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This paper describes a discrete state-space model and accompanying methods for
generative modeling. This model generalizes partially observed Markov decision
processes to include paths as latent variables, rendering it suitable for active inference
and learning in a dynamic setting. Specifically, we consider deepor hierarchical forms
using the renormalization group. The ensuing renormalizing generative models
(RGM) can be regarded as discrete homologs of deep convolutional neural
networks or continuous state-space models in generalized coordinates of
motion. By construction, these scale-invariant models can be used to learn
compositionality over space and time, furnishing models of paths or orbits: that
is, events of increasing temporal depth and itinerancy. This technical note illustrates
the automatic discovery, learning, and deployment of RGMs using a series of
applications. We start with image classification and then consider the
compression and generation of movies and music. Finally, we apply the same
variational principles to the learning of Atari-like games.
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Introduction

This paper considers the use of discrete state-space models as generative models for
classification, compression, generation, prediction, and planning. The inversion of such
models can be read as inferring the latent causes of observable outcomes or content. When
endowed with the consequences of action, they can be used for planning as inference
(Attias, 2003; Botvinick and Toussaint, 2012; Da Costa et al., 2020). This allows one to cast
any classification, prediction, or planning problem as an inference problem that, under
active inference, reduces to maximizing model evidence. However, applications of active
inference have been largely limited to small-scale problems. In this paper, we consider one
solution to the implicit scaling problem, namely, the use of scale-free generative models and
the renormalization group (Cardy, 2015; Cugliandolo and Lecomte, 2017; Hu et al., 2020;
Lin et al., 2017; Schwabl, 2002; Vidal, 2007; Watson et al., 2022). The contribution of this
paper is to consider discrete models that are renormalizable in state space and time.

Specifically, this paper explores the use of generalized Markov decision processes as discrete
models appropriate for compressing data, generating content, or planning. The generalization in
question rests on equipping a standard (partially observed)Markov decision processwith random
variables called paths. This affords an expressive model of dynamics, in which transitions among
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states are conditioned on paths, which themselves can have lawful
transitions. This generalization becomes particularly important when
composing Markovian processes in a deep or hierarchical architecture;
for example, Friston et al. (2017b). This follows from the use of states at
one level to generate the initial conditions and paths at a lower level. In
effect, this means that states generate paths, which generate states, which
generate paths, and so on, furnishing trajectories with deep, semi-
Markovian structure; for example, Marković et al. (2022). Their
recursive aspect speaks to a definitive feature of the generative
models considered in this paper—renormalizability.

Intuitively, renormalizability rests on a renormalization group (RG)
operator, which takes a description of the system at hand (e.g., an action
and partition function) and returns a coarse-grained version that retains
the properties of interest while discarding irrelevant details (Cardy,
2015; Schwabl, 2002;Watson et al., 2022). For excellent overviews of the
renormalization group in machine learning, please see Hu et al. (2020)
andMehta and Schwab (2014). See also Lin et al. (2017), who appeal to
the renormalization group to formalize the claim that “when the
statistical process generating the data is of a certain hierarchical
form prevalent in physics and machine learning, a deep neural
network can be more efficient than a shallow one.” Crucially, any
randomdynamical systemwith sparse coupling and an implicitMarkov
blanket partition (Sakthivadivel, 2022) is renormalizable (Friston, 2019).
Therefore, any generative model that recapitulates “the statistical
process generating the data” must be renormalizable.

In what follows, we illustrate applications of the same renormalizing
generative model (RGM) in several settings. The universality of this
model calls on the apparatus of the renormalization group. In brief, its
deep structure ensures that each level can be renormalized to furnish the
level above. The renormalization group requires that the functional
form of the dynamics (e.g., belief updating) is conserved over levels or
scales. This is assured in variational inference, in the sense that the
inference process itself can be cast as pursuing a path of least action
(Friston K. et al., 2023), where action is the path integral of variational
free energy: c.f., Mehta and Schwab (2014). The only things that change
between levels are the parameters of the requisite action (e.g., sufficient
statistics of various probability distributions). The relationship between
the parameters at one level and the next rests on an RG operator that
entails a grouping and dimension reduction, that is, coarse-graining or
scaling transformation. By choosing the right kind of RG operator, one
can effectively dissolve the scaling problem. In short, by ensuring each
successive level of a deep generativemodel is renormalizable, one can, in
principle, generate data at any scale and implicitly infer or learn the
causes of those data. The notion of scale invariance is closely related to
universality, licensing the notion of a universal generative model.

Instances of the renormalization group abound in natural and
machine learning: for example, the cortical visual hierarchy in the
brain, with progressive enlargement of spatiotemporal receptive fields
as one ascends hierarchical levels or scales (Angelucci and Bullier, 2003;
Hasson et al., 2008; Zeki and Shipp, 1988). The same kind of architectures
associated with deep convolutional neural networks could almost be
definitive of deep models and learning (Hu et al., 2020; Lin et al., 2017).
Here, we pay special attention to the implications of universality and scale
invariance for specifying the structural form of generative models and
illustrate the ensuing efficiency when deployed in some typical use cases.

This paper comprises four sections. The first rehearses the
variational procedures or methods used in active inference, learning,
and selection, with a special focus on the selection of hierarchical model

structures that can be renormalized. In brief, active inference, learning,
and selection speak to the distinct sets of unknown variables that
constitute a generative model, namely, latent states, parameters, and
structure. On this view, model inversion corresponds to (Bayesian) belief
updating at each of these levels by minimizing variational free energy,
that is, maximizing an evidence lower bound (Winn and Bishop, 2005).
The active part of inference, learning, and selection arises operationally
through selecting or choosing those actions that minimize expected free
energy, which can be decomposed in a number of ways that subsume
commonly used objective functions in statistics and machine learning
(Da Costa et al., 2020). The dénouement of this section considers the
structural form of renormalizing architectures, illustrated by successive
elaborations in the remaining sections.

The second section starts with a simple application tomodels of static
images that can be read as a form of image compression; that is,
maximizing model evidence via minimizing model complexity
through the compression afforded by successive block-spin
transformations (Vidal, 2007). The implicit sample efficiency is
showcased by application to the MNIST digit classification problem.
This application foregrounds the representational nature of the generative
model, moving from a place-coded representation at lower levels to an
object-centered representation (i.e., digit classes) at the highest level. This
differs significantly from approaches to generative modeling in which
images depend on several objects that can be placed in different parts of a
scene (Henniges, Turner et al., 2014)—in other words, that factorize the
highest level into “what” and “where” things are. This is relevant to the
way in which occlusions are handled. The renormalized models we
propose deal with occlusions in terms of local patterns, and then of local
patterns of local patterns, and so on. This means one could generate
images of one object partially occluding another by exploiting the statistics
of pixels at and around the occluding edge of the proximal object. The
benefit of the approachwe outline here is that one does not need to know,
or even discover (Blei, Ng et al., 2003), the number of objects in a scene to
be able to generate it. The downside is that one could not query, from the
final model, what would happen were one to change the ordering of
objects in the scene such that a previously occluded object becomes the
occluder. The next section uses the same methods to illustrate
renormalization over time, that is, modeling paths or sequences of
increasing temporal depth at successively higher levels. This
application can be regarded as a form of video compression illustrated
using short movie files that can be used to recognize sequences of events
or generate sequences in response to a prompt. In contrast to the object-
centered representations afforded by application to static images, this
section speaks to event-based compression suitable for classifying or
generating visual or auditory scenes. The next section leverages the ability
to classify or generate sequences by applying the same methods to sound
files, illustrated using birdsong and music. The final section turns to
planning and agency by using anRGMto learn andplayAtari-like games.
This application involves equipping the generative model with the
capacity to act, namely, to realize the predicted consequences of
action, where these predictions are based on a fast form of structure
learning, effectively evincing a one-shot learning of expert play.

Although the focus on renormalization inherits from the physics of
universal phenomena (Haken, 1983;Haken, 1996;Haken and Portugali,
2016; Schwabl, 2002; Vidal, 2007), we highlight the biomimetic aspects
of inference and learning that emerge under these models. The
implication here is that natural intelligence may have evolved
renormalizing structures simply because the world features universal
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phenomena, such as scale invariance. This is not a machine learning
paper because the objective in active inference is to maximize model
evidence. Therefore, we refrain frombenchmarking any of the examples
in terms of performance or accuracy. However, it should be self-evident
that the methods on offer are generally more sample efficient than
extant machine learning schemes1.

Active inference, learning,
and selection

This section overviews the model used in the numerical studies of
subsequent sections. This model generalizes a partially observed
Markov decision process (POMDP) by equipping it with random
variables called paths that “pick out” dynamics or transitions among
latent states. These models are designed to be composed hierarchically
in a way that introduces a separation of temporal scales.

Generative models

Active inference rests on a generative model of observable outcomes.
This model is used to infer the most likely causes of outcomes in terms of
expected states of the world. These states (and paths) are latent or hidden
because they can only be inferred through observations. Some paths are
controllable, in that they can be realized through action. Therefore, certain
observations depend on action (e.g., where one is looking), which requires
the generative model to entertain expectations about outcomes under
different combinations of actions (i.e., policies)2. These expectations are
optimized by minimizing variational free energy. Crucially, the prior
probability of a policy depends on its expected free energy. Having
evaluated the expected free energy of each policy, the most likely
action is selected, and the implicit perception-action cycle continues
(Parr et al., 2022).

Figure 1 provides an overview of the generative model considered in
this paper. It is structured such that it highlights three general motifs in
the factorization of a probabilistic generative model. These are shown as
three panels arranged in a single row, each with a title underneath
indicating the type of factorization. The three panels use a graphical
formulation for the models, which are supplemented with mathematical
descriptions of their structures. Outcomes at any time depend on hidden
states, while transitions among hidden states depend on paths. Note that
paths are random variables that may or may not depend on action. The
resulting POMDP is specified by a set of tensors. The first set A maps
from hidden states to outcome modalities, for example, exteroceptive
(e.g., visual) or proprioceptive (e.g., eye position) modalities. These
parameters encode the likelihood of an outcome given their hidden
causes. The second set B encodes transitions among the hidden states of
a factor under a particular path. Factors correspond to different kinds of

causes, such as the location versus the class of an object. The remaining
tensors encode prior beliefs about pathsC and initial conditionsD andE.
The tensors are generally parameterized as Dirichlet distributions, whose
sufficient statistics are concentration parameters or Dirichlet counts,
which count the number of times a particular combination of states and
outcomes has been inferred. We will focus on learning the likelihood
model, encoded by Dirichlet counts, a.

The generativemodel in Figure 1means that outcomes are generated
as follows: first, a policy is selected using a softmax function of expected
free energy. Sequences of hidden states are generated using the probability
transitions specified by the selected combination of paths (i.e., policy).
Finally, these hidden states generate outcomes in one or moremodalities.
Inference about hidden states (i.e., state estimation) corresponds to
inverting a generative model, given a sequence of outcomes, while
learning corresponds to updating model parameters. The requisite
expectations constitute the sufficient statistics (s,u,a) of approximate
posterior beliefs Q(s,u,a) = Qs(s)Qu(u)Qa(a). The implicit factorization
of this approximate posterior effectively partitions model inversion into
inference, planning, and learning.

Variational free energy and inference

In variational Bayesian inference (a.k.a. approximate Bayesian
inference), model inversion entails the minimization of variational
free energy with respect to the sufficient statistics of approximate
posterior beliefs. This can be expressed as follows, where, for clarity,
we will deal with a single factor, such that the policy (i.e., a
combination of paths) becomes the path, π = u. Omitting
dependencies on previous states, we have for model m:

Q sτ , uτ , a( ) � argminQF
F � EQ ln[ Q sτ , uτ , a( )︸����︷︷����︸

posterior

− lnP oτ |sτ , uτ , a( )︸�����︷︷�����︸
likelihood

− lnP sτ , uτ , a( )]︸�����︷︷�����︸
prior

� DKL Q sτ , uτ , a( )‖P sτ , uτ , a|oτ( )[ ]︸��������������︷︷��������������︸
divergence

− lnP oτ( )︸��︷︷��︸
evidence

� DKL Q sτ , uτ , a( )‖P sτ , uτ , a( )[ ]︸������������︷︷������������︸
complexity

−EQ lnP oτ |sτ , uτ , a( )[ ]︸���������︷︷���������︸
accuracy

. (1)

Because the (KL) divergences cannot be less than 0, the
penultimate equality means that free energy is 0 when the
(approximate) posterior is the true posterior. At this point,
the free energy becomes the negative log evidence for the
generative model (Beal, 2003). This means minimizing free
energy is equivalent to maximizing model evidence.

Planning emerges under active inference by placing priors over
(controllable) paths to minimize expected free energy (Friston
et al., 2015):

G u( ) � EQu lnQ sτ+1, a|u( ) − lnQ sτ+1, a|oτ+1, u( ) − lnP oτ+1|c( )[ ]
� −EQu lnQ a|sτ+1, oτ+1, u( ) − lnQ a|sτ+1, u( )[ ]︸������������������︷︷������������������︸

expected information gain learning( )
−EQu lnQ sτ+1|oτ+1, u( ) − lnQ sτ+1|u( )[ ]︸����������������︷︷����������������︸

expected information gain inference( )
−EQu lnP oτ+1|c( )[ ]︸��������︷︷��������︸

expected cost

� −EQu DKL Q a|sτ+1, oτ+1, u( )‖Q a|sτ+1, u( )[ ][ ]︸������������������︷︷������������������︸
novelty

+DKL Q oτ+1|u( )‖P oτ+1|c( )[ ]︸�����������︷︷�����������︸
risk

−EQu lnQ oτ+1|sτ+1, u( )[ ]︸����������︷︷����������︸
ambiguity

(2)

1 To avoid overburdening the main text, some details of the numerical

studies have been placed in figure legends.

2 In this setting, a policy is not a sequence of actions but a combination of

paths, where each hidden factor has an associated state and path. This

means there are, potentially, as many policies as there are combinations

of paths.

Frontiers in Network Physiology frontiersin.org03

Friston et al. 10.3389/fnetp.2025.1521963

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2025.1521963


Here, Qu = Q(oτ+1,sτ+1,a|u) = P(oτ+1,sτ+1,a|u,o0,. . .,oτ)
= P(oτ+1|sτ+1,a)Q(sτ+1,a|u) is the posterior predictive
distribution over parameters, hidden states, and outcomes at
the next time step, under a particular path. Note that the
expectation is over observations in the future that become
random variables, hence, expected free energy. This means

that preferred outcomes that subtend expected cost and risk
are prior beliefs that constrain the implicit planning as inference
(Attias, 2003; Botvinick and Toussaint, 2012; Van Dijk and
Polani, 2013).

One can also express the prior over the parameters in terms
of an expected free energy, where marginalizing over paths:

FIGURE 1
Generative models. A generative model specifies the joint probability of observable consequences and their hidden causes. Usually, the model is
expressed in terms of a likelihood (the probability of consequences given their causes) and priors (over causes). When a prior depends on a random
variable, it is called an empirical prior. Here, the likelihood is specified by a tensor A, encoding the probability of an outcome under every combination
of states (s). Priors over transitions among hidden states, B, depend on paths (u), whose transition probabilities are encoded inC. Certain (control)
paths are more probable a priori if they minimize their expected free energy (G), expressed in terms of risk and ambiguity (white panel). If the path is
not controllable, it remains fixed over the epoch in question, where E specifies the prior over paths. The left panel provides the functional form of the
generative model in terms of categorical (Cat) distributions that are themselves parameterized as Dirichlet (Dir) distributions, equipping the model
with the parametric depth. The lower equalities list the various operators required for variational message passing in Figure 2. These functions are
taken to operate on each column of their tensor arguments. The graph on the lower left depicts the generative model as a probabilistic graphical
model that foregrounds the implicit temporal depth implied by priors over state transitions and paths. This example shows dependencies for fixed
paths. When equipped with hierarchical depth, the POMDP acquires a separation of temporal scales. This follows because higher states generate a
sequence of lower states, that is, the initial state (via theD tensor) and subsequent path (via the E tensor). This means higher levels unfold more slowly
than lower levels, furnishing empirical priors that contextualize the dynamics of their children. At each hierarchical level, hidden states and
accompanying paths are factored to endow the model with factorial depth. In other words, the model “carves nature at its joints” into factors that
interact to generate outcomes (or initial states and paths at lower levels). The implicit context-sensitive contingencies are parameterized by tensors
mapping from one level to the next (D and E). Subscripts pertain to time, while superscripts denote distinct factors (f), outcome modalities (g), and
combinations of paths over factors (h). Tensors and matrices are denoted in uppercase bold, while posterior expectations are in lowercase bold. The
matrix π encodes the probability over paths under each policy (for notational simplicity, we have assumed a single control path). The ⊙ notation
implies a generalized inner (i.e., dot) product or tensor contraction, while × denotes the Hadamard (element by element) product. ψ(·) is the digamma
function applied to the columns of a tensor.
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P a( ) � σ −G a( )( )
G a( ) � EQa lnP s|a( ) − lnP s o,| a( ) − lnP o|c( )[ ]

� −EQa lnP s|o, a( ) − lnP s|a( )[ ]︸������������︷︷������������︸
expected information gain

−EQa lnP o|c( )[ ]︸������︷︷������︸
expected cost

� −EQa[DKL[P o, s|a( )����P o|a( )P s|a( )]︸��������������︷︷��������������︸
mutual information

−EQa lnP o|c( )[ ]︸������︷︷������︸
expected cost

,

(3)

where Qa = P(o|s,a)P(s|a) = P(o,s|a) is the joint distribution over
outcomes and hidden states, encoded byDirichlet parameters, and σ is
the softmax (normalized exponential) function. Here and throughout,
we leave the functional dependence ofG on c implicit for simplicity of
notation. This is only a slight simplification, in that we will treat c as if
it is a fixed value and not something we expect to vary. Note that the
Dirichlet parameters encode the mutual information, in the sense that
they implicitly encode the joint distribution over outcomes and their
hidden causes. When normalizing each column of the a tensor, we
recover the likelihood distribution (as in Figure 1). However, we could
normalize over every element to recover a joint distribution [as in
Equation 5 later].

Expected free energy can be regarded as a universal objective
function that augments mutual information with expected costs or
constraints. Constraints parameterized by c reflect the fact that we are
dealing with open systems with characteristic outcomes, o. This can be
read as an expression of the constrained maximum entropy principle
(Ramstead et al., 2022). Alternatively, it can be read as a constrained
principle of maximum mutual information or minimum redundancy
(Ay et al., 2008; Barlow, 1961; Linsker, 1990; Olshausen and Field,
1996). In machine learning, this kind of objective function
underwrites disentanglement (Higgins et al., 2021; Sanchez et al.,
2019) and generally leads to sparse representations (Gros, 2009;
Olshausen and Field, 1996; Sakthivadivel, 2022; Tipping, 2001).

There are many special cases of minimizing expected free energy.
For example, maximizing expected information gain maximizes
(expected) Bayesian surprise (Itti and Baldi, 2009), in accordance
with the principles of optimal experimental design (Lindley, 1956).
This resolution of uncertainty is related to artificial curiosity
(Schmidhuber, 1991; Still and Precup, 2012) and speaks to the
value of information (Howard, 1966). Expected complexity or risk
is the same quantityminimized in risk-sensitive or KL control (Klyubin
et al., 2005; van den Broek et al., 2010) and underpins (free energy)

FIGURE 2
Belief updating and variational message passing: the right panel presents the generative model as a factor graph, where the nodes (square boxes)
correspond to the factors of the generative model (labeled with the associated tensors). The edges connect factors that share dependencies on random
variables. The leaves of filled circles correspond to known variables, such as observations (o). This representation is useful because it scaffolds the
message passing—over the edges of the factor graph—that underwrites inference and planning. The functional forms of these messages are shown
in the left-hand panels, where the panels labels (A–E) indicate the corresponding tensors in the factor graph on the right., where the panels labels
(A–E) indicate the corresponding tensors in the factor graph on the right. For example, the expected path in the first equality of panel (C) is a softmax
function of two messages. The first is a descending message μf

↓ E from (E) that inherits from expectations about hidden states at the level above. The
second is the log-likelihood of the path based on expected free energy,G. This message depends on Dirichlet counts scoring preferred outcomes—that
is, prior constraints on modality g—encoded in cg: see Figure 1 and Equation 2. The two expressions for μf

C correspond to fixed and control paths,
respectively. The updates in the lighter panels correspond to learning, that is, updating Bayesian beliefs about parameters. Similar functional forms for the
remaining messages can be derived by direct calculation. The ⊙ notation implies a generalized inner product or tensor contraction, while ⊗ denotes an
outer product. ch (·) and pa (·) return the children and parents of latent variables.
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formulations of bounded rationality based on complexity costs (Braun
et al., 2011; Ortega and Braun, 2013) and related schemes in machine
learning; for example, Bayesian reinforcement learning (Ghavamzadeh
et al., 2016). Finally, minimizing expected cost subsumes Bayesian
decision theory (Berger, 2011).

Active inference

In variational inference and learning, sufficient statistics encoding
posterior expectations are updated to minimize variational free
energy. Figure 2 illustrates these updates in the form of variational
message passing (Dauwels, 2007; Friston et al., 2017a; Winn and
Bishop, 2005). For example, expectations about hidden states are a
softmax function of messages that are linear combinations of other
expectations and observations.

sfτ � σ μf↑ A + μf→ B + μf← B + . . .( )
μf↑ A � ∑g∈ch f( )μg,f↑ A

μg,f↑ A � ogτ ⊙ φ ag( ) ⊙i∈pa g( )\fsiτ
(4)

Here, the ascending messages from the likelihood factor are a
linear mixture3 of expected states and observations, weighted by
(digamma) functions of the Dirichlet counts that correspond to the
parameters of the likelihood model (c.f., connection weights). The
definitions of the terms that appear in Equation 4 are summarized in
Figure 2 and its caption. The expressions in Figure 2 are effectively
the fixed points (i.e., minima) of variational free energy. This means
that message passing corresponds to a fixed-point iteration scheme
that inherits the same convergence proofs of coordinate descent
(Beal, 2003; Dauwels, 2007; Winn and Bishop, 2005)4.

Active learning

Active learning has a specific meaning in this paper. It implies
that the updating of Dirichlet counts depends on expected free
energy, namely, the mutual information encoded by the tensors: see
Equation 1. This means that an update is selected in proportion to
the expected information gain. Consider two actions: to update or
not to update. From Figure 2, we have (dropping the modality
superscript for clarity):

Δa � oτ⊗i∈pasiτ

E P o, s|a( )[ ] � �a � :
a

Σ a( )
EQ a|u � uo[ ] � a

∣∣∣∣uo � a

EQ a|u � u1[ ] � a
∣∣∣∣u1 � a + Δa

(5)

Here, Σ(a) =: 1 ⊙a⊙i∈pa1 is the sum of all tensor elements.

The expression on the right-hand side of the first line of
Equation 5 indicates the outer product between beliefs about
an outcome and the state factor i that is the parent factor of that
outcome. The prior probability of committing to an update is
given by the expected free energy of the respective Dirichlet
parameters, which scores the expected information gain
(i.e., mutual information) and cost5:

P u( ) � σ −α · G a|u( )( )
G a( ) � −EQa[DKL[Q s, o | a( )����Q s|a( )P o|a( )]︸���������������︷︷���������������︸

mutual information

−EQa lnP o|c( )[ ]︸������︷︷������︸
expected cost

� 1 ⊙ �a( ) ⊙  1 ⊙ �a( ) + �a ⊙ 1( ) ⊙  �a⊙ 1( )
−1 ⊙ �a×  �a( )( ) ⊙ 1 − φ c( ) ⊙ �a ⊙ 1( ) (6)

This prior over the updates furnishes a Bayesian model average of
the likelihood parameters, effectivelymarginalizing over update policies:

EQ agτ+1[ ] � P u0( )EQ agτ
∣∣∣∣u � uo[ ] + P u1( )EQ agτ

∣∣∣∣u � ui[ ]
0

agτ+1 � P u0( )agτ + P u1( ) agτ + Δagτ( )
� agτ + P u1( )Δagτ

(7)

In Equation 6, α plays the role of a hyperprior that determines the
sensitivity to expected free energy. When this precision parameter is
large, the Bayesian model average above becomes Bayesian model
selection; that is, either the update is selected, or it is not.

This kind of active learning rests on treating an update as an action
that is licensed if expected free energy decreases. A complementary
perspective on this selective updating is that it instantiates a kind of
Maxwell’s demon, selecting only those updates that maximize
(constrained) mutual information. Exactly the same idea can be
applied to model selection, leading to active selection.

Active selection

In contrast to learning that optimizes posteriors over parameters,
Bayesian model selection or structure learning (Tenenbaum et al., 2011;
Tervo et al., 2016; Tomasello, 2016) can be framed as optimizing the
priors over model parameters. In this view, model selection can be
implemented efficiently using Bayesian model reduction, which starts
with an expressive model and removes redundant parameters.
Crucially, Bayesian model reduction can be applied to posterior
beliefs after the data have been assimilated. In other words, Bayesian
model reduction is a post hoc optimization that refines current beliefs

3 The notation implies a sum-product operator, that is, the dot or inner

product that sums over one dimension of a numeric array or tensor. In this

paper, these sum-product operators are applied to a vector a and a tensor

A, where a ⊙ A implies the sum of products is taken over the leading

dimension, while A ⊙ a implies the sum is taken over a trailing dimension.

For example, 1 ⊙ A is the sum over rows, and A ⊙ 1 is the sum over

columns, where 1 is a vector of ones, and A is a matrix. This notation

replaces the Einstein summation notation to avoid visual clutter.

4 Figure 2 and Equation 4 provide both the forward and backwardmessages

in time, characteristic of forward-backward (i.e., Bayesian smoothing)

schemes. In practice—and in the examples below—it is sometimes

simpler to omit backward messages, in which case the forward

messages can be replaced with exact updates.

5 For simplicity, we assume tensors have been formatted as matrices by

vectorizing the second and trailing dimensions.
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based on alternative models that may provide potentially simpler
explanations (Friston and Penny, 2011).

Bayesian model reduction is a generalization of ubiquitous
procedures in statistics (Savage, 1954). In the present setting, it
reduces to something remarkably simple: by applying Bayes
rules to parent and reduced models, it is straightforward to
show that the change in variational free energy can be
expressed in terms of posterior Dirichlet counts a, prior
counts a, and the prior counts that define a reduced model
a′. Using B to denote the beta function, we have (Friston
et al., 2018):

ΔF � lnP o|a( ) − lnP o
∣∣∣∣a′( )

� lnB a( ) + lnB a′( ) − lnB a( ) − lnB a + a′ − a( )
a′ � a + a′ − a

. (8)

In Equation 8, a9 corresponds to the posterior that one would
have obtained under the reduced priors. Please see Friston et al.
(2020) and Smith et al. (2020) for worked examples in epidemiology
and neuroscience, respectively.

The alternative to Bayesian model reduction is the bottom-up
growth of models to accommodate new data or content. If one
considers the selection of one (parent) model over another
(augmented) model as an action, then one can score the prior
plausibility of a model in terms of its expected free energy so
that the difference in expected free energy furnishes a log prior
over models that can be combined with the (variational free energy
bound on) log marginal likelihoods to score their posterior
probability. This can be expressed in terms of a log Bayes factor
(i.e., odds ratio) comparing the likelihood of twomodels, given some
observation, o:

ln
P m|o( )
P m′

∣∣∣∣o( )
� ln

P o|m( )P m( )
P o

∣∣∣∣m′( )P m′( )
� ΔF + ΔG

ΔF � lnP o|m( ) − lnP o
∣∣∣∣m′( )

ΔG � lnP m( ) − lnP m′( ) � G a|m( ) − G a′
∣∣∣∣m′( )

. (9)

Here, a and a9 denote the posterior expectations of parameters
under a parent m and augmented model m′, respectively. The
difference in expected free energy reflects the information gain in
selecting one model over the other, following Equation 6. One can
now retain or reject the parent model, depending on whether the
log odds ratio is greater than or less than 0, respectively. Active
model selection, therefore, finds structures with precise or
unambiguous likelihood mappings. When assimilating new (e.g.,
training) data, one can simply equip the model with a new latent
cause to explain each (unique) observation when, and only when,
expected free energy decreases (Friston et al., 2023b). This affords a
fast kind of structure learning. Before illustrating the above
procedures, we now consider a particular structural form that
characterizes the generative models used in the illustrative
applications.

Renormalizing generative models

Renormalizability is feasible under the models in Figure 1. This
follows because the dynamics constitute a coordinate descent on

variational free energy, leading to paths of least action, namely, a
path integral of variational free energy (Friston K. et al., 2023).
However, we also require renormalizing transformations of model
parameters from one hierarchical level to the next. These scale
transformations entail a coarse graining that generally induces a
separation of temporal scales, such that the dynamics—here, belief
updating—slow down as one ascends levels or scales. The implicit
RG flow rests on the inclusion of dynamics in the generative model.

In discrete time, the inclusion of paths means that a succession of
states at any given level can be generated by specifying the initial state and
successive transitions encoded by the slice of the transition tensor
specified by a path. Crucially, the initial state and path can be
generated from the superordinate state, which has its own dynamics
and associated path. This structure can be read in a number ofways. It can
be regarded as a discrete version of switching dynamical systems
(Linderman et al., 2016; Olier et al., 2013), in which the switching
variables (i.e., paths) change at a slower timescale than the dynamics
or paths at the scale being switched. In the limit of continuous time, the
composition of implicit RG operators means that one canmodel changes
or switches in velocity—that is, acceleration—and, at the next level,
changes in acceleration—that is, jerk, and so on. In continuous state-space
models, this reduces to working in generalized coordinates of motion
(Friston et al., 2010; Kerr and Graham, 2000).

A more intuitive view of the latitude afforded by temporal
renormalization is that successively higher levels encode sequences
of sequences and, implicitly, compositions of events or episodes. In
other words, at a deep level, one state can generate sequences of
sequences of sequences, thereby destroying the Markovian properties
of content generated at the lowest level. It is this deep structure that has
been leveraged in applications of active inference under continuous
models of song and speech; see, for example, Friston and Kiebel (2009)
or Yildiz et al. (2013). We will see the discrete homologs of the ensuing
semi-Markovian processes later.

In addition to the renormalization over time, we must also
consider renormalization over state space. The example in Figure 3
illustrates a graphical model in which groups of states at a lower level
are generated by a single state at the higher level. In the next section, we
will associate states at the lowest level with the value of pixels and
successive block transformations (i.e., tessellations) with image
compression. An important aspect of these models is that the states
at any level never share children in the lower level. This renders latent
factors at every level conditionally independent. Conditional
independence follows from the fact that the Markov blanket of any
given state comprises its parents, children, and parents of children;
however, its children have no co-parents, rendering hidden factors
D-separated when conditioned on the initial states (and paths) of the
level below. In turn, this has the practical implication that the
likelihood mappings that link different levels or scales (i.e., the D
and E tensors in Figure 2) are low-dimensional matrices at every level
of the hierarchy. Of course, if one can factorize the states at a given
level into distinct state factors, these low-dimensional matrices become
lower-dimensional tensors. This means that this scheme is general in
the sense that one could construct matrices of the sort described above
from tensorial distributions simply by taking Kronecker tensor
products of state factors and reorganizing the tensors to matrices.
However, it is not general in the sense that it relies on state factors at
each level that predict nonoverlapping local (spatiotemporal) regions
of the states at the level below.
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Models of this sort can be regarded as generating local
dependencies within each group of states at the lower level,
whereas global (between-group) dependencies are modeled at
higher levels. They feature a characteristic progression from local
to global as one ascends the hierarchy: c.f., Hochstein and Ahissar
(2002), providing an efficient way to model data that show strong
local dependencies over space and time6.

In the setting of discrete models, one can also regard an RGM as
an expressive way of modeling nonlinearities in the generation of
data, much in the spirit of deep neural networks with nonlinear
activation or rectification functions. In the limit of precise likelihood
mappings, this can be viewed as the composition of logical operators.
For example, if the first two elements of the leading dimension of aD
likelihood tensor were nonzero, this means that the parent state can
generate the first OR second child’s initial state. Conversely, nonzero
elements of two likelihood tensors generate a particular state of one
child AND another child. Heuristically, one can see why an RGM
can compose operators to represent or generate content that has a
compositional structure. The inversion of an RGM could be
construed as a simple form of abductive (e.g., modal) logic. In
the ensuing example, this perspective is leveraged to learn the
composition of local image features subtending global objects.

Image compression and
compositionality

We start with the simplest example of renormalizing generative
models appropriate for image classification and recognition. The
aim is to automatically assemble an RGM to classify and generate the
image content to which it is exposed. In other words, we seek
procedures for automatic structure learning followed by learning the
parameters of the ensuing structure, which can then be deployed to
classify or generate the kind of content on which it was trained.

The first step is to quantize continuous pixel values for an image
of any given size. Effectively, this involves mapping continuous pixel
values to some discrete state space, whose structure can be learned
automatically by recursive applications of a blocking
transformation. Note that this procedure gives us the first (and
lowest) level of a hierarchical model and is not required to map
between higher levels as they will all deal in categorical variables. In
this example, we group local pixels by tiling (i.e., tessellating) an
image, partitioning it into little squares with a spin-block

transformation (Vidal, 2007)7. Each group is then subject to
singular value decomposition, given a training set of images, to
identify an orthogonal (spatial) basis set of singular vectors. This
grouping is followed by a reduction operator that retains singular
variates with large singular values (here, the first 32 principal vectors
based on groups of 4 × 4 pixels). Under linear transformations, this
is guaranteed to maximize the mutual information in accordance
with Equation 3 (given the absence of prior constraints). One way to
see this is to assume a precise conditional distribution of a
continuous variable I given observations that can be expressed in
terms of linear weights inside a Dirac delta and identify the weights
that maximize the mutual information (using ρ to indicate a mean-
centered sample distribution):

p I|o( ) � δ o −W · I( )0DKL ρ I( )p o|I( )����ρ I( )ρ o( )[ ]

� −Eρ o( ) ln ρ o( )[ ] ≈ 1
2 ln WTUS( )2

∣∣∣∣∣
∣∣∣∣∣

0U∝ arg maxW WTUS( )2
∣∣∣∣∣

∣∣∣∣∣

Eρ o( ) I ⊙ IT[ ] � US2UT, I1, I2, ...[ ] � USVT

. (10)

The conditional entropy of the delta distribution tends to zero
and is, therefore, omitted on the second line of Equation 10. The
approximate equality rests on the assumption that the sample
distribution for o is approximately Gaussian and uses a singular
value decomposition of the concatenated samples, where the
diagonal elements of S are singular values. To maximize the
entropy of the marginal of o, the weights must be chosen to be
proportional to the left singular vectors (columns of U) or,
equivalently, the eigenvectors of the sample covariance.

The set of singular variates for each group specifies the pattern
for any given image at the corresponding location. The continuous
variates can then be quantized to a discrete number of levels (here,
seven) to provide a discrete representation of each block. This
corresponds to the first RG operator (a.k.a. blocking
transformation). Given a partition of the image into quantized
blocks, we now apply a second block transformation into groups of
four nearest neighbors. This reduces the number of blocks by a
factor of two in each image dimension. One then repeats this
procedure until only one group remains at the highest level
or scale.

Each application of the block transformation creates a
likelihood mapping (D) from the states at a higher level to the
lower level. In other words, the state of a latent factor at any level
generates the states of a group at lower levels (or quantized singular
variates for pixels within a group at the image level). The requisite
likelihood matrices can be assembled using a fast form of structure
learning based on Equation 9. This equation says that the
likelihood mapping (in the absence of any constraints) should
have the maximum mutual information. This is assured if each
successive column of the likelihood matrix is unique. In turn, this
means we can automatically assemble the requisite likelihood

6 A more thorough treatment of the implicit RG operator or blocking

transformation would rest on characterizing conditional

independencies within and between groups in terms of their Markov

blankets (Friston, K.J., Fagerholm, E.D., Zarghami, T.S., Parr, T., Hipólito,

I., Magrou, L., Razi, A., 2021c. Parcels and particles: Markov blankets in the

brain. Network Neuroscience 5, 211–251). However, for systems with

strictly local conditional dependencies (e.g., Markov random fields), the

Markov blanket of any element constitutes its nearest neighbors. This

motivates the use of spin-block transformations, such as those described

by Kaluza and Meyer-Ortmanns (2010). On the role of frustration in

excitable systems. Chaos 20, 043111, Vidal, G. (2007). Entanglement

renormalization. Physical Review Letters 99.

7 In practice, we use overlapping groups, where the singular value

decomposition is applied following weighting by a radial (Gaussian)

basis function whose standard deviation is the distance between

group centers.
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mappings by appending unique instances of quantized singular
variates (encoded as one-hot vectors) in a set of training images.
This results in one-hot likelihood arrays for each group that share
the same parent at the higher level:

A � D
1

A−1 � {D−1
1 ,D−1

2 ,D−1
3 ,D−1

4 }
︷����������︸︸����������︷pa D−1( )�1

..

.

An+1 � {Dn+1
1 ,Dn+1

2 ,Dn+1
3 ,Dn+1

4

︷���������︸︸���������︷pa Dn+1( )�1
,Dn+1

5 ,Dn+1
6 ,Dn+1

7 ,Dn+1
8

︷���������︸︸���������︷pa Dn+1( )�2
, . . . }.

An � {Dn
1,D

n
2,D

n
3,D

n
4

︷������︸︸������︷pa Dn( )�1
,Dn

5,D
n
6,D

n
7,D

n
8

︷������︸︸������︷pa Dn( )�2
,Dn

9 ,D
n
10,D

n
11,D

n
12

︷�������︸︸�������︷pa Dn( )�3
, . . . }

..

.
(11)

We have dropped En = [1,1,. . .] in Equation 11 because
there is only one path in the absence of dynamics. In this
case, the penultimate level comprises the likelihood
mappings that generate each quadrant of the image in terms
of quadrants of quadrants, much like a discrete wavelet
decomposition. The ultimate level corresponds to priors over
the (initial) states or class of image. In short, structure learning
emerges from the recursive application of blocking
transformations of some training images. This is a special
case of fast structure learning (see Algorithm 1), described in
detail in the next section.

At the first glance, this proceduremay appear to generate likelihood
mappings (Dmatrices) of increasing size because the combinatorics of
increasingly large groups could explode at higher levels. However, by
training on a small number of images, one upper bounds the number of
states at each level. This follows from the fact that there can be no more
columns of the likelihood matrix than there are unique images in the

FIGURE 3
Renormalizing generative model. This graphical model illustrates the architecture of renormalizing generative models (temporal renormalization
has been omitted for clarity). In thesemodels, the latent states at any given level generate the initial conditions and paths of [groups of] states at the lower
level (red box). This means that the trajectory over a finite number of timesteps at the lower level is generated by a higher state. This entails a separation of
temporal scales and implicit renormalization, such that higher states only change after a fixed number of lower state transitions. This kind of model
can be specified in terms of (i) transition tensors (B) at each level, encoding transitions under each discrete path, and (ii) likelihood mappings between
levels, corresponding to the D and E tensors of previous figures. These can be treated as subtensors of likelihood mappings An � Dn

1 ,E
n
1 ,D

n
2 ,E

n
2 , . . .{ } that

furnish empirical priors over the states (and paths) at each level (n). Because each state (and path) has only one parent, the ensuing Markov blanket (blue
circles) of each state (red circle) ensures conditional independence among latent factors. In summary, a renormalizing generative model (RGM) is a
hypergraph, parameterized by two sorts of (A and B) tensors, in which the children of states at any level bipartition into initial states and paths. In this
example, the blocking transformation groups pairs of states (and paths).
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training set. In other words, one can effectively encode a finite number
of images without any loss of information such that RGM inversion
corresponds to lossless compression.

To generalize to a more expansive training set, one can
populate the likelihood mappings with small concentration
parameters and use active learning to recover an optimal lossy
compression. According to Equation 7, active learning simply
means accumulating appropriate Dirichlet counts in the
likelihood mappings until the mutual information converges to
its maximum. This offers a principled way to terminate
the ingestion of training data, after which there can be no
further improvement in expected free energy or mutual
information.

A worked example

To demonstrate the above methods, they were applied to the
MNIST digit classification problem (LeCun and Cortes, 2005).
MNIST images were preprocessed by up-sampling to
32 pixels × 32 pixels, smoothing, and histogram
equalization8. In addition, they were converted into a format
suitable for video processing with three (TrueColor or RGB)
channels. An exemplar image is shown in Figure 4 (left panel).
The blocking transformation to discrete state space is

illustrated in the right panel, which shows the reconstructed
image (i.e., local mixtures of singular vectors weighted by
discrete singular variates). The centroids of each group are
shown with small red dots, where each group comprises pixels
within a radius of four pixels.

Based on the prior that there can be a dozen ways of writing
any given number, the first 13 (Baker’s dozen) images of each
digit class were used for fast structure learning. This produced an
RGM with four levels. The centroids of the ensuing groups of
increasing size are shown as successively larger red dots in
Figure 4. At the penultimate level, this grouping is into
quadrants. In this application, we equipped the last level,
covering all pixel locations, with a likelihood mapping
between the known digit class (i.e., label) and compressed
representations at the penultimate level.

The likelihood mappings are shown in Figure 5 to illustrate
the ensuing structure. The lower row shows concatenated
likelihood mappings at each level. The upper row reproduces
these mappings after transposing to illustrate how states at one
level generate the states of groups at the subordinate level. For
example, at level 1, we have 16 groups of pixels whose states are
generated by four groups at level 2. Similarly, the four groups at
level 2 are generated by one group at level 3. Level 4 implements
our prior knowledge about digit classes, effectively providing a
mapping from digit class to the (13 × 10) exemplar images that
have been compressed in a lossless fashion.

Note that the graphics in Figure 5 represent concatenated
likelihood matrices. In other words, each block of the likelihood
matrices generates multiple outcomes, namely, combinations of
outputs for several groups. This illustrative concatenation
conceals the fact that each likelihood (i.e., A, D, or E tensor) is a

FIGURE 4
Quantizing images. The left panel shows an example of an MNIST image after resizing to 32 pixels × 32 pixels, following histogram equalization. The
image in the right panel corresponds to the image in pixel space generated by quantized singular variates, used to form a linearmixture of singular vectors
over groups of pixels. The centers of the (4 × 4) groups of pixels are indicated by the small red dots (encircled in white). In this example, the singular
variates could take seven discrete values centered on zero for a maximum of 16 singular vectors. At subsequent levels, (2 × 2) groups of groups are
combined via grouping or blocking operators. The centroids of these groups (of groups) at the three successive scales are shownwith successively larger
red dots. At the third scale, there are four groups corresponding to the quadrants of the original image.

8 The digits were downloaded from https://lucidar.me/en/matlab/load-

mnist-database-of-handwritten-digits-in-matlab/ and pre-processed by

smoothing with a Gaussian convolution kernel (of two pixels width).
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relatively small matrix. The implicit sparsity of these likelihoods
inherits from the blocking transformations based on a partition at
each level. If we had imposed the additional constraint
(i.e., structural prior) that these likelihood mappings are
conserved identically over groups, then one would have the
discrete homolog of a convolutional neural network with an
implicit weight sharing. Here, we did not impose this prior
constraint because different groups of pixels show systematic,
location-dependent differences. From a biomimetic perspective,

this can be likened to differences in the size of receptive fields
between central (i.e., foveal) and peripheral visual fields that speak to
the principles of maximum mutual information and minimum
redundancy (Barlow, 1961; Linsker, 1990; Olshausen and Field,
1996; Simoncelli and Olshausen, 2001). Technically, this is
reflected in the fact that the peripheral groups of pixels showed
little or no variation over exemplar images. This means that only a
small number of singular variates were retained in the periphery
and explains why the size of the groups at the first level

FIGURE 5
Renormalizing likelihoods. This figure is a schematic representation of the composite likelihoodmappings (comprisingD and E) among the levels of
an RGM, following fast structure learning. In each of these graphics, black indicates a nonzero element, and white indicates a zero element. In the lower
row of matrices, the columns of the matrices are the alternative possible values of states at that level, concatenated for all state factors. The rows are the
possible values for states (or observations) at the level below, similarly concatenated. By the third level, each latent state can generate an entire
image via recursive application of sparse, block-diagonal matrices, where “nz” counts the number of nonzero elements. In this example, the model has
been equipped with a fourth level, mapping from 10 digit classes to 130 latent states at the third level (encoding 13 images of 10 digits). These likelihood
mappings (that mediate empirical priors) are assembled automatically during structure learning by accumulating unique combinations of (recursively
grouped) states at subordinate levels. The upper row reproduces the matrices of the lower row after transposition to illustrate the dimension reduction
inherent in the grouping of states. Each transposedmatrix is shifted one to the left relative to the lower row. This means the states generated by the upper
matrices are represented in the columns, aligningwith the states in the conditioning sets in the columns of thematrices below. For example, the thousand
or so states at the second level generate over 6,000 states at the first, which specify the mixture of singular vectors required to generate an image.
Similarly, the 500 or so states at level 3 generate empirical priors over a partition of level 2 states into four subsets or groups (the first is highlighted in cyan),
and so on. Crucially, by construction, the children of states at any level constitute a partition, such that every child is included in exactly one subset. This
means that states at any level have only one parent, rendering the subsets of the partition at the higher level conditionally independent. In other words,
there are no conditionally dependent co-parents. This enables efficient sum–product operations during model inversion because one must only
compute dot products of subtensors (i.e., small matrices) specified by the parents of a group. Note that thematrices in this figure are not simple likelihood
mappings: they are concatenated likelihood mappings from all hidden states at one level to all hidden states (and paths) at the subordinate level, where
the sum to one constraint is applied to the states (or paths) each child could be in.
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increases toward the center of the image (see the lower left panel
of Figure 5).

Pursuing the biomimetic theme, Figure 6 illustrates the
encoding of images at successively deeper levels of the RGM.
The top row (Scale 4) shows the images generated under the first
eight levels of the corresponding latent factor. By construction,
this factor has 10 levels corresponding to prior knowledge about
the class of each digit. The subsequent rows illustrate the
projective fields of particular states at lower levels. These fields
can be regarded as the changes in predicted stimuli due to
changes in the representations (i.e., the complement of
receptive fields). In Figure 6, the first state of every factor of
every level was selected to provide a baseline image. This was then
subtracted from the image generated by subsequent states of the
first factor. The purpose of these characterizations was to show
that changing posterior expectations at the highest levels (Scales
3 and 4) produces changes everywhere in the image. In other
words, these are coarse-grained global representations of the
object represented. Conversely, at subordinate levels (Scales

1 and 2), the projective fields are restricted to local parts of
the image. The form of these projective fields is remarkably
similar to that seen in the visual system, namely, compact,
simple receptive fields in the early visual cortex and complex
fields (e.g., with a center–surround structure) of greater spatial
extent at higher levels in the visual hierarchy (Angelucci and
Bullier, 2003; Zeki and Shipp, 1988). It is noteworthy that this
kind of functional specialization is an emergent property of a
renormalizing generative model.

From a statistical or Gestalt perspective, the progressive
enlargement of projective fields can also be viewed in terms of
composition and the transformation from local, place-coded
representations to global object-centered representations; for
example, Hochstein and Ahissar (2002) and Kersten et al. (2004).
This is again reminiscent of biomimetic architectures in the sense
that elemental image features are encoded at the lower levels of a
visual hierarchy while objects and classes (e.g., faces) are encoded at
much higher levels with successive levels comprising more extended
but compressed representations from lower-level representations

FIGURE 6
Renormalization and projective fields. This figure shows exemplar projective fields of the (MNIST) RGM in terms of posterior predictive densities in
pixel space associated with states at successive levels (or scales) in the generative model. The top row corresponds to the posterior predictions of the first
eight states at the fourth level, while subsequent rows show the differences in posterior predictions obtained by switching the first state for the
subsequent eight states at each level. The key thing to note is that the sizes of the projective fields become progressively smaller andmore localized
as we descend scales or levels.
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(Alpers and Gerdes, 2007; Kersten et al., 2004; Zeki and
Shipp, 1988).

The foregoing illustrates the generation of content following
structure learning of a lossless sort. We now turn to inference and
classification. This rests on optimizing the parameters of the RGM
structure to maximize the marginal likelihood of some training data.
Figure 5 illustrates the results of this active learning during exposure
to the first 10,000 training images of the MNIST dataset. This
training proceeded by (i) populating all the likelihood mappings
with small concentration parameters9, (ii) equipping the highest
level of the model with precise priors (D4) corresponding to the class
labels, and (iii) accumulating Dirichlet parameters according to
Equation (7), with α = 512.

This kind of evidence accumulation converges when the
expected free energy asymptotes. This convergence is illustrated
in the middle panel of Figure 7, which plots the mutual information
at the final level as a function of training exemplars. The broken red
line corresponds to the upper bound on mutual information
afforded by the fact that there are 10 classes or hidden states at
the final level. The left panel shows the equivalent (summed) mutual
information of lower-level likelihood mappings, while the right
panel shows the accompanying variational free energy following
each exemplar. One can see that there is an initial period of fast
learning that asymptotes in terms of mutual information and
(negative) variational free energy with little further improvement
after approximately 5,000 samples. Note that the expected free
energy provides a convergence criterion that quantifies the

number of training exemplars required to maximize model
evidence (on average).

Figure 8 reports the capacity of the ensuing model to
correctly infer or classify the class of each the subsequent
1,000 (unseen test) images. This figure provides a nuanced
report of classification performance, which reflects the fact
that we have two kinds of inference at hand. These rest on (i)
the posterior distribution over digit classes and (ii) the marginal
likelihood that the image is classifiable under the model. This
means that one can assess the accuracy of classification
conditioned on whether a particular image was classifiable,
enabling a more comprehensive characterization of
performance in terms of sensitivity and specificity. The
format adopted in Figure 8 plots the classification accuracy as
a function of the ELBO (right panel) and the distribution of
ELBOs for correctly and incorrectly classified images (left
panel). The thing to note here is that classification accuracy
increases with the marginal likelihood that each image belongs
to the class of numbers. For example, if we split the test data into
two halves, the half with the highest marginal likelihood was
classified with 99.8% accuracy, while the classification accuracy
for the entire test set was only 95.1%

Images with a low marginal likelihood can be regarded
as ambiguous or difficult to classify because they have a small
likelihood of being sampled from the class of digits. Figure 9
provides some examples that speak to the potential importance
of scoring the validity of classification (Bach et al., 2015).

Summary

This section illustrates the use of renormalization procedures for
learning the structure of a generative model for object recognition

FIGURE 7
Active learning. This figure reports the assimilation or active learning of the training MNIST dataset. In this example, images were assimilated if, and
only if, they increased the expected free energy of the RGM. In the absence of prior preferences or constraints, this ensures minimum information loss by
underwriting informative likelihood mappings at each level (i.e., maximizing mutual information). The left panel reports the mutual information as a
function of ingesting 10,000 training images. The left panel reports the mutual information at the first level (blue line) and intermediate levels. The
middle panel reports the mutual information at the final (fourth) level. The dashed lines correspond to the maximum mutual information that could be
encoded by the likelihood mappings. The right panel shows the corresponding evidence lower bound (negative variational free energy), scored by
inferring the latent states (digit class) generating each image. The fluctuations here reflect the fact that some images aremore easily explained than others
under this model. As the model improves, there are progressively fewer images with a very low evidence lower bound (ELBO): that is, −16 natural units
or fewer.

9 Adding a concentration parameter of 1/16 to the one-hot likelihood arrays

produced by fast structure learning and renormalizing.
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and generation in pixel space. The protocol uses a small number of
exemplar images to learn a renormalizing structure appropriate for
lossless compression. The ensuing structure was then generalized by
active learning, that is, learning the likelihood mappings that
parameterize the block transformations required to compress
images sampled from a larger cohort. This active learning ensures
high mutual information between the scale-invariant mapping from
pixels to objects or digit classes. Finally, the RGM was used to classify
test images by inferring the most likely digit class.

It is interesting to compare this approach to learning and
recognition with the complementary schemes in machine learning.
First, the supervision in active inference rests on supplying a generative
model with prior beliefs about the causes of content. This contrasts with
the use of class labels in some objective function for learning. In active
inference, the objective function is a variational bound on the log
evidence or marginal likelihood. Committing to this kind of (universal)
objective function enables one to infer the most likely cause (e.g., digit
class) of any content and whether it was generated by any cause (e.g.,
digit class), per se.

In classification problems of this sort, test accuracy is
generally used to score how well a generative model or
classification scheme performs. This is similar to the use of
cross-validation accuracy based on a predictive posterior. The
key intuition here is that test and cross-validation accuracy can
be read as proxies for model evidence (MacKay, 2003). This
follows because log evidence corresponds to accuracy minus
complexity: see Equation 2. However, when we apply the
posterior predictive density to evaluate the expected log-
likelihood of test data, the complexity term vanishes because
there is no further updating of model parameters. This means, on

average, the log evidence and test or cross-validation accuracy are
equivalent (provided the training and test data are sampled from
the same distribution). Turning this on its head, models with the
highest evidence generalize in the sense that they furnish the
highest predictive validity or cross validation (i.e., test) accuracy.
One might argue that the only difference between variational
procedures and conventional machine learning is that variational
procedures evaluate the ELBO explicitly (under the assumed
functional form for the posteriors), whereas generic machine
learning uses a series of devices to preclude overfitting, such as
regularization, mini-batching, and other stochastic schemes. See
Sengupta and Friston (2018) for further discussion.

This speaks to the sample efficiency of variational approaches
that elude batching and stochastic procedures. For example, the
variational procedures above attained state-of-the-art classification
accuracy on a self-selected subset of test data after seeing
10,000 training images. Each training image was seen once, with
continual learning (and no notion of batching). Furthermore, the
number of training images actually used for learning was
substantially smaller10 than 10,000 because active learning admits
only those informative images that reduce expected free energy. This
Maxwell’s demon aspect of selecting the right kind of data for
learning will be a recurrent theme in subsequent sections.

Finally, the requisite generative model was self-specifying,
given some exemplar data. In other words, the hierarchical depth

FIGURE 8
Classification and confidence. This figure reports classification performance following the learning described in Figure 7. Because inverting a
generative model corresponds to inference, recognition, or classification, one can evaluate the posterior over latent causes—here, digit class—and the
marginal likelihood (i.e., model evidence) of an imagewhile accommodating uncertainty about its class. Thismeans that one can score the probability that
each image was caused by any digit class in terms of the ELBO. The distribution of the ELBO over the 10,000 training images is shown as a histogram
in the left panel (for correctly classified images). The smaller histogram (foregrounded) shows the distribution of log-likelihoods for the subset of images
that were classified incorrectly. Having access to themarginal likelihoodmeans that one can express classification accuracy as a function of the (marginal)
likelihood the image was generated by a digit. The ensuing classification accuracy is shown in the right panel as a function of a threshold (c.f., Occam’s
window) on the ELBO or evidence that each image was generated by a digit. The vertical dashed lines show themedian ELBO (−13.85 nats). Classification
accuracy for all images was only 95.1%. However, the accuracy rises to 99.8% following a median split based on their marginal likelihoods.

10 In these numerical studies, approximately 20% of training images were

accumulated during active learning.
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and size of the requisite tensors were learned automatically
within a few seconds on a personal computer. In the next
section, we pursue the notion of efficiency and compression in
the context of time-series and state-space generative models that
are renormalized over time.

Video compression and generative AI

This section generalizes the renormalizing procedures of the previous
section to include dynamics for recognizing and generating ordered
sequences of images. Procedurally, this simply involves specifying a scale
transformation in time and installing unique state transitions into the
prior transition tensors at each level of the RGM. In this setting, structure
learning reduces to quantizing images in space, color, and time to
produce time-color-pixel voxels. Unique transitions among
neighboring voxels are then recorded in B tensors, where each unique
voxel state is recorded in the column of the corresponding A matrix of
each group of voxels. The time series of quantized images is then
partitioned into segments of equal lengths (e.g., pairs), and the
ensuing segments are inverted (using the A and B tensors) to
evaluate posterior estimates over the initial state and path of each
segment11. This produces a new sequence that is coarse-grained in
time. Neighboring states (and paths) are then grouped together, and
the process is repeated to populate the likelihood mappings (D and E)
from parents at the higher level. By repeating this process, one ends up
with a representation of an image sequence in terms of paths through the
states of a single factor at the highest level. Each state in this factor
generates the initial state (and path) of a group at the lower level, and so
on recursively until an image sequence is generated.

Algorithm 1 provides a pseudocode description of the procedure,
where R denotes the number of frames constituting a video event and j
labels successive blocks in terms of unique instances. Here, the
renormalization implicit in fast structure learning is expressed in
terms of the Dirichlet parameters of the requisite tensors: an �
dn1 , e

n
1 , d

n
2 , e

n
2 , . . .{ }.

Algorithm 1. Fast structure learning.

By partitioning each sequence into nonoverlapping pairs during
the timescale transformation at successive levels, one effectively halves
the length of the sequence when ascending from one level to the next.

FIGURE 9
Classification failures. This figure provides examples of incorrect classification of images with a small marginal likelihood. Each pair of images
presents the training image with its label and the corresponding posterior prediction in pixel space and accompanying maximum a posteriori
classification.

11 Model inversion is used so that this fast structure learning can be applied

to categorical probability distributions over quantized singular variates,

such as when supplied with event-related averages of quantized images.
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From the perspective of generating sequences, this means that a state at
one level generates two successive states at the lower level by generating
the initial state and the path to the second state. The ensuing RGM
acquires a definitive feature of such models, namely, a separation of
temporal scales, in which there are two (or more) belief updates for
every update at the level above. This means that higher levels encode
sequences of sequences of sequences that can be regarded as episodes of
successive events. From the perspective of recognition or classification,
an image sequence is successively compressed with a coarse graining or
blocking over space and time into a succession of events. This furnishes
an event-based representation that generalizes the object-based
representations of the preceding section. Note that this kind of
RGM compresses images or scenes that may involve multiple
objects or, indeed, causes that may not have the attribute of
objecthood, such as textures and backgrounds.

During inference, the separation of temporal scales manifests a
particular kind of reactive message passing (Bagaev and de Vries,
2021; Hewitt et al., 1973). Because each level generates a small
sequence (here pairs), the variational message passing depicted in
Figure 2 is scheduled as follows: at the highest level, priors are passed
to the level below to generate two iterations. After two belief updates,
the ascending messages are returned to the higher level to form a
posterior over events. However, before the lower level can respond, it
must query its lower level, waiting for two iterations before updating
its beliefs, and so on, down to the first level. This means any given level
receives messages or requests from the level above and responds to
those requests at a slower rate than it exchanges messages with its
subordinates. In short, lower levels update their beliefs more quickly,
in a way that rests on an asymmetry in the frequency of hierarchical
message passing—an asymmetry that characterizes message passing
in real neuronal networks (Bastos et al., 2015; Hasson et al., 2008;
Kiebel et al., 2008; Pefkou et al., 2017).

A worked example

To illustrate the basic architecture of this RGM, we used a short
video sequence of a dove flapping her wings. The original video12

was down-sampled to 32 frames, where each frame comprised
128 pixels × 128 pixels with three TrueColor channels. The first
scaling transformation from images to discrete state space used the
same nearest-neighbor block transformation as in the previous
section; however, here, we blocked each image into 4 × 4 blocks,
generating an RGM with two hierarchical levels. Crucially, singular
value decomposition operated on successive pairs of images (c.f.,
spatiotemporal receptive fields). This simply involved reshaping the
tensors for each image block to concatenate color and time before
applying a singular-value decomposition. The ensuing singular
vectors, therefore, span three colors and two time points,
compressing the video into 64 time-color-pixel voxels. The
remaining scaling transformations constructed the requisite
likelihood and transition matrices as described in Algorithm 1.

Figure 10 shows the first frame from the original video and the
reconstructed frame following compression using the same format

as Figure 4. Figure 11 illustrates the generation of a movie with
128 frames or 64 voxels from a structure learned from compressing a
video of 64 frames (a cycle through two flaps of the wings). The
RGM has compressed each cycle into eight events, repeated four
times during generation. The upper right panel shows the discovered
transitions among these events. In this instance, we have a simple
orbit or closed path where the last event transitions to the first.

The upper left panel depicts the posterior distribution over states
at the highest level in image format; here, it shows four cycles. These
latent states then provide empirical priors over the initial states of
the four image quadrants at the subordinate level (via D). The
accompanying predictive posterior over paths (via E) shows that
each of the four paths was constant over time, thereby generating
predictive posteriors over the requisite states at the first level
(i.e., singular variates) and, ultimately, the posterior predictions
in pixel space. The first and last generated images are shown in
the lower row.

Figure 11 illustrates the ability of the RGM to generate video
content. Conversely, Figure 12 illustrates the inference or
recognition of images presented as (partial) stimuli using the
same format. The upper panels show the predictive posteriors
over states (on the left) and paths (on the right), respectively.
The images below correspond to the predictions in pixel space at
the first time points and at the last time point. The corresponding
stimuli are shown in the lower row of images. This illustration of
model inversion speaks to some key biomimetic aspects.

First, by generalizing scale transformations to both space and time,
we induce nontrivial posteriors over paths or dynamics. The separation
into predictive posteriors over states and paths has a clear homology
with the segregation of processing in the visual cortical hierarchy in the
brain (Ungerleider and Mishkin, 1982). This is often cast in terms of a
distinction between dorsal and ventral streams, in which the dorsal
stream is concerned with “where” things are in the visual scene and
how they move or can be moved (Goodale et al., 2004). In contrast, the
ventral stream is responsible for encoding “what” is causing visual
impressions. Furthermore, higher or deeper levels of the visual
hierarchy show slower stimulus-bound responses than lower levels:
for example, Hasson et al. (2008). This is an emergent property of the
(perceptual) inference demonstrated in the above example in terms of
the successive slowing of belief updating at higher levels.

In Figure 12, the stimuli presented to the RGMwere restricted to
the upper left quadrant. In neurobiology, this would be like
presenting a moving bar in a restricted portion of the visual field
(Livingstone andHubel, 1988). Despite this partial stimulus, the top-
down predictions quickly evince a form of pattern completion,
effectively seeing what was not actually presented. Indeed, by the
sixth frame (i.e., third voxel), the posterior predictions have filled in
the missing content. This predictive capacity is reminiscent of
functional magnetic resonance imaging studies of predictive
processing in human subjects, in which one can record predictive
activity in the visual cortex that is induced by only providing one
quadrant of the visual stimulus (Muckli et al., 2015).

Paths, orbits, and attractors

In the preceding example, the sequence of images constitutes a
closed path, namely, a simple orbit. This can be regarded as a12 From https://pixabay.com/videos/search/birds/
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quantized representation of a periodic attractor. Here, we use the
same procedures to compress and generate stochastic chaos, using
images generated by a Lorenz system (Friston K. et al., 2021; Lorenz,
1963; Ma et al., 2014; Poland, 1993). The aim of this example is to
show how active learning after structure learning furnishes a
generative model of chaotic orbits. In this instance, the dynamics
or transitions are learned to accommodate switches among paths
that acquire a probabilistic aspect due to random fluctuations and
exponential divergence of trajectories.

Figure 13 shows the time series used to generate training images.
The upper right panel shows a sequence of hidden states over
1,024 time bins, generated by solving stochastic differential
equations based on a Lorenz attractor. The upper left panel
shows the random fluctuations (i.e., state noise) used in
generating these states in terms of an arbitrary mixture of hidden
states and stochastic fluctuations on their motion (i.e., prediction
and error). The ensuing hidden states were used to generate an
image sequence in which the motion of a white circle traced out the
trajectory of the first two hidden states (indicated with golden dotted
lines). The first half of the resulting sequence was then used for
structure learning. A training image and its reconstitution following
discretization are shown in the lower panels of Figure 13. The
encircled red dots show the location of the groups of pixels at
successive scales.

Structure learning was based on the first 512 images. Following
this, the model was exposed to the subsequent 512 images to enable
learning of the transition dynamics via the accumulation of
appropriate Dirichlet parameters. The resulting transitions are
shown in the top left of Figure 14. The resulting model has
represented this dynamical system with 64 events (i.e., states at
the highest level) with switching among certain events that

recapitulate the stochastic switching of trajectories on the
underlying Lorenz attractor. Figure 14 shows the predictive
posteriors over states at successive levels and predicted images in
response to a stimulus. This stimulus was a 128-image sequence
from the training set. Following this initial “prompt,” the stimulus
was rendered imprecise for a further 128 images and then removed
completely for the remainder of the simulation period.

Figure 15 shows the stimuli and posterior predictions induced
with this stimulation protocol. Maximum-intensity projections
over the horizontal dimension were concatenated to render the
fluctuations of the first hidden (Lorenz) state easily visible
(compare Figure 15 with Figure 14). This format shows that
the first 128 images have been recognized veridically; namely, the
paths through renormalized latent state spaces have been
correctly identified. When the stimulus is rendered imprecise
(the dark region in the lower panel), the posterior predictions
continue to produce plausible chaotic dynamics until the
stimulus is removed altogether at 256 time bins. At this point,
the RGM generates its own outcomes based on the learned
generative model, which correctly infers the latent causes of
this self-generated content. In other words, the second
sequence of stimuli in the lower panel of Figure 15 is
generated by the model’s discrete representation of chaotic
events, as opposed to the first period, in which they were
generated by solving continuous stochastic differential equations.

These numerical studies speak to two interesting points. First,
the RGM can be regarded as the discrete homolog of switching linear
and nonlinear dynamical systems; for example, Linderman et al.
(2016), Olier et al. (2013), Rabinovich et al. (2010), and Tani and
Nolfi (1999). However, in this quantized setting, there is no
distinction between linear and nonlinear. This follows because

FIGURE 10
A dove in flight. This figure shows a frame from a movie of a (digital) dove flapping her wings. The left panel is a TrueColor (128 pixels × 128 pixels,
RGB) image used for structure learning, while the right panel shows the corresponding posterior prediction following discretization. This example used a
tessellation of the pixels into 32 voxels × 32 voxels, with a temporal resampling of R = 2: that is, successive pairs of (32 pixels × 32 pixels) image patches
were grouped together for singular value decomposition. Singular variates took nine discrete values (centered on zero) for amaximumof 32 singular
vectors. The locations of the image patches are shown with small red dots (encircled in white). The larger dots correspond to the centroids of blocks,
following the first block transformation at the second level of the ensuing RGM.
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all metric state spaces have been tessellated and coarse-grained. This
means that the only metric space is the statistical manifold (simplex)
associated with probability distributions over discrete events. In
principle, these discrete models can handle any degree of
nonlinearity in continuous state-space models.

The second issue is a perspective on embedding (Deyle and Sugihara,
2011; Klimovskaia et al., 2020; Ørstavik and Stark, 1998). One might ask
how the RGM can recover chaotic dynamics from a sequence of static

images. The answer lies in Takens’ embedding theorem (Deyle and
Sugihara, 2011; Takens, 1980), which means that any (chaotic) attractor
can be reconstructed from a time-delay embedding, which is implicit in
the temporal RG operators used in renormalization. Effectively, we
started with an infinite dimensional system (due to the inclusion of
random fluctuations) and projected a realization into high-dimensional
pixel space. Because the resampling discretized successive pairs of images,
we are effectively summarizing the state and the velocity at each (group
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FIGURE 11
Generating movies. Following structure learning based on two cycles of wing flapping (i.e., 64 frames or 32 time-color-pixel voxels), an RGM was
used to generate posterior predictions over 128 video frames, namely, four flaps. Each panel plots probabilities, with white representing zero and black
representing one. The “Posterior” plots have an x-axis that represents time, with coarser steps at higher levels. The rows along the Y-axis are the different
states wemight occupy. The “Transitions” plot has columns representing the state we come from and rows representing that we go to. The posterior
predictions are the messages passed down hierarchical levels (see Figure 2). The structure learned under this RGM compressed each cycle into eight
events. The format of this figurewill be used in subsequent examples: the upper right panel shows the discovered transitions among (high-level) events. In
this instance, we have an orbit where the last state transitions to the first. The upper left panel depicts the posterior distribution over states at the highest
level in image format; here, showing four cycles. These latent states then provide empirical priors over 64 initial states of the four image quadrants at the
subordinate level, depicted in the predictive posterior panel below. The accompanying predictive posterior over paths at this level (on the right) shows
that each of the four paths was constant over time, thereby generating predictive posteriors over the requisite states at the first level (i.e., singular variates)
and, ultimately, the posterior predictions in pixel space. The first and last generated images are shown in the lower row.
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FIGURE 12
Image completion. This figure reproduces the previous figure but presents the model with a partial stimulus in the upper right quadrant. The
likelihood mappings were equipped with small concentration parameters (of 1/32) to model any uncertainty around the events installed during structure
learning. The lower rows show the posterior predictions (upper row) and stimulus (lower row) for the first and last timeframes. The key thing to take from
this figure is that by the sixth video frame or third voxel (t = 3), the posterior predictive density has correctly filled in the missing quadrants and
continues to predict the stimuli veridically by treating the missing data as imprecise or uninformative.
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of) pixels at the first level of the RGM, which subsequently embeds pairs
of pairs during renormalization. At the highest level, we are left with a
probabilistic representation of chaotic dynamics on a 64-dimensional
simplex, which retains the essential structure of the random dynamical
attractor. Next, we will consider a more natural random dynamical
attractor afforded by the motion of natural kinds.

A natural extension

Figure 16 illustrates the spatial blocking of a more natural video—a
short sequence (from pixabay.com/video/search/birds) in which a robin
alights on a branch, feeds, preens itself for a few seconds, and then flies
away. In this example, each block comprises 16 pixels × 16 pixels,

FIGURE 13
Stochastic chaos. This figure summarizes the quantization of images generated from stochastic differential equations based on the Lorenz system.
The upper panels report the solution in terms of the three hidden states of a Lorenz system (right upper panel) and the contribution of random
fluctuations, innovations, or state noise (left upper panel). This contribution is characterized in terms of an arbitrary linear mixture of the hidden states and
the prediction errors induced by random fluctuations (red line). The hidden states were used to generate an image in which the position of a white
ball was specified by the first two hidden states. The ensuing trajectory was used to populate the image with gold dots. One can envisage the ensuing
sequence of video frames as depicting a white particle flowing in amediumwhose convection is described using the Lorenz equations of motion. (Strictly
speaking, the equations pertain to the eigenmodes of convection). The lower left panel shows an exemplar video frame in a TrueColor (198 pixels ×
198 pixels) image. The lower right panel shows the reconstructed image generated from its quantized representation. Following the format of Figures 4,
10, the encircled red dots show the centroids of subsequent groups. In this example, the image was tessellated into (32 × 32) pixel groups with singular
variates taking five discrete values for a maximum of 16 singular vectors. As previously mentioned, the temporal resampling considered successive pairs.
The resulting three-level RGM is illustrated in the subsequent figure.
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tessellating (128) video frames cropped to 128 pixels × 128 pixels.
During fast structure learning, this video was compressed via three
renormalizations under a three-level RGM. Figure 17 illustrates the
posterior predictions of each level on exposure to a segment of the

original movie. Note, in comparison with the previous example, the
dynamics are more itinerant. This reflects the fact that this (naturalistic)
video has more frequent transitions, as the robin repeated stereotyped
behavioral repertoires.

FIGURE 14
Quantized stochastic chaos. This figure uses the same format as Figure 12 to illustrate the learned transitions following fast structure learning and
subsequent active learning, based on the first and second half of the image sequence depicted in Figure 13. In this example, the dynamics are summarized
in terms of 64 events that pursue stochastic orbits under the discovered probability transition matrix shown on the upper left. The lower panels show the
posterior predictions in pixel space and the accompanying stimuli presented for the first quarter of the simulated recognition and generation
illustrated in Figure 15.
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The lower panels of Figure 17 show that the posterior predictions in
pixel space were quickly entrained by the stimulus or observations to the
extent that the bird’s movements were correctly predicted despite
withholding frames during movement initiation. This ability to “fill in
the gaps” reflects the “filling in” of quadrants in the previous (dove)
example. However, here the filling-in is over time, as opposed to pixel
space. This ability to generate sequences is reminiscent of generative AI, in
which we can regard the initial frames as a “prompt” that is sufficient to
generate a succession of future frames. However, in this setting, this
predictive capacity does not rest on an autoregressive model of the kind
used in transformers (i.e., mapping past content to future content); rather,
there is an explicit generative model of trajectories or paths due to the
separation of temporal scales which are, effectively, entrained by
observations or content. In the next section, we pursue the temporality
of this class of models by applying the same procedures to birdsong
and music.

Sound compression and generative AI

In this section, we focus on an exemplar application to
auditory streams or sound files. In this setting, pixels (i.e.,
picture elements) are replaced by voxels (volume elements)
over frequency and time. These constitute a time-frequency
representation of a time series, such as a continuous wavelet
transform (CWT). Here, time series are mapped to time-
frequency space using (Morlet) wavelet transforms, while an
inverse transform converts CWT representations to a linear
sound file for playing. Renormalizing generative models for
sound is simpler than for video content because there is only
one metric dimension (i.e., frequency) that accompanies time.
Using a (spin) block transformation to coarse-grain over
frequencies reflects the fact or assumption that neighboring
frequencies fluctuate in a correlated fashion.

FIGURE 15
Generating stochastic chaos. This figure illustrates the sequence of images predicted (and presented) based on the posterior predictive distributions
of the previous figure. Here, maximum intensity projections of each frame have been concatenated to show the video as a single image (i.e., as if each
image were viewed from the side). The upper panel shows the predictive posterior in pixel space, while the lower panel reports the stimulus presented to
the model. Crucially, the first quarter of the stimulation used images generated from the Lorenz system, while the second half of the stimulus was
self-generated, namely, sampled from the learned generative model. The intervening dark regime (second quarter) denotes a period in which the input
was rendered imprecise (i.e., presented with poor illumination or with the eyes shut). Despite this imprecise input, the posterior predictions continue to
generate plausible and chaotic dynamics until they become entrained by self-generated observations. Here, the simulations lasted for 512 frames
(i.e., time bins).
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A worked example

We will first look at a simple example using sound recordings13 of a
crossbill bird and then look at amore deeply structured, semi-Markovian
process, namely, jazz music. Figure 18 shows the content modeled using
the same procedures above after quantizing into 64 frequency bins, with
a maximum of 16 singular vectors for each group of (1,024 × 4)
time–frequency voxels. The corresponding time series is shown in
the upper panel and sampled from the CWT in the lower panel. In
this example, which lasts for approximately 8 seconds, the bird makes
two calls, each comprising a short sequence of chirps. The second call is
longer, with a crescendo of increasingly broadband chirps.

After fast structure learning, this recording engendered an RGM
with four levels, with the highest-level states encoding an event of
approximately one second, where episodes included intervening
periods of a low-frequency background rumble (visible as a band
of low-frequency, continuous power in the CWT). This RGM can
now be used to generate arbitrarily long sequences of calls. An
example is shown in Figure 19, over approximately 32 s (or
256 time-frequency voxels). The upper right panel shows that the
time series has been compressed into a succession of eight episodes
that follow each other systematically until the last, after which the
model has uniform beliefs about the next event. This is reflected in
the generated birdsong, in which the RGM completed a sequence of
eight events, repeated the last event, and then selected the sixth
event, and so on. This resulted in alternating calls, as seen in the
sonogram in the lower panel.

We could have continued generating calls indefinitely, where each
successive episode would be longer or shorter, depending on the point
of “re-entry.” There are clearly many other variations on this theme; for
example, we could have implemented a transition from every event to
the first event so that sequences terminate at varying times or terminate
on particular events (e.g., as in language). The question is now: would a
different sequence be predicted in the presence of auditory input?

To illustrate the dual role of generation and recognition, under
these models, we repeated the simulation above but presented
auditory input, starting with the second call. See Figure 20A. In
this instance, the posterior over the initial episode now correctly
begins during the onset of the second call and faithfully predicts the
auditory input for the duration of its presentation (here, a couple of
seconds). After this initial period of stimulation, the auditory input
was removed (by delivering outcomes with an imprecise, uniform
probability distribution). The RGM effectively treats the stimulus as
a “prompt” and pursues its itinerant cycle of song generation.

The preceding illustration shows that content is assimilated and
predicted (i.e., generated) online without the need for caching. This
follows because the Bayesian belief updating has, by design, a scheduling
that eludes backward message passing in time (a.k.a., Bayesian
smoothing). This kind of reactive message passing can be conceived
of as follows: the highest level sends a prior message to the level below.
The level below reacts to this top–down message by performing two
updates before returning a likelihood message requested by the higher
level. The higher level forms a posterior belief on the basis of the
likelihood message and updates its posterior belief about the current
and next state, which it then provides as an empirical prior to the level
below, and so on. As noted in previous sections, any level can only
update its beliefs after waiting for its subordinate levels to accumulate
two messages. In short, the posterior beliefs at any given level are
retrospective beliefs after accumulating evidence from lower levels over

FIGURE 16
Natural kinds. This figure illustrates a single video frame from a short movie of a bird feeding and preening. This movie sequence comprised
128 frames of (128 × 128) TrueColor images. Following the format of previous figures, the left panel shows an original image, and the right panel shows the
corresponding image generated from discrete singular variates. In this example, the singular variants took 17 discrete values for amaximum of 32 singular
vectors. As previously, the temporal scaling was R= 2; that is, pairs of video frameswere grouped together to constitute time-color-pixel voxels. The
locations of successively grouped voxels are shown with encircled red dots engendering the three-level RGM reported in Figure 17.

13 Copyright-free files were obtained from the following website: https://

sound-effects.bbcrewind.co.uk/
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the timescale in question. The ensuing predictive posteriors are then
used as priors to provide contextual constraints on the initial states and
paths of lower levels and likelihoods for the states at the level above. In

the MATLAB implementation of these demonstration routines, this
reactive message passing emerges from the nested composition of
function calls. It is interesting to consider how the requisite
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FIGURE 17
Now you see it. Now you do not. This figure uses the same format as Figure 12 to illustrate the recognition and generation of a short movie of a robin
comprising 160 video frames (where the last 32 frames are a repeat of the first 32). The reason there are only 80 timesteps on the x-axis for the level
1 predictive posteriors is that these predictions only pertain to the first of a pair of video frames. The implicit loop has been summarized as a simple orbit
through 16 events. In this example, a stimulus was presented for the first four frames and then removed for the subsequent four frames. Despite the
absence of precise stimuli, the posterior predictions veridically track the motion of the bird during the missing stimulus.
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scheduling would be implemented with reactive message passing
(Bagaev and de Vries, 2021); c.f., the actor model (Hewitt et al.,
1973) (Keith Duggar; personal communication).

From songs to music

One might ask if RGMs could be applied to language, perhaps
in the spirit of hierarchical Dirichlet process models, as was done
by MacKay and Peto (2008) and Teh et al. (2006). We will not

address this here but provide an application to music to illustrate
the generalized synchrony that accompanies communicative
exchange (Friston and Frith, 2015). Figure 20B shows the
sound file used for fast structure learning. In this example, a
short (2 min) sound file of a jazz pianist was discretized to
64 time-frequency voxels (between 40 Hz and 4,000 Hz in
32 bins). The ensuing generation of piano music is shown in
Figure 21A, where the RGM has compressed the sound file into
16 events, each corresponding to a bar of music. In this example,
the model was exposed to a succession of music segments using

FIGURE 18
Sound images. This figure shows the training data for structure learning. The lower panel shows the continuous wavelet transform (CWT) of a
recording of two crossbill bird calls, where each call comprises a crescendo of short chirps. The CWT is shown as an image of time-frequency responses,
that is, the spectral power from 1 to 64 frequency bins, as it evolves over time. Strictly speaking, this is not a continuous wavelet transform because the
Gaussian envelope of the Morlet wavelets was fixed at 32 m. As such, this is effectively a short-term Fourier transform between 40 Hz and 4,000 Hz
(appropriate for the frequency range of human hearing). The second panel shows the equivalent representation generated from the quantized
representation in the third panel. The discrete representation is shown as an image of the probability distributions over singular variates associated with
the singular vectors (i.e., time–frequency basis sets) used for discretization. The upper panel shows a sound file generated from the reconstructed CWT.
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active learning—Equation 7—after fast structure learning
(Algorithm 1). In virtue of the time series presented, it
learned that the last event (i.e., musical bar) was followed by

the first or eighth bar of music. The RGM now generates extended
piano play, selecting successive 8-bar sequences in accord with
the learned statistics of variation at this timescale.

FIGURE 19
Renormalizing birdsong. This figure uses the same format as Figure 17 but displays the posterior predictions as a continuous wavelet transform (i.e., a
time–frequency representation of the spectral power at each point in time). In this example, time–frequency voxels covered four frequency bins and
1,024 time bins, corresponding to approximately 100m (at a sampling rate of 8,820Hz). Quantization of the ensuing time–frequency voxels used singular
variates with five discrete values for a maximum of 16 singular vectors. This example reports the generation of birdsong after compression to a
sequence of eight events. Here, the final event could be followed by any preceding event with equal probability. This follows because there was no
recurrence of events in the training data used for structure learning. As a consequence, during generation, events cascade to the eighth event and then
transition to a preceding event stochastically. The upper left panel shows the resulting succession of events that produce the posterior predictive
sequence of bird calls in the lower panel. When played, the resulting sound file is indistinguishable from a bird emitting a variety of stereotypical calls in a
quasi-random sequence.
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FIGURE 20
(A) Song recognition. These time–frequency representations reproduce the lower panel of Figure 19 but in the context of an initial stimulus or
“prompt,” corresponding to the second call in the training data. These posterior predictions show that the model immediately identified the call and its
phase and then continued to generate predictions in accord with its model of successive auditory events. In this example, the stimulus was rendered
imprecise (i.e., inaudible) after 16 of the 128 time-frequency voxels were generated. (B) Jazz music. This panel follows the same format as Figure 18;
however, here, the recording is of 36 s of jazz piano, comprising approximately 16 bars. The continuous wavelet transform was quantized into
32 frequency bins between 40 Hz and 4,000 Hz (with a fixed Gaussian envelope of 8 m). The (Nyquist) sample rate was twice the highest frequency
considered. The time-frequency representation was quantized using time-frequency voxels of four neighboring frequencies and time bins covering
approximately 500 m, corresponding to 1/4 of a musical bar. Following renormalization, musical events at the highest (third) level have a duration of
2.24 s; that is, a bar of music.

FIGURE 21
(A)Generatingmusic. This figure follows the same format as Figure 19. In this example, each event corresponds to a bar of music, and the simulation
reports the generation of 32 bars under the learned transitions shown on the upper right. Here, themodel has learned to generate 8 bars ofmusic until the
final bar, after which it re-enters at the first or ninth event to pursue its path through event space. In other words, the model generates stochastically
alternating 8-bar musical sequences. This particular generative behavior is a simple consequence of what it has heard during structure learning and
subsequent active learning. (B) Musical accompaniment. This panel illustrates the synchronous entrainment of posterior predictions by stimuli. This
entrainment can be read as a generalized synchrony (a.k.a., synchronization of chaos) under a shared musical narrative or generative model.
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Figure 21B shows the same simulation during the presentation
of the original sound file. The key thing to note is that the predictions
are almost instantaneously synchronized with the heard music. If we
read the predictions as the sounds that would be generated by an
agent and the stimuli as the music generated by an accompanist, we
can regard this simulation as a discrete analog of the generalized
synchronization that emerges in dyadic interactions under a shared
generative model; that is, singing from the same hymn sheet (Friston
and Frith, 2015).

From pixels to planning

In this final section, we turn to the deployment of RGMs for
planning as inference (Attias, 2003; Botvinick and Toussaint, 2012;
Da Costa et al., 2020) and, implicitly, their use as synthetic agents
and decision-makers under uncertainty. This application is
relatively straightforward under active inference due to its roots
in the free energy principle and implicit biomimetic commitments.
From the perspective of the free energy principle, agents are read as
certain kinds of self-organizing systems that possess characteristic
states, which characterize the kind of agent or system they are. The
very existence of this attracting set or manifold (a.k.a., pullback
attractor) means that one can describe or simulate self-organization
as a variational principle of least action (Friston K. et al., 2023).
Application of this principle underwrites the variational belief
updating of Figure 2.

The notion of an attracting set is useful here because it foregrounds
the role of constraints, in the sense there are certain states outside the
attracting set that an agent is unlikely to be found in. This means the
attracting set can be described in terms of prior preferences, whose
logarithm can be interpreted as value (for the agent in question). The
negative logarithm corresponds to self-information, providing an
information-theoretic account of self-organization in terms of value-
pointing dynamics. From the current perspective, self-information is
the quantity bounded by variational free energy.

From the perspective of reinforcement learning, one can regard
sparse rewards as specifying unstable fixed points on the pullback
attractor. This means that if we wanted to learn the structure of a
generativemodel of a particular (expert) agent, we simplymust compress
the paths of least action that link rewarding states. Equipped with such a
model, action, under active inference, simply realizes the predictions
under such a model, thereby realizing expert play or Bayes optimal
decision-making under uncertainty; see Equation 3.

From a biomimetic perspective, this replaces the notion of motor
commands with motor predictions that are fulfilled by peripheral
motor reflexes (Adams et al., 2013; Friston, 2011). This view of
motor (and autonomic) control inherits from the partitioning of
states under the free energy principle. In brief, internal states—for
example, of a neuronal network—are separated from external
states—for example, of the body or extrapersonal space—by
control and sensory states that, together, constitute blanket states.
This leads to a form of active inference that can be regarded as
control as inference (c.f., model predictive control) in which internal
states generate predictions or setpoints that are realized reflexively
by active states: c.f., Kappen et al. (2012). Crucially, both internal and
control states can be cast as minimizing variational free energy. For
internal states, this manifests as inference and learning. For control

states, this reduces to minimizing proprioceptive prediction errors14

in motor control (Friston et al., 2011) or telemetry prediction errors
in drones or other artifacts (Lanillos et al., 2021).

This kind of active (control as) inference can be usefully
contrasted with the optimization of state-action policies in
reinforcement learning. Figure 22 illustrates this in terms of the
differences in computational architectures, which focus on planning
as inference (i.e., sequential policy optimization) and learning to
plan (i.e., learning state-action policies), respectively.

Planning as inference

Much of reinforcement learning—for example, deep RL—is
concerned with the difficult problem of learning state-action
policies through learning the parameters of a neural network that
maximizes expected reward, where sparse rewards are only available
after some suitable sequence of actions (Kaiser et al., 2019). Model-
free approaches (such as the one illustrated in Figure 22) learn a
mapping from states to actions, while model-based schemes learn a
generative model to finesse action selection (Theodorou et al., 2010).

Active model selection offers a different perspective on the
requisite learning: instead of updating model parameters
following a reward, one can simply update the model per se. In
other words, one can learn a compressed representation of events
that intervene between one reward and the next. This casts
reinforcement learning as a structure learning problem, in which
the structure is only updated if unique events do not entail a cost:
that is, if the training sequence ends with a preferred (rewarded)
outcome. Equation 3 formalizes this notion in terms of expected free
energy—that is, expected information gain and cost—where
selection (c.f., Maxwell’s demon) is effectively applied to data
used for structure learning, as in Equation 9.

Procedurally, this looks very much like conventional
reinforcement learning; however, it is simpler and more efficient
because it learns a compressed representation of, and only of, paths
that link rewarded states. Another way of looking at this is as a
“smart data selection.” Effectively, this leads to the automatic
selection of model structures that can only recognize and predict
rewarding episodes, thereby eluding subsequent parameter learning.
This rests on the fact that one does not need to learn how to
maximize reward if one has a generative model that can only predict
paths that lead to reward and thereby specify the next action. In what
follows, we will illustrate this approach in sequential policy
optimization and unpack some of its corollaries.

Games and attractors

To illustrate the use of the RGM for planning as inference,
this section uses simple Atari-like games to show how a model of
expert play self-assembles, given a sequence of outcomes under
random actions. We illustrate the details using a simple game and

14 Where prediction errors can be read as variational free energy gradients.
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then apply the same procedures to a slightly more
challenging game.

The simple game in question was a game of Pong, in which the
paths of a ball were coarse-grained to 12 × 9 blocks of 32 × 32 RGB
pixels. A total of 1,024 frames of random play were selected that (i)
started from a previously rewarded outcome, (ii) ended in a
subsequent hit, and (iii) did not contain any misses. In short, we
used rewards for, and only for, data selection. The training frames
were selected from 21,280 frames generated under random play. The

sequence of training frames was renormalized to create an RGM.
This fast structure learning took approximately 18 s on a personal
computer. The resulting generative model is, effectively, a predictor
of expert play because it has only compressed paths that intervene
between rewarded outcomes. Figure 23 (lower panels) illustrates
these high-dimensional orbits by plotting the paths in the first few
principal dimensions of the underlying statistical manifold. The
rewarded states (hitting the ball) are encircled in red, while the blue
lines show themultiplicity of paths that connect rewarded outcomes.

FIGURE 22
Active inference and reinforcement learning. This figure provides two schematics to highlight the difference between active inference and
reinforcement learning (i.e., reward-learning) paradigms. Active inference can be read here as subsuming a variety of biomimetic schemes in control
theory and the life sciences, such as control as inference (Kappen et al., 2012), model predictive control (Schwenzer et al., 2021), and in neurobiology,
motor control theory (Friston, 2011; Todorov and Jordan, 2002), perceptual control theory (Mansell, 2011), the equilibrium point hypothesis
(Feldman, 2009), etc. The basic distinction between active inference and reinforcement learning is that in active inference, action is specified by the
posterior predictions in outcome modalities reporting the consequences of action. These posterior predictions inherit from policies or plans that
minimize expected free energy, namely, Bayesian planning as inference (Attias, 2003; Botvinick and Toussaint, 2012; Da Costa et al., 2020). This kind of
planning is Bayes optimal in a dual sense: it conforms to the principles of optimum Bayesian design (Lindley, 1956) and Bayesian decision theory (Berger,
2011) via the maximization of expected information gain and expected value, respectively (where the expected value is defined in terms of prior
preferences). Mechanically, this can be expressed as belief updating under a suitable generative model (i.e., planning as inference) to provide posterior
predictions that are fulfilled by action (i.e., control as inference). On this view, both belief updating (i.e., perception) andmotor control (i.e., action) can be
read as minimizing variational free energy. This can be contrasted with reinforcement learning, in which there is an assumed reward function that has a
privileged role in updating the parameters of a universal function approximator (e.g., a deep neural network) mapping from inputs (i.e., sensory states) to
outputs (i.e., control states). The example of reinforcement learning here uses state-action policy learning based on discounted reward: c.f., Lillicrap et al.
(2015) and Watkins and Dayan (1992).
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Figure 24 shows how these orbits have been assimilated into
the RGM in terms of the transitions among events at the highest
(third) hierarchical level, where each event lasts for 4 = 2(3–1)

time steps at the first level. The RGM compressed all such events
encountered during structure learning into slightly less than the
total number of events experienced: 233 < 256 = 1,024/4. The
central panel shows unique transitions among events, where
each event is followed by one and only one subsequent event.
There are three such unique transition matrices. This means that
each event can be followed by up to three other events. This

reflects the plurality of paths among rewarding states in
Figure 23. In other words, there are several paths from one
reward to the next.

Using these allowable transitions, one can identify the events
that precede a rewarding event. By repeating this process recursively
and retaining proceeding events, one can work backward in time and
identify at which point there exists a path to a rewarding event,
defined as an event that contains a hit at the first level. The left panel
of Figure 24 illustrates this analysis graphically by showing whether
reaching a rewarding state within a certain number of events is

FIGURE 23
Policies and attractors. The upper panels show the first four frames generated by a game engine simulating a simple version of Pong. In this game,
the paddle must return a ball that bounces around inside a rectangular box. These images were generated from discrete factors generating (32 × 32)
groups of TrueColor pixels where each (12 × 9) factor (i.e., location) could be in five states, corresponding to three parts of the paddle, a ball, or
background. In the game engine or generative process, the ball simply bounced aroundwith constant momentum,moving from one location to the
next at every time step. The paddle could move in either direction by one location or stay still. A training set of such images (in discretized space) was
generated by concatenating sequences of random play that intervened between ball hits. When expressed in terms of probability distributions over
quantized states, the ensuing trajectory corresponds to an orbit on a high-dimensional statistical manifold (i.e., simplex). The lower panels illustrate the
itinerant nature of this orbit in the space spanned by the first two pairs of singular vectors of the associated time series. The inset provides a magnification
of the orbit near the origin of the projection. This inset speaks to a self-similar aspect of the transitions among unique points in this quantized
(probabilistic) representation. The number of points corresponds to the unique combination of image features in the training set. These points constitute
an attracting set that can be learned under an RGM. Rewarded states or configurations are circled in red, illustrating the fact that there are several paths
available for getting from one sparse reward to the next (via unrewarded states).
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possible. In this example, a rewarding event is accessible in six events
or fewer from all but the final latent states.

One can leverage this characterization of event-based encoding
to implement inductive inference (Friston et al., 2023c), namely, an
efficient form of active inference for discrete state-space models
under precise beliefs about transitions that is reminiscent of
intentional behavior (Tschacher and Haken, 2007). In brief, this
involves recursive applications of the backward transitions to goal
states to identify plausible paths into the future, namely, avoiding the
black states in the left panel of Figure 24. This kind of inductive
planning effectively defines the paths of least action (i.e., expected
free energy) from any given state to our intended or goal state. We
will illustrate inductive inference under the RGM above to
reproduce expert behavior.

Learning expert behavior

To illustrate inductive (planning as) inference, we equipped the
RGM with the prior belief that transitions among the final states
(i.e., events) were under its control. This means, a priori, it believes
that the next event will be on a path to a preferred or rewarded event.
These empirical priors are then propagated down the hierarchy to
predict the next outcome and drive action, which is selected to
minimize variational free energy: see Figure 22 and Equation 1.
Because action can only change outcomes, this minimization
reduces to maximizing the predictive accuracy of outcomes under

allowable actions. In general, this predictive accuracy pertains to
proprioceptive or telemetry data reporting the state of the motor
plant (Adams et al., 2013; Friston et al., 2011; Lanillos et al., 2021).
Here, for simplicity, we used the upper row of visual inputs reporting
the location of the paddle. Note the subtlety of this implementation
of planning as inference: from the agent’s perspective, it does not
explicitly represent action or, indeed, anything that can be overtly
controlled. At the highest level, it is simply predicting a path to
preferred outcomes, which, unsurprisingly from its point of view,
unfolds as anticipated (via control as inference).
Anthropomorphically, the agent does not know that its own
action realized these predictions or that this realization was
operating at a faster timescale than its plans were being
conceived. It simply imagines its own future, unaware it is the
author of its sensorium.

At this point, one might ask why inductive inference is
necessary, given that the RGM can only generate expert play.
The answer is that there is a plurality of paths to the next
rewarding event. By enabling inductive inference by specifying
events that entail a reward, one can be assured that the paths of
least action are selected. One could stop here and illustrate the
performance of inductive inference following structure learning. In
other words, in principle, one can solve reward-learning problems
quickly and efficiently using Bayesian model selection and inductive
inference without recourse to any learning per se. However, we can
recall the benefits of continual (active) learning in previous sections,
which enable the model to generalize to outcomes that have not been

FIGURE 24
Paths to success. This figure illustrates the transitions among events following structure learning and implicit renormalization of the training
sequence. The middle panel shows that the training sequence has been compressed to approximately 256 successive events, with occasional
opportunities to switch paths. This follows from the alternative ways in which the paddle canmove to reach the same (rewarded) endpoint. The left panel
illustrates the paths to hits—that is, rewarded events that include a hit (red circles)—based on the transitions that have been discovered. The requisite
paths are shown in white, while the black regions depict events that preclude a hit within the number of time steps along the Y-axis. These can be
identified by simply iterating the transitions and asking whether there is an allowable transition from any given state to a rewarded state. This
representation suggests that, except for the last few states, there is a path to a reward in six events or fewer (i.e., 6 × 4 = 24 time points). These paths are
identified by inductive inference, which assigns a high cost to latent states that preclude a rewarded outcome. The right panel shows these paths at the
highest level of events by plotting transitions as a series of arrows in the space spanned by the singular vectors (i.e., principal components) of the graph
Laplacian based on the transitions in themiddle panel. Each latent state corresponds to a circle, while red circles denote events that entail a hit or reward.
This illustrates the itinerant paths available for expert play, moving on orbits that pass through rewarded events. The sequence of events leading to these
orbits or attracting latent states can be thought of as an inset, namely, the sequence of events from the initial conditions.

Frontiers in Network Physiology frontiersin.org31

Friston et al. 10.3389/fnetp.2025.1521963

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2025.1521963


encountered before, namely, outcomes that are generated by a
degree of unpredictability or randomness.

Figure 25A shows the result of continual learning over
512 exchanges, using the same format as Figure 17. Crucially, we
introduced stochasticity into action selection to confound the
otherwise expert play the RGM would exhibit. This was modeled
by sampling from the posterior over action, as opposed to selecting the
most likely action. In the active inference literature, this is enabled by a
“shaky hand” parameter (Parr et al., 2022, p177), in other words,
introducing a probabilistic mapping between the agent’s prescribed
movement and the actual execution. This mirrors “sticky action” in
machine learning benchmarks (Machado et al., 2017). Furthermore,
we rendered the likelihood mappings slightly uncertain by adding a
small concentration parameter of (1/128) to the Dirichlet

distributions. In principle, the agent should now be able to learn
precise dynamics under inductive inference. In turn, this should
increase the precision of posterior predictions underwriting action
selection, enabling more confident play as the agent becomes more
experienced. Figure 25A (the panel labeled ELBO) suggests that this
“self-confidence” asymptotes after approximately 400 frames
of gameplay.

The upper panels of Figure 25A show the posterior predictions
emanating from each of the three levels pertaining to states (left
column) and paths (right column). Note that there are no posterior
predictions over paths at the first level, which is simply generating
images in pixel space. The corresponding images for the first four
timesteps are shown in the lower panels in terms of predictions and
the stimuli or frames supplied by the game engine. Performance in

FIGURE 25
(A) Learning expert play. This figure summarizes the results of fast structure learning after exposure to the selected training set. A sequence of
1,024 frames was sampled selectively from 21,280 frames generated with random paddle movement. The ensuing sequence was learned in
approximately 18 s on a standard PC. This figure follows the format of previous figures, showing three discovered transitions among certain events,
corresponding to the alternative ways in which the paddle moved in the training sequence. This sequence has been summarized in terms of
transitions among 233 events. The panel labeled ELBO reports the (negative) variational free energy during continual learning of 512 frames of self-
generated play. The red dots correspond to (rewarded) hits, while the colored lines report the ELBO at each level of the RGM. Because themodel can only
recognize, predict, and thereby realize expert play, the implicit agent never misses the ball (in this example). However, it can learn to become more
confident in its (realized) predictions, as evinced by a gradual increase in the ELBO. (B) Breakout. Here, we repeated the analysis using a slightly more
complicated game based on Breakout and doubled the number of training frames to 2,048. In this version of Breakout, a reward is recordedwhenever the
ball hits a row of targets (see lower panels). The row of targets is then removed to expose the underlying row. If a golden target on the final row is hit, the
game is reset. Whenever the agent misses a ball or on reset, the paddle is reset to the center, and the ball appears at a fixed height and randomly selected
horizontal location around the center. In this example, expert play is confounded by “sticky action,” which means that the movement of the paddle
diverges occasionally from the predicted movement. However, the agent recovers quickly and resumes expert play following each miss. This rests on
waiting for a recognizable event that is within the attracting set that leads to a reward. As in the previous example, there is a slow increase in confidence
with accumulating Dirichlet counts in the likelihoodmappings of the RGM. Note that because this game hasmany more configurations than the previous
game of Pong, there are more paths among events; here, there are five such paths (which are shown as discovered transitions by summing over the path
dimension of the transition tensor at the final level).
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terms of hits (red dots) and negative variational free energy (ELBO)
are shown in the middle panel on the right. Note that the free energy
at each successive level fluctuates more slowly because of the
renormalization in time.

The final game

Figure 25B shows the results of the same simulation using a
slightly more complicated game based on Breakout. In this
simplified game, a row of targets was deleted if, and only if, the
targets were hit by a returned ball. In this example, the number of
frames selected for structure learning under random action was
doubled to 2,048. Otherwise, the active selection, learning, and
(inductive) inference were the same as above.

In this example, unlike the Pong example, the game is reset.
This allowed the introduction of further stochasticity by
replacing the ball to the left or right of the initial location at
random. However, these alternative paths from rewarded states
are accommodated within the RGM, provided they are
experienced as part of the selected training data. Note that
this example introduces a slow change in the nature of events
as rows of targets are progressively eliminated. In other words,
there are fast dynamics as the ball is returned after hit and a
slower succession of episodes as rows of targets are eliminated.
This can be seen in the upper left panel of Figure 25B, which
reports the predictive posteriors from the highest (third) level.
Here, certain episodes are repeated regularly but infrequently as
the agent revisits the same context whenever there is a reset.

The additional complexity and stochasticity afforded by this
game confound as the agent occasionally misses the ball (reported by
the gaps in the red dots in the panel labeled ELBO). However, the
agent can recover, provided it recognizes an event that leads to a
reward. As in the previous illustration, Dirichlet counts are slowly
accumulated under largely expert play, as reflected in the slow
increases in the ELBO as learning progresses.

Conclusion

This paper has showcased several applications of a generative
model for discrete state spaces based on the renormalization
group. The applications used to explain and illustrate the
accompanying belief updating use exactly the same routines and
principles, namely, selecting, learning, and inverting generative
models via the minimization of variational and expected free
energy. The appeal to the apparatus of the renormalization group
is relatively straightforward in this setting. This is because active
inference is an application of the free energy principle, which itself is
a variational principle of least action, whose functional form is
conserved over scales or hierarchical levels (Friston, 2019). One can
leverage this to provide a belief updating process that is
renormalizable over both space and time. The spatial aspect has
been foregrounded by application to content or observations in pixel
space, motivating the use of spin-block transformations that have
proved successful in related applications in physics and machine
learning (Hu et al., 2020; Vidal, 2007). Having said this, the
restriction to spin-block transformations and pixel spaces could

also be regarded as a limitation. In principle, any outcome space
could be a candidate for coarse graining, provided some tessellation
or partition procedure is at hand and can be appropriately motivated
in terms of conditional independencies: see Friston et al. (2021b) for
a worked example in the context of Markov blankets and the
renormalization group.

RGMs with quantized paths may or may not be useful in certain
application domains. The applications above illustrate the simplicity
and efficiency with which the structure of these models can be
learned. Furthermore, their discrete nature lends the requisite belief
updating a straightforward form; resting largely on sum-product
operators, which can be exact in the sense of Bayesian inference. In
turn, this enables efficient forms of planning, such as inductive
inference (Friston et al., 2023c). The downside of these models is that
their parameterization may not be appropriate for complex system
modeling and associated scenario or intervention modeling that is
usually predicated on continuous state-space models. For example,
dynamic causal models are generally parameterized in terms of rate
constants in the context of ordinary or stochastic differential
equations. This means that there is a biophysical interpretation
to the model parameters that can be lost following discretization or,
indeed, discrete switching among dynamical systems. Having said
this, it is always possible to convert a continuous state-space model
into a master equation, specifying transitions among discrete states:
for example, compartmental models of the sort used in biochemistry
and epidemiology (Seifert, 2005; Wang, 2009; Wolkenhauer et al.,
2004). This speaks to the possibility of learning discrete state-space
models using renormalization procedures and then replacing the
Dirichlet parameterization with forms parameterized in terms of
rate constants and accompanying probability fluxes among
compartments or states.

Further limitations of the approach described above rest on the
efficiency of the accompanying methods. This efficiency is both a gift
and a burden. Clearly, in terms of sample efficiency and
compression, the schemes described above are designed to
outperform conventional learning schemes. This follows because
the model selection procedure is constructive, as opposed to the
reductive approach of Bayesian model reduction and related
procedures, enabling the self-assembly of a minimally expressive
model to recognize, generate, and predict the content at hand. This
should be contrasted with the reductive approaches that start with a
large, overly expressive model that is then reduced or pruned,
minimizing complexity to recover predictive validity and
generalization.

However, in committing to a minimally complex, maximally
efficient model structure, one is necessarily committed to the kind of
data used for model selection and learning. This means such models
are necessarily brittle in the sense that they will not recognize or
respond to events they have not previously encountered. A useful
heuristic here is learning to ride a bike: in this kind of procedural
learning, we learn from a starting position and accumulate
successive cycles of peddling until we avoid falling completely. In
other words, we retain only those experiences characteristic of
successful bike riding, until we can ride fluently. However, we
would not be able to ride a bike starting from any arbitrary state,
for example, having fallen over. We would have to return to a known
starting position to recover our flow. Flow is meant in manifold
senses here: the fluency associated with being in the flow (Parvizi-
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Wayne et al., 2024), control flow (Fields et al., 2023a; b), dynamical
flow (Huys et al., 2014; Rabinovich et al., 2012) and, of course, RG
flow (Hu et al., 2020).

The approach to renormalized generative modeling outlined in
this paper owes much to the work of Hermann Haken and his
many contributions to the theoretical context in which the work
reported in this paper arose. We conclude here by drawing some
specific parallels. First, Haken’s work included a focus on the
notion of self-organization (Haken, 2006) and the centrality of
information—in the Shannon sense—in determining principles
for self-organizing systems. Our use of informational (variational
free energy) principles in the self-organization of generative
models closely follows these ideas. A compelling point of
contact between Haken and colleagues’ treatment of the free
energy principle and the work of Jaynes (Haken and Portugali,
2021b) is provided by the duality between the path integral
formulation of the free energy principle (Friston K. et al., 2023)
and the principle of maximum caliber (MaxCal) or maximum path
entropy principle, introduced in an article entitled: “The
Minimum Entropy Production Principle” for non-equilibrium
statistical mechanics (Jaynes, 1980). All of these treatments
foreground the importance of probability densities over paths
or trajectories that underwrite the dynamics of systems in open
exchange with their environment or each other. Second, Haken’s
emphasis on phase transitions as an important element of his
synergetic theory (Haken, 1977; Haken et al., 1985; Haken and
Portugali, 2021a) has an analogy with our treatment in terms of
categorical systems, switching between alternative states. This is
perhaps most obvious in the treatment of chaotic systems like the
Lorenz attractor above, in which the RGM discovers stochastic
switches between alternative phases of the system. Finally, this
paper leans heavily into Haken’s notion that many physical
systems can be described in terms of collaborative subsystems
with levels of organization that can be described at different
temporal resolutions. In a sense, our paper could be
summarized by the idea that “rather complex phenomena
brought about by the cooperation of many subsystems can be
understood and described by a few simple concepts” (Haken, 1975).

Dedication

Patterns become functional because they consume in a most
efficient manner the gradients which cause their evolution,
thereby making synergetic pattern formation appear
“intentional”(Tschacher and Haken, 2007). pp.1.

It is an honor to dedicate this paper to the memory of Hermann
Haken—a scientist and gentleman whose intellect and kindness have
left an immeasurable legacy. I have many fond memories of
interactions with Hermann Haken (Friston, 2017), especially at
the Herbstakademies organized by Wolfgang Tschacher, and
subsequent (handwritten) correspondence (now in my file of
treasures). The work reported below inherits directly from his
foundational work (Haken, 1983) and his guidance in applying
the free energy principle to self-organization in far-from-
equilibrium systems; for example, Haken and Portugali (2016)
and Haken and Portugali (2021b): beautifully articulated as

consuming the free energy gradients that create them (Tschacher
and Haken, 2007).

Specifically, this paper addresses the issue of scaling in
applications of the free energy principle to active inference. In
brief, the free energy principle in question licenses a functionalist
account of self-organization in terms of inference and learning
under a generative model of the sensed world variously referred
to as self-evidencing or Bayesian mechanics (Hohwy, 2016;
Ramstead et al., 2022). This account rests on the definition of
the states of things (i.e., particles) in terms of their (Markov)
boundaries, leading to a recursive definition of things as particles
of particles, where the states of a particle at one scale supply the
(Markov) boundary conditions for the emergence of particles at
the scale above. It is this emergence that rests on the synergetics
of Hermann Haken (Haken, 1983), right down to the use of
eigenfunctions of (Markov) boundary states to supply slow,
unstable macroscopic states for superordinate scales (c.f.,
order parameters) (Friston, 2019). The ensuing cause-effect
structure could be regarded as pre-physics, in the sense that
quantum, statistical, classical, and Bayesian mechanics can be
derived as limit cases. So, why is this important for the
current paper?

The current work is a pragmatic application of active inference
to generative modeling that deals with scaling issues by appeal to the
scale invariance afforded by the recursive application of the slaving
principle (Haken, 1996) under the rubric of the renormalization
group (Friston K., 2019). In short, if the world behaves according to
Haken, then any generative model appropriate for that world will
feature the same scale invariance.

Karl J Friston.
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