%)

Female 6 (35%) 11 (61%)

Race/Ethnicity (%)†

Black/Hispanic 2 (12%) 0 (0%) 0.134

Black/Non-Hispanic 3 (18%) 0 (0%) 0.176

White/Hispanic 0 (0%) 0 (0%) n/a

White/Non-Hispanic 10 (59%) 16 (89%) 0.013*

Other/Multiple 2 (12%) 2 (11%) 0.952

Location (%)†

Rural 4 (24%) 3 (17%) 0.612

Urban 6 (35%) 3 (17%) 0.208

Suburban 7 (41%) 12 (66%) 0.130

Family Size 2.57 (1.00) 2.16 (0.92) 0.200

Percent or standard deviations in parentheses. Groups compared using Wilcoxson’s ranksum test due to unequal distribution unless otherwise specified.
†Chi-squared test for categorical variables.

*p < .05.
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the trials. The features were picked to specifically demonstrate power
and variation within the time windows and characterize some
clinically meaningful aspects of the time period (measures of
activity magnitude, variability of movement from moment to
moment). These features were mean magnitude of activity,
maximum magnitude, kurtosis, skewness, Shannon entropy
(Shannon, 1948), standard deviation, and interquartile range
(definitions and equations are found in the
Supplementary Appendix).

2.4 Data classification and analysis

The main aim of the analysis was to characterize differences in the
actigraphy data during the settling down time for children with SS and
NSS using supervised learning. We approached this binary classification
problem using a 10-fold cross-validation with all of the features extracted
from the data (see above paragraph). k-fold cross validation is used to test
a model built to correctly identify a participant with SS from those with
NSS across the entire dataset (called a binary classification problem). This
approach allowed us to observe whether the approach, the dataset, and
the method correctly separate the two groups in the dataset with
sensitivity, specificity, and accuracy.

First, we aimed to examine how different algorithms performed
the binary classification problem. We trialed random forests, support
vector machines, linear and quadratic discriminant analyses, Naïve
Bayes classification, and a multilayer perceptron model. Random
forests performed the best as evidenced by the highest values of the
average area under receiving operator characteristics curve (AUC).
This finding indicates that sensitivity (identifying true positives) and
specificity (identifying true negatives) were both high. Random forests
are a collection of decision tree estimators used for regression and
classification, where the decision trees are fit with subsamples of the
entire dataset (Breiman, 2001). It is a type of supervised machine
learning, where amodel is trainedwith labels (SS or NSS). Training and
test datasets are created from the entire dataset using a 4:1 split. The
best parameter set for the task is found using a grid search algorithm
within the training dataset using cross-validation. The parameters
searched were the number of decision trees and maximum depth.
The end-result was decided based on majority voting of decision trees.

Rolling windows were used to ‘epoch’ data entries into data
windows and features were created from the windowed data. Rolling
windows are widely used for feature engineering in machine
learning algorithms as a robust approach to populate dataset and
create more meaningful features. Data from each settling down time
were examined in smaller sections (ranging from 7 to 13 min, see
Table 2) and features like maximum magnitude were extracted.
Then that “window” was moved down (“stride”) either 1 or 3 min
and the new window of data was analyzed. Using rolling windows
allowed for patterns to be detected within shorter time spans (small
windows) rather than compressing the whole settling down period
into a single trial (like averaging across the whole night).

First, the relation between window/stride-lengths of data
windows and classification performance was examined to see if
there is any specific correlation with lengths and performance
metrics in a 10-fold cross validation analysis. Window length
determines how long the data window will be in minutes, where
stride determines the time difference between consecutive windows.

Next, the pair that resulted in the best performance was picked to
do in-depth 10-fold stratified cross-validation analysis following the
same method. Stratification was used to maintain the ratio between
different labels—indicating whether the data came from a participant
with SS or not—while also ensuring a balanced distribution of data
across different subjects. Cross-validation was done to ensure themodel
was generalizable for our problem, and stratification was used to ensure
uniform data imbalance across different folds. Within each cross-
validation fold, a random-forest model with previously identified
optimal parameters was trained with that fold’s training set and
tested with the corresponding test set. Setting a parameter set
instead of finding optimal parameters for each specific fold was
chosen to have a more generalizable model. Based on predicted
training labels, the decision threshold was changed from Prob >0.5,
which is the default case for binary classification, to a threshold found by
Youden’s J statistic, J = TPR-FPR where TPR is true positive rate and
FPR is false positive rate based on training data’s ROC curve. This was
done to make guesses based on the information from training data.

Finally, we conducted individual simple regression analyses to
explore how clinically relevant features (namely, measures of
magnitude, duration, and variance of activity) contributed to the
variance in settling down length of time, a variable found to be
significantly different in our previous work (Hartman et al., 2023).
We calculated averages of each child’s activity magnitude, maximum
activity magnitude, and settling down duration (in minutes) across
all settling down periods.We also calculated median entropy and the
standard deviation of the settling down duration as measures of
variation. Using the average duration of settling down time as the
dependent variable, we used each of the calculated variables above as
predictors and controlled for child age and sex. As the sample size
was small, we used this analysis to explore potential key
measurement and intervention targets that may be substantially
impacting settling down duration for children with SS.

3 Results

3.1 Demographics and settling down lengths

Participants were similar in child age and sex, parent age,
community type (urban, suburban, or rural) and family size

TABLE 2 Comparison of window and stride lengths using 10-fold cross-
validation with random forests.

Window-stride AUC

7-1 0.82

7-3 0.66

9-1 0.87

9-3 0.71

11-1 0.92

11-3 0.74

13-1 0.82

13-3 0.69

Bolded text indicates the highest AUC and chosen window and stride length.
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(Table 1). The groups differed on race and ethnicity, with the SS
group being slightly more diverse than the NSS group.

Using the procedure outlined in the previous section, settling
down periods were measured for each group. On average, children
with SS took 52.63 min (SD = 38.31 min) to settle down and fall
asleep. This differed from the children with NSS, who took on
average 26.19 min (SD = 14.20 min) to settle down and fall asleep
(p = 0.075, Hedges’g = 0.95).

3.2 Classification analysis

3.2.1 Classification results
Window/stride-length pair analysis results are shown in Table 2.

Strides were picked to be either 1 or 3 min, and window lengths were
started from 7 min and increased by 2 min until the performance
started deteriorating. It was found that 11-min window, 1-min stride
pair had the best results in terms of AUC.

As this is a secondary analysis of an observational study it was
deemed important to create time windows to compensate for both
inherent noise spikes in actigraphy data and non-precise sleep diary
recordings. The classification results with 11-min window, 1-min
stride pair are given in Table 3. On average, the classifier was able to
achieve 84.1% accuracy, 84.4% sensitivity and 82.7% specificity.
Here, as data from subjects with SS are denoted as positive class,
sensitivity provides information on how correctly the model was
able to predict if the data is coming from a subject with SS.

3.2.2 Significant predictors
We also conducted permutation importance testing to

determine feature importance in classification of the groups. The
features were shuffled 10 times across samples and the model was
refitted from scratch to estimate their respective importance.
Significant features were mean maximum magnitude of activity,
the standard deviation of length of settling down time, and median
entropy of activity (Table 4). To understand the magnitude of
importance for each feature, we used AUC as the scoring metric.

In Figure 1, we show the graph where all features are presented with
their respective average AUC decrease. The greater the AUC
decrease was when a feature is removed, the more informative
that feature was for the classification task. Although the
permutation importance test did not show any reason to omit
any of the features, maximum magnitude was the most
important feature and standard deviation of activity, entropy, and
interquartile range were the important features that represent the
variability of the window. We chose these most informative features
to feed into the post hoc regression feature set.

3.3 Post-hoc regression

We conducted multiple simple regressions as exploratory
analyses to examine how the identified features contribute to the
variance noted in the average duration of settling down time
between groups. Regression analyses indicated that mean
maximum magnitude, median entropy, and mean magnitude
independently accounted for 84%, 73%, and 57% of the variance
in settling down length, respectively (Table 5). This suggests that
these variables, constructed from features that successfully separate
the two groups, are key contributors to the variance seen in settling
down lengths between groups.

4 Discussion

Difficulties within the settling down period is often a main
contributor to reported sleep problems for children. Current
measurement of settling down difficulties rely on caregiver-
reported questionnaires. However, school-aged children may not
have their caregiver in the room while they fall asleep. Current
actigraphy-basedmeasures of sleep do not include characterizing the
settling down period specifically and can sometimes miss impactful
difficulties. This secondary data analysis provides a novel way to
examine activity in the settling down period using actigraphy and
sleep diary data and machine learning techniques.

We used an existing data set with children with SS and NSS
and the multidisciplinary expertise of our team (occupational
therapy, engineering, psychology) to develop a novel way to
isolate and characterize differences in settling down time. We
chose this data set specifically because, prior to this analysis, we
had identified that children with SS were reported to take longer to
fall asleep than children with NSS, per caregiver report (Hartman
et al., 2023). In the original study, traditional actigraphy sleep
variables did not highlight differences between children with SS
and NSS, however caregivers were reporting through
questionnaires and qualitative interviews significant and
impactful sleep problems for children with SS (Hartman et al.,
2022). We identified that the settling down period needed further
analysis to understand these differences. We chose machine
learning because it was a less complex process that may be
feasible for sleep science to incorporate in future research.

Machine learning techniques can provide opportunities to
examine large amounts of time-series data in ways that elevate
outcome measurement analysis to more specifically inform and
evaluate intervention changes (Gurchiek et al., 2019; Linden and

TABLE 3 Comparison of classification methods on 11-min 1-stride window
data.

Cross-validation
Fold

Accuracy Sensitivity Specificity

Fold 1 84% 86% 77%

Fold 2 88% 88% 86%

Fold 3 83% 81% 87%

Fold 4 83% 83% 84%

Fold 5 84% 85% 82%

Fold 6 83% 84% 81%

Fold 7 82% 83% 77%

Fold 8 85% 84% 88%

Fold 9 83% 82% 84%

Fold 10 81% 83% 77%

Average 83% 84% 82%

Frontiers in Network Physiology frontiersin.org05

Kocanaogullari et al. 10.3389/fnetp.2025.1519407

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2025.1519407


Yarnold, 2018). This is especially pertinent as sleep interventions are
adapted for unique pediatric populations. We found a machine
learning approach that was sensitive to the challenges caregivers of
children with SS were strongly endorsing (i.e., sleep resistance
behaviors, extended sleep onset latency (Hartman et al., 2022;
Lufi and Tzischinsky, 2014; Mimouni-Bloch et al., 2021; Manelis-
Baram et al., 2021)) but were not seen in traditional sleep variables
from actigraphy. Moreover, we found that a less-complex,
potentially more accessible random forest classifier best described
the pattern of our dataset and was able to successfully distinguish
between the two groups with accuracy.

Machine learning classification was able to feasibly
discriminate between children with SS and NSS using a small
portion of actigraphy data and time-domain features. This finding
suggests that perhaps differences in settling down time at night
may help us identify children with SS. Sleep and sensory
processing differences have been found to be linked for school-
aged children using caregiver-reported questionnaires (Hartman
et al., 2022; Raj et al., 2024; Lane et al., 2022). Actigraphy data
could provide a more objective measure of behavioral outcomes
(activity during bedtime in this instance) that differ for children
with SS and NSS.

The features we used in this analysis were chosen to describe
different clinically relevant characteristics of the data and mainly
aimed to explain variation in activity across the settling down period.
In this analysis, we identified three key features of the settling down
period that can differentiate children with SS and NSS: mean

maximum magnitude, median entropy, and mean magnitude.
Clinically, these features suggest that children with SS have
greater, more frequent, and more variable activity during the
settling down period than peers with NSS. This could be related
to a number of aspects that have been identified to impact children
with SS: increased discomfort due to tactile sensitivities (Tzischinsky
et al., 2018), increased arousal levels at bedtime (Mazurek and
Petroski, 2015), movement related to parent involvement in the
settling down (e.g., laying with their child) (Meltzer and
Montgomery-Downs, 2011).

Existing clinical sleep interventions recognize the importance
of decreasing “activity magnitude and variability”, or overall
activity and energy level, to support improved sleep health by
incorporating a calming and consistent routine, dimming lights,
and providing children with predictable indicators that they
should be settling down (e.g., taking a bath or reading a book)
(Hornsey et al., 2024). It could be that children with SS benefit
from this type of intervention specifically or need more intense
focus on decreasing activity during the settling down time. Future
research could test these hypotheses. Future studies are needed to
probe this further.

In this analysis, we used time periods informed by caregiver
reported settling down start times. However, we also trialed
cutting the actigraphy data into segments based solely off
actigraphy data to test a method that could be applied when
sleep diaries are not available. We tried setting the start of settling
down time 60 min prior to actigraphy derived sleep onset which
produced a classifier that performed worse with 0.67 AUC overall.
This exploration highlights the importance of gathering caregiver
reported settling down start time for optimal performance using
this technique.

Finally, our post hoc regression analysis indicated that activity
during the settling down period, specifically the intensity
(maximum magnitude) and variance (median entropy), are
important behavioral outcomes specific to children with SS.
While it is unsurprising that our predictors are significant
within our model, considering they were derived from the
features that best separated the groups, it is interesting to
consider the amount of variance each predictor accounts for in
settling down duration (R2). Considering that this study was
observational, we do not know if these activity-related variables
are the cause of the difficulties settling down for children with SS.
Future research can test, in a causal way, the impact of different
interventions on sleep and sensory-related behavior outcomes that

TABLE 4 Significant predictors of group using actigraphy data during the settling down time.

Variable Sensory Sensitive Group (n = 16)
M (SD)

Non-Sensitive Group (n = 17)
M (SD)

U p

Mean settling down length of time 72.89 (52.17) 33.11 (13.09) -1.12 0.264

Mean magnitude 2481.27 (1004.46) 1964.06 (779.16) -1.55 0.121

Mean maximum magnitude 10663.81 (4924.01) 7347.41 (2086.77) -2.23 0.026*

Standard deviation of settling down time (mins) 27.05 (14.16) 19.74 (8.23) -2.63 0.008*

Median entropy 3.43 (0.80) 2.67 (0.72) -2.34 0.019*

Mann-Whitney U test used to compare groups.

*p < 0.05.

FIGURE 1
Average AUC change for features.

Frontiers in Network Physiology frontiersin.org06

Kocanaogullari et al. 10.3389/fnetp.2025.1519407

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2025.1519407


might not be supportive of sleep (e.g., maximummagnitude or a lot
of large movements during setting down).

4.1 Strengths and limitations

To our knowledge, this paper is the first to present application
of machine learning techniques to examine the settling down
period of activity for a pediatric sample. We used several
techniques to strengthen the analysis. Time windows were used
to compensate for inherent noise spikes in the actigraphy data and
non-precise sleep diary recordings. 10-fold cross-validation was
used to address concerns of bias related to random forest analysis.
Despite these strengths, limitations remain. Most importantly, the
small sample size and the semi-controlled nature of this study
resulted in limited power to understand the significance and
magnitude of the contribution each predictor had on the
variance of settling down duration. Within this small sample,
we did have baseline differences in racial and ethnic diversity,
with the SS group being slightly more diverse than the NSS
group. This could be reflective of a true difference between
children with have SS and those without, however, our sample
was too small to comment further. Both groups are not extremely
diverse and are reflective of the typical sample of families that
engage in research in the Pittsburgh area through a
research registry.

Additionally, generalizing beyond the sample within this
study is difficult due to lack of diversity and breadth of
sampling. Future studies with larger, more generalizable
samples are needed to better understand the differences
during the settling down period for children with sensory
sensitivities compared to peers without sensitivities. As a
secondary data analysis, this paper is limited to the data

originally collected. As such, we relied on caregiver-reported
start of settling down to indicate where to cut the actigraphy data.
Future research in this area may consider using an event marker
on the actigraphy device or a more precise description of what
settling down means to the caregiver-child dyad.

Also, the best parameter set was found using cross-validation
based on the results acquired from an unobserved portion. The 10-
fold cross-validation results given in Table 3 were acquired using
the same portions used in the hyperparameter tuning. This may
create a slightly optimistic bias in the analyses, but this was done
due to the limited dataset size. Future research in this area should
include more data collection from a more diverse population, and
create a more generalizable approach by separating a portion of the
dataset specifically for validating the machine learning
approaches’ success.

4.2 Future directions

We believe that the settling down period will continue to be
an important period to examine for future sleep research. We aim
to provide a novel way to characterize the settling down period
for future studies to test within their own, hopefully larger,
samples. A future study to test this current analysis with a
larger sample of children with SS and NSS would further
develop a foundation upon which this line of research can
grow. Additionally, we suggest that future research confirm
the increased and variable activity during the settling down
period for children with SS and explore potential causes.
Additionally, interventions targeting the settling down period
can use this machine learning approach to measure change or
characterize targets for specific pediatric populations who have
unique barriers to good sleep health. Using machine learning

TABLE 5 Standardized regression coefficients predicting mean setting down time (mins).

Variables Model 1 Model 2 Model 3 Model 4 Model 5

Group 0.48**
(13.06)

0.34*
(11.19)

0.13
(7.31)

0.49**
(14.66)

0.13
(9.56)

Mean Magnitude 0.62***
(0.006)

Mean Maximum Magnitude 0.08***
(0.001)

Standard deviation of settling down 0.300
(0.61)

Median Entropy 0.79***
(5.68)

Constant (non-standardized b) 22.55
(35.29)

-62.98
(33.96)

-43.94*
(18.29)

19.67
(36.25)

-79.34**
(26.17)

Observations 33 33 33 33 33

R-squared 0.272 0.566 0.837 0.278 0.734

F-test 3.604 9.132 35.90 2.692 19.30

Prob > F .025* <.001*** <.001*** .051 <.001***

All regression models controlled for age, sex. Standardized beta coefficients presented with standard error in parentheses.

***p < 0.001, **p < 0.01, *p < 0.05.
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techniques may allow for the settling down period to be analyzed
in depth to see if it can be predicted solely by looking at
actigraphy data and its extracted features.
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