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Introduction: Focal resective surgery can be an effective treatment option for
patients with refractory epilepsy if the seizure onset zone is accurately identied
through intracranial EEG recordings. The traditional concept of the epileptogenic
zone has expanded to the notion of an epileptogenic network, emphasizing the
role of interconnected brain regions in seizure generation. Precise delineation of
this network is essential for optimizing surgical outcomes. Over the past 3
decades, several quantitative connectivity methods have been developed to
study the interactions between the seizure onset zone and non-involved
regions. Despite these advances, the mechanisms governing the transition
from interictal to ictal periods remain poorly understood. In this study, we
investigated preictal interactions between the seizure onset zone and the
broader network using directed connectivity measures.

Methods:We evaluated their effectiveness in identifying seizure onset zones using a
multicenter intracranial EEG dataset, encompassing 243 seizures from 61 patients.
Directed transfer function and partial directed coherence were used to extract
connectivity matrices during 28-seconds of preictal period in patients with good
surgery outcomes. Inflow and outflow metrics were computed for iEEG electrode
contact annotated as seizure onset zone and the performance of each metric is
assessed in disentangling these electrodes from the rest of the network.

Results: We observed two distinct patterns of network connectivity preceding
seizure onset. While there was an increase in inflow of information to seizure
onset electrodes in one subset of patients, in the other subset, there was a
prominent outflow of information from seizure onset electrodes to the rest of the
network, suggesting distinct connectivity patterns associated with the seizure
onset zone across patients. Further analyses showed that patients who
underwent the grid/strip/depth implantation approach exhibited significantly
higher area under curve (AUC) than those with electrocorticography (ECoG)
or stereo-electroencephalography (sEEG) alone. Finally, examining the influence
of lesional vs non-lesional neuroimaging status demonstrated that a greater
proportion of high-inflow and high-outflow were lesional.

Conclusion: Our findings reinforce the notion that seizure generation is driven
by dynamic shifts in information flow within the brain’s functional network. The
preictal connectivity patterns observed –either increased inflow to the seizure
onset zone or high outflow from it –underscore the network reorganization
involved in epileptic transitions. These results emphasize epilepsy as a
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network-level phenomenon, supporting the use of network concepts for better
understanding seizure dynamics and improving surgical localization strategies.
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intracranial EEG, inflow/outflow dynamics, seizure onset zone, preictal period, network
physiology

1 Introduction

In a subset of patients with refractory epilepsy, focal resective
surgery may provide significant seizure control if the seizure onset
zone (SOZ), i.e., clinically-identified electrode contacts where the
first ictal changes are recorded, can be adequately identified based on
intracranial EEG (iEEG) recordings in selected areas of suspected
epileptogenicity (Wendling et al., 2010). In the early 2000s, the
notion of the epileptogenic zone (EZ), i.e., neuroanatomical areas
that are necessary and sufficient to generate epileptic seizures, as a
single cortical focus fundamentally evolved to the concept of an
epileptogenic network, highlighting that focal epilepsy involves a
network of brain regions that interact to generate seizures
(Bartolomei et al., 2017). In some cases, the epileptogenic
network corresponds to a relatively restricted area of the brain,
closely resembling the classical EZ concept (Rosenow and Luders,
2001). In others, the epileptogenic network could be more extensive
and complex, which may explain why some seizures have discharges
that rapidly or even simultaneously affect several brain regions on
iEEG (Wendling et al., 2010; Bartolomei et al., 2005).

Accurately delineating the SOZ and its interactions with the rest
of the network is critical for achieving improved seizure control
following epilepsy surgery (Rummel et al., 2015). Over the past
3 decades, quantitative methods have been proposed to investigate
these interactions (Bernabei et al., 2023). With the emergence of
functional connectivity and graph-based methods, many studies
explored alterations in the interaction between EZ, propagation
zones and non-involved zones during interictal, preictal, ictal, and
postictal periods (Li et al., 2016; Narasimhan et al., 2020; Jiang et al.,
2022; Johnson et al., 2023; Paulo et al., 2022; Doss et al., 2024;
Courtens et al., 2016; Van Mierlo et al., 2013; Bettus et al., 2011;
Lagarde et al., 2018; Varotto et al., 2012; Krishnan et al., 2024).
Notably, four main families of connectivity approaches have
garnered significant attention: Granger causality (Li et al., 2016;
Narasimhan et al., 2020; Jiang et al., 2022; Johnson et al., 2023; Paulo
et al., 2022; Doss et al., 2024; Van Mierlo et al., 2013; Coito et al.,
2019; Janca et al., 2021; Jung et al., 2011; Korzeniewska et al., 2014;
Van Mierlo et al., 2011; Van Mierlo et al., 2016; Vespa et al., 2020;
Wilke et al., 2010; Yang and Madsen, 2021; Bou Assi et al., 2019),
information theory (Karunakaran et al., 2018; Shamas et al., 2022;
Weiss et al., 2022), amplitude-based methods (Antony et al., 2013;
Bernabei et al., 2022; Conrad et al., 2022; Englot et al., 2015; Fan
et al., 2022; Shah et al., 2019; Tomlinson et al., 2018; Tomlinson
et al., 2017; Zaveri et al., 2009), and phase-based methods (Campora
et al., 2019; Fujiwara et al., 2022; Ibrahim et al., 2012; Ibrahim et al.,
2013; Nissen et al., 2016; Rijal et al., 2023; Shokooh et al., 2021; Bou
Assi et al., 2020). Each method offers unique insights but also
presents methodological limitations. For instance, methods based
on Granger causality such as the directed transfer function (DTF)
and partial directed coherence (PDC) can indicate the direction of

information flow between iEEG electrode contacts but are blind to
non-linear interactions between or within signals. Furthermore, due
to the different normalization procedures that these methods
require, PDC is assumed to be more sensitive to inflow and
controls for indirect connections, while DTF compromises the
sensitivity to outflow and reflects both directed and non-directed
connections. Although directed connectivity approaches have
shown overall superior performances in disentangling SOZ
contacts form the rest of the network (non-SOZ) contacts
compared to non-directed approaches (Narasimhan et al., 2020;
Paulo et al., 2022), variations in methodologies such as the choice of
frequency band can influence the performance of these measures
(Courtens et al., 2016).

The functional brain network, derived from iEEG recordings,
has the potential to uncover valuable insights about underlying
network’s properties and internal organization at global, local and
intermediate scales (for a review please refer to (Brohl et al., 2023;
Sinha et al., 2022)). Specifically, measures of integration, such as
strength centrality and betweenness centrality, and metrics of
segregation, such as clustering coefficient and assortativity, of the
functional iEEG network have been shown to reflect alterations
during preictal (Kuhnert et al., 2010; Geier et al., 2015; Rings et al.,
2019a; Rings et al., 2019b) and ictal (Schindler et al., 2008; Kramer
et al., 2010; Bialonski and Lehnertz, 2013) periods compared to
seizure-free intervals. From the global scale network’s measures, it
has been reproduced in several studies that both clustering
coefficient and average shortest path length increase during
seizure periods, manifesting a more segregated network.

While various approaches with differences in methodologies
have been used to estimate interactions between SOZ and non-SOZ,
two primary patterns consistently emerged across studies. During
the ictal period, the SOZ exerts control over the network, driving it
toward a hyper-synchronized state (Courtens et al., 2016; Van
Mierlo et al., 2013; Lagarde et al., 2018). In contrast, during the
interictal period, non-SOZ actively suppress the SOZ, providing a
compelling explanation for why the epileptic brain does not seize
continuously (Jiang et al., 2022; Johnson et al., 2023; Gunnarsdottir
et al., 2022). This prompts important questions about the
mechanisms underlying the transition from the interictal to the
ictal phase, as only a few studies have explored the interaction
dynamics between SOZ and non-SOZ during the preictal period (Li
et al., 2016; Courtens et al., 2016)—an investigation that could offer
valuable insights into the mechanisms of seizure generation.
Specifically, does the non-SOZ continue to exert suppressive
control (e.g., the mechanism of actively suppressing the SOZ by
the rest of the network (e.g., the healthy regions) during seizure-free
periods) over the SOZ up until seizure onset, or does the SOZ
gradually overcome this suppression during the preictal period?

In this study, we investigated the dynamics and interactions
between the SOZ and non-SOZ during the preictal period using two
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connectivity approaches: PDC and DTF. Furthermore, we aimed
to evaluate and compare the effectiveness of these graph-based
connectivity measures in distinguishing SOZ from non-SOZ
contacts. The analysis was conducted on an iEEG dataset
from four centers, including a total of 243 seizures from
61 patients.

2 Materials and methods

2.1 Patient selection

iEEG recordings from three datasets were used for the analysis,
including one dataset from epilepsy centre of Centre Hospitalier de
l’Université de Montréal (CHUM) and two publicly available
datasets in standard BIDS format on OpenNeuro (Bernabei et al.,
2023). The open-access datasets include ds003029, which contains
iEEG recordings from National Institute of Health (NIH) and
University of Maryland Medical Center (UMMC) and ds004100,
which includes recordings from Johns Hopkins Hospital (JHH). All
datasets include detailed clinical metadata such as implant type,
surgical procedure (i.e., resection or ablation), postoperative
outcome, electrode labels, and standardized coordinates. These
datasets also specify which electrode contacts were targeted by

surgery. Seizures onset channels were identified by board-certified
epileptologists at each center independently, and the non-SOZ
channels were defined as all remaining channels. In the open-
access datasets (ds003029 and ds004100), SOZs were provided
for each patient (though not for individual seizures), along with
the channels overlapping the resection or ablation zones. For the
CHUMdataset, SOZ were annotated for each seizure independently.
iEEG recordings from the different centers were collected at varying
sampling frequencies, ranging from 250 Hz to 2 kHz. Recordings
with an original sampling rate below 500 Hz were excluded from the
analysis, as this was deemed the minimum acceptable rate for
reliable multivariate autoregressive modeling of iEEG segments to
compute Granger causality connectivity matrices (Li et al., 2016;
Van Mierlo et al., 2011; Wilke et al., 2010; Wilke et al., 2009).
Additionally, iEEG recordings were excluded from the analysis if
they were too short (<30 s of preictal activity), lacked information on
seizure onset timing, or involved purely electrographic seizures
(without clinical manifestations). All participants underwent
invasive presurgical evaluations to localize SOZs and in many
cases, map eloquent brain areas. Stereoelectroencephalography
(SEEG), electrocortigography (ECoG) or a combination of strip,
grid, and depth electrodes were placed in regions of suspected
epileptogenicity. Inclusion criteria were patients with favorable
surgical outcomes (Engel class I or II) and a minimum of two

FIGURE 1
Schematic representation of the analysis pipeline (A) Preictal and ictal periods, totaling 28 s, are divided into seven segments of 4 s each (B) For each
segment, connectivity matrices (PDC and DTF) are computed, with surrogate testing applied to eliminate random connections. Hypothetical SOZ
channels, identified through visual inspection by epileptologists, are used to assess the performance of inflow and outflow measures in distinguishing
SOZ from non-SOZ channels.
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recorded electroclinical seizures. The results presented in this study
are based on three distinct iEEG datasets (i.e., CHUM, ds003029,
and ds004100) rather than being stratified by the four
contributing centers.

2.2 Data analysis

2.2.1 Preprocessing
As this study does not involve neuroimaging data, a formal

harmonization process was not required. However, to ensure
consistency across datasets from different centres, we applied
standardized preprocessing pipeline to all iEEG recordings. This
included uniform filtering, artifact removal, and normalization
procedures to minimize variability between datasets and maintain
comparability of results. For all iEEG datasets (i.e., CHUM,
ds003029, and ds004100), electrodes identified as artifactual
through visual inspection by expert epileptologists were excluded
from the analysis. The remaining electrodes were band-pass filtered
(3–45 Hz) with a notch filter at 60 Hz and subsequently
downsampled to 500 Hz in MNE-Python (Gramfort et al., 2013).
Additionally, the signals were standardized using z-scoring prior to
performing effective connectivity analysis (van Mierlo et al., 2018).
For each seizure, we analysed 28 s of preictal iEEG recordings
(before seizure onset) and 28 s of ictal iEEG recordings (following
electrical seizure onset). To capture connectivity dynamics and meet
quasi-stationary requirements of multivariate autoregressive models
(MVAR), each 28-s period was partitioned into seven non-
overlapping 4-s segments (Li et al., 2016). Schwarz’s Bayesian
criterion was used to estimate model order selection during the
MVAR estimation step. We observed that for each patient, the
model order remained consistent across 4-s epochs within and
across seizures. An overview of the data analysis pipeline is
presented in Figure 1.

2.2.2 Connectivity analysis
Two connectivity methods, namely, DTF and PDC, were

selected to analyse preictal and ictal iEEG recordings.
Connectivity analysis was performed in MATLAB using custom
scripts and FieldTrip toolbox (www.fieldtriptoolbox.org) functions
(Oostenveld et al., 2011).

DTF and PDC are complementary methods used to infer the
direction of information flow in a network. DTF provides a global
measure of how activity from one region can influence others,
making it particularly relevant for understanding large-scale
epileptic networks involved in seizure propagation. PDC, on
the other hand, offers a more focused view, emphasizing direct,
pairwise directional influences, making it well-suited for
identifying the primary drivers of seizure activity within a
specific brain region (Li et al., 2016; Narasimhan et al., 2020;
Johnson et al., 2023; Paulo et al., 2022; Van Mierlo et al., 2013;
Shokooh et al., 2021). Both DTF and PDC methods use a
multivariate autoregressive modelling approach. The open-
source MATLAB package ARFIT (Neumaier and Schneider,
2001; Schneider and Neumaier, 2001) was used to estimate
autoregressive coefficients for each non-overlapping 4-s
window. Optimal model order was defined by minimizing the
Akaike information criterion (Akaike, 1974).

2.2.3 Surrogate testing analysis
To assess the statistical significance of the connectivity estimates

and eliminate spurious interactions between iEEG channels, a
nonparametric surrogate data method was employed. In this
approach, the original iEEG time series was Fourier transformed,
and the phases of the Fourier coefficients were randomly shuffled to
create surrogate data, disrupting temporal correlations between
channels while preserving the spectral properties of the signals.
The connectivity methods were then applied to the surrogate
datasets, and this process was repeated 100 times to generate a
distribution of connectivity values corresponding to the null
hypothesis of no true interaction. Based on this distribution, a
significance threshold was set at p = 0.05, and any connectivity
links that did not exceed this threshold were considered spurious
and discarded from further analysis.

2.2.4 Graph analysis
Inflow and outflow were extracted from DTF and PDC

connectivity matrices for each iEEG channel. These measures
have demonstrated strong performance in distinguishing SOZ
nodes from the non-SOZ nodes during both interictal and ictal
periods (Narasimhan et al., 2020; Jiang et al., 2022; Paulo et al., 2022;
Doss et al., 2024; Janca et al., 2021). We used the Brain Connectivity
Toolbox (www.brain-connectivity-toolbox.net) (Rubinov and
Sporns, 2010) to compute these measures.

2.2.5 Performance assessment
To evaluate the performance of each graph measure (i.e., inflow

and outflow), we assessed the area under the receiver operating
characteristic (ROC) curve. The true positive rate was plotted
against the false positive rate using the thresholded values of
each normalized measure against the ground truth, defined as the
seizure onset channels identified by expert epileptologists. A full
threshold range from 0 to 1 was considered. The area under the ROC
curve (AUC) was then computed to assess the performance of the
various measures, with an AUC of 1 representing perfect
classification (Burns et al., 2014).

2.2.6 Statistical analysis
The normality of the inflow and outflow distributions for SOZ

and non-SOZ channels was assessed using the Kolmogorov-
Smirnov test. As normality was rejected, the non-parametric
Wilcoxon rank-sum test was used to compare the median inflow
and outflow distributions, as well as AUC values between the two
patient groups. To account for multiple comparisons, Bonferroni
correction was applied.

3 Results

3.1 Patient population

In total, we analyzed iEEG data from 61 patients (26 females; mean
age: 34.5, range: 13–59 years) who underwent invasive monitoring for
medically refractory epilepsy. The seizure duration across three datasets
were high variable. Specifically, the median seizure duration in CHUM,
ds004100, and ds003029 datasets are 55.80 s [IQR: 37.82–80–87], 73 s
[IQR: 43–103], and 105.71 s [IQR: 86.44–158.50]. A total of 243 seizures
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TABLE 1 Presents the demographic and clinical characteristics of the 61 patients included in this study. In the CHUM iEEG recordings, seizure onset zones were annotated for each seizure. Therefore, the average
number of SOZ per patient is presented in the table. Acronyms used: F (female), M (male), NIH (National Institute of Health), CHUM (the Centre hospitalier de l’Université de Montréal), JHH (Johns Hopkins Hospital),
UMMC (the University of MarylandMedical Center), L (left), R (right), MTS (Mesial Temporal Sclerosis), CD (Cortical Dysplasia), MTL (Mesial Temporal Lobe), SOZ (seizure onset zone), AVE (average), MFL (Mesial Frontal
Lobe).

Patients’
ID

Clinical
centre

Number
of

seizures

Number
of

channels

Number of
resected
channels

Number of
seizure
onset

channels

Engle
score

Years of
follow
up

Age at
surgery

Gender Presumed
epileptogenic brain

region

Imaging findings Modality

pt1 nih 4 84 n/a 10 I 3 30 F R anterior temporal lobe Large area of encephalomalacia in
R parietal region. Smaller areas in
R and L posterior temporal
regions. Possible R MTS as well

ECOG

pt2 nih 3 62 n/a 8 I 3 28 F L anterior temporal lobe L mesial temporal sclerosis ECOG

pt3 nih 2 97 n/a 37 I 2 45 M R frontal lobe normal ECOG

pt6 nih 3 80 n/a 12 II 3 33 M L anterior temporal lobe nonspecific ECOG

pt8 nih 3 59 n/a 16 I 2 25 M R posterior temporal lobe normal ECOG

pt10 nih 3 55 n/a 10 II 1 44 F L anterior temporal lobe L MTS ECOG

pt11 nih 4 78 n/a 24 I 1 31 M R parietal lobe normal ECOG

pt13 nih 4 117 n/a 6 I 2 27 M R parietal lobe normal ECOG

pt15 nih 4 71 n/a 18 I 2 59 F L anterior temporal lobe L MTS ECOG

pt16 nih 3 46 n/a 6 I 2 52 F R anterior temporal lobe,
meningioma

R inferior frontal meningioma ECOG

ummc002 ummc 3 49 n/a 10 I 4 17 M L temporal lobe normal, L temporal
hypometabolism

ECOG

ummc005 ummc 2 48 n/a 6 I 1 47 M R temporal lobe Normal ECOG

ummc008 ummc 2 50 n/a 23 I 1 49 M R temporal lobe R MTS, normal ECOG

ummc009 ummc 3 45 n/a 14 I 1 36 M R lateral temporal lobe R posterior temporal CD ECOG

jh05 ummc 5 85 n/a 28 I 1 n/a n/a R temporal lobe n/a ECOG

HUP065 hup 3 64 15 16 IB n/a 36 M temporal lesional ECOG

HUP070 hup 5 63 23 10 IB n/a 33 M frontal pole non-lesional ECOG

HUP074 hup 5 114 59 6 IC n/a 25 F temporal lesional ECOG

HUP082 hup 5 86 43 13 IA n/a 56 F temporal lesional ECOG

HUP087 hup 2 84 5 12 ID n/a 24 M frontal lesional ECOG

HUP088 hup 3 54 7 8 ID n/a 35 F temporal lesional ECOG

HUP089 hup 4 94 10 3 IB n/a 29 M temporal lesional ECOG

HUP094 hup 3 83 3 3 IB n/a 48 F temporal non-lesional ECOG

(Continued on following page)
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TABLE 1 (Continued) Presents the demographic and clinical characteristics of the 61 patients included in this study. In the CHUM iEEG recordings, seizure onset zones were annotated for each seizure. Therefore, the
average number of SOZ per patient is presented in the table. Acronyms used: F (female), M (male), NIH (National Institute of Health), CHUM (the Centre hospitalier de l’Université de Montréal), JHH (Johns Hopkins
Hospital), UMMC (the University of Maryland Medical Center), L (left), R (right), MTS (Mesial Temporal Sclerosis), CD (Cortical Dysplasia), MTL (Mesial Temporal Lobe), SOZ (seizure onset zone), AVE (average), MFL
(Mesial Frontal Lobe).

Patients’
ID

Clinical
centre

Number
of

seizures

Number
of

channels

Number of
resected
channels

Number of
seizure
onset

channels

Engle
score

Years of
follow
up

Age at
surgery

Gender Presumed
epileptogenic brain

region

Imaging findings Modality

HUP097 hup 5 92 16 7 ID n/a 39 F temporal non-lesional ECOG

HUP105 hup 2 55 4 9 IA n/a 39 M temporal lesional ECOG

HUP106 hup 3 115 10 5 IB n/a 45 F temporal non-lesional ECOG

HUP107 hup 5 117 23 22 IA n/a 36 M temporal non-lesional ECOG

HUP111 hup 5 101 7 13 IB n/a 40 F temporal non-lesional ECOG

HUP116 hup 3 50 5 8 IA n/a 59 F MTL lesional SEEG

HUP117 hup 3 49 3 7 IA n/a 39 M temporal lesional SEEG

HUP123 hup 4 117 24 7 IA n/a 36 M temporal lesional ECOG

HUP126 hup 4 125 9 2 IA n/a 26 F MTL non-lesional ECOG

HUP130 hup 5 120 3 2 IB n/a 46 F MFL non-lesional SEEG

HUP139 hup 3 73 11 8 IA n/a 20 M parietal lesional SEEG

HUP140 hup 3 86 6 4 IB n/a 47 F MTL non-lesional SEEG

HUP141 hup 5 113 13 13 IC n/a 30 M MTL non-lesional SEEG

HUP142 hup 3 108 10 15 ID n/a 30 M MTL lesional SEEG

HUP144 hup 5 111 15 6 ID n/a 31 M temporal lesional SEEG

HUP146 hup 3 122 7 11 IA n/a 16 M temporal non-lesional SEEG

HUP148 hup 5 101 11 25 IA n/a 23 M temporal lesional SEEG

HUP150 hup 5 89 1 8 IB n/a 17 M insular lesional SEEG

HUP157 hup 5 164 6 13 IB n/a 25 M MTL non-lesional SEEG

HUP160 hup 3 102 13 21 IA n/a 45 F temporal non-lesional SEEG

HUP163 hup 3 156 8 6 ID n/a 42 F MTL non-lesional SEEG

HUP164 hup 3 176 3 9 ID n/a 34 F MTL lesional SEEG

HUP177 hup 3 172 18 13 IA n/a 42 F temporal non-lesional SEEG

HUP180 hup 5 111 5 8 IA n/a 28 F frontal lesional SEEG

HUP185 hup 5 113 9 6 IA n/a 38 M MTL lesional SEEG

pt1 chum 11 97 6 AVE = 6 I n/a 49 M R parietal lobe non-lesional

(Continued on following page)
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TABLE 1 (Continued) Presents the demographic and clinical characteristics of the 61 patients included in this study. In the CHUM iEEG recordings, seizure onset zones were annotated for each seizure. Therefore, the
average number of SOZ per patient is presented in the table. Acronyms used: F (female), M (male), NIH (National Institute of Health), CHUM (the Centre hospitalier de l’Université de Montréal), JHH (Johns Hopkins
Hospital), UMMC (the University of Maryland Medical Center), L (left), R (right), MTS (Mesial Temporal Sclerosis), CD (Cortical Dysplasia), MTL (Mesial Temporal Lobe), SOZ (seizure onset zone), AVE (average), MFL
(Mesial Frontal Lobe).

Patients’
ID

Clinical
centre

Number
of

seizures

Number
of

channels

Number of
resected
channels

Number of
seizure
onset

channels

Engle
score

Years of
follow
up

Age at
surgery

Gender Presumed
epileptogenic brain

region

Imaging findings Modality

Grid/strips
and depth

pt2 chum 5 104 12 AVE = 8.6 I n/a 32 F R fronto-parietal non-lesional Grid/strips
and depth

pt7 chum 9 61 20 AVE = 7.1 I n/a 29 F L frontal plus (=fronto-temporo-
insular)

non-lesional Grid/strips
and depth

pt9 chum 4 105 6 AVE = 8.5 I/II n/a 18 F L insular-opercular non-lesional Grid/strips
and depth

pt11 chum 7 91 7 AVE = 6.4 I n/a 35 M R frontal cortical atrophy Grid/strips
and depth

pt12 chum 3 88 12 AVE = 4.6 I n/a 46 M L insular plus (insulo-opercular) non-lesional Grid/strips
and depth

pt14 chum 4 73 6 AVE = 14.5 I n/a 23 M L fronto-parietal non-lesional Grid/strips
and depth

pt16 chum 5 101 21 AVE = 3.8 II n/a 29 M R-combined temporal plus and
generalized epilepsy (combined
temporo-insular and generalized
epilepsy)

hippocampal sclerosis Grid/strips
and depth

pt17 chum 4 114 25 AVE = 1 II n/a 22 M R frontal non-lesional Grid/strips
and depth

pt21 chum 5 111 2 AVE = 6.8 II n/a 36 M L frontal plus (=fronto-insular) no clearly reliable lesion Grid/strips
and depth

pt22 chum 5 108 25 AVE = 4.2 I n/a 34 M R frontal non-lesional Grid/strips
and depth

pt23 chum 2 99 7 AVE = 8.5 II n/a 40 F temporal periventricular nodular
heterotopia

Grid/strips
and depth

pt25 chum 3 113 7 AVE = 1.3 I n/a 19 F L parieto-occipital focal CD Grid/strips
and depth
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(mean number of iEEG channels: 92.96, range: 45–176). Patient
demographics are provided in Table 1.

3.2 Per-patient analysis

We found that patients in each dataset could be categorized into
two groups during the preictal period: those with high inflow to SOZ
channels and those with high outflow from SOZ channels. We
observed a substantial difference in the distribution of classified
patients across these datasets. Notably, 77% of patients in the
CHUM dataset, 30% in the ds004100 dataset, and 20% in the
ds003029 dataset could be classified into one of these two groups.
The summary of results is presented in Table 2.

3.2.1 High inflow to SOZ channels during the
preictal period

For a subset of patients in each dataset, we observed a distinct
pattern where both PDC-based and DTF-based inflow of
information to the SOZ channels was consistently higher than
that to the non-SOZ channels in preictal period (p < 0.05,
Wilcoxon rank-sum test). In Figures 2A, C, dynamics of PDC-
derived normalized outflow and inflow of SOZ and non-SOZ
channels during 28 s of preictal and ictal periods are plotted
from Patient Pt09 (CHUM dataset), respectively. Although no
significant difference is observed between the median outflow of
SOZ and non-SOZ channels (p = 0.26, Wilcoxon rank-sum test;
Figure 2B), the normalized inflow values for the SOZ channels rise
significantly as the seizure approaches (p = 9.2572e-15, Wilcoxon
rank-sum test; Figure 2D; DTF-based outflow dynamics for the same
patient is shown in Supplementary Figure S1). Across the group of
patients showing this pattern, the normalized median PDC-based
and DTF-based inflow to SOZ channels during the seven segments
of the preictal period was 0.44 [IQR: 0.26–0.61] and 0.61 [IQR:
0.44–0.76], compared to 0.32 [IQR: 0.16–0.50] and 0.56 [IQR:
0.41–0.71] for non-SOZ channels, respectively. This trend
suggests that in these patients, the SOZ channels are highly
influenced by the surrounding network leading up to seizure onset.

3.2.2 High outflow from SOZ channels during the
preictal period

In contrast, another group of patients displayed a pattern where
both PDC-based and DTF-based outflow from the SOZ channels to
the rest of the network was significantly higher during preictal
period (p < 0.05, Wilcoxon rank-sum test), potentially contributing
to seizure generation and propagation. In Figures 3A, C, PDC-
derived normalized values of outflow and inflow of SOZ and non-
SOZ channels during 28 s of preictal and ictal periods are illustrated
from Patient Pt14 (CHUM dataset), respectively. While outflow
from the SOZ channels significantly increases during preictal
segments and remains elevated up to the seizure onset (p =
3.58e-11, Wilcoxon rank-sum test; Figure 3B), the median inflow
to non-SOZ channels is significantly higher than to SOZ channels
(p = 9.95e-5, Wilcoxon rank-sum test; DTF-based outflow dynamics
for the same patient are shown in Supplementary Figure S2). For
these patients, the median PDC-based and DTF-based outflow from
SOZ channels during the preictal period was 0.67 [IQR: 0.52–0.80]
and 0.28 [IQR: 0.10–0.47], while the non-SOZ channels showed an

outflow of 0.61 [IQR: 0.44–0.76] and 0.18 [IQR:0.02–0.40],
respectively.

3.3 Grouping of patients based on
observed patterns

3.3.1 Overall AUC performances for inflow and
outflow measures

The initial analysis focused on evaluating the overall
performance of inflow and outflow measures in disentangling
SOZ channels from non-SOZ channels across all patients.
When pooling data from the entire datasets (61 patients with
243 seizures), the ability of these measures to dissociate SOZ from
non-SOZ channels was limited. For inflow measure, the median
pooled AUC for separating SOZ and non-SOZ channels was
0.49 [IQR: 0.44–0.56], indicating suboptimal performance.
Similarly, the median pooled AUC for outflow measures was
0.51 [IQR: 0.45–0.57], further highlighting the challenge in
identifying a robust and consistent pattern across diverse
patient population (Figure 4). These results suggest that, when
combining all patients without accounting for individual
connectivity patterns, inflow and outflow measures alone might
not be sufficient to reliably disentangle SOZ from non-SOZ
channels during the preictal period.

3.3.2 AUC performances after grouping patients by
connectivity patterns

To further explore the potential of inflow and outflow measures
for the identification of SOZ channels, we regrouped patients based
on the two dominant patterns observed in the network dynamics
analysis: high inflow to SOZ channels and high outflow from
SOZ channels.

3.3.2.1 Inflow-dominant group
In patients showing high inflow to SOZ channels during the

preictal period (16 patients with 66 seizures), the AUC for inflow
measures slightly improved. The median PDC and DTF inflow-
derived AUC for this subgroup were 0.57 [IQR: 0.51–0.64] and
0.54 [IQR: 0.48–0.61], respectively. Moreover, we observed that
the median PDC and DTF outflow-derived AUC for this
subgroup were 0.48 [IQR: 0.42–0.55] and 0.48 [IQR:
0.43–0.53], respectively. This suggests that inflow-based
metrics could be more effective at dissociating SOZ from non-
SOZ channels when this pattern is present, regardless of the
connectivity method used.

3.3.2.2 Outflow-dominant group
In patients where high outflow from SOZ channels to the rest of

the network was observed during the preictal period (7 patients with
31 seizures), the outflow measures also showed improved
performance. The median PDC and DTF outflow-derived AUC
in this group increased to 0.58 [IQR: 0.52–0.65] and 0.59 [IQR:
0.54–0.70], respectively. Furthermore, the median PDC and DTF
inflow-derived AUC for this subgroup were 0.46 [IQR: 0.40–0.51]
and 0.46 [IQR: 0.40–0.53], respectively. This indicates that outflow
dynamics could more reliably separate SOZ from non-SOZ channels
in these patients.
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3.3.3 Comparative AUC analysis
Figure 5 presents a comparative analysis between the inflow-

based AUC and outflow-based AUC values in both groups. The
inflow-dominant patients consistently showed higher AUC values
for inflow measures during the preictal period (p < 0.05, Wilcoxon
rank-sum test), while the outflow-dominant patients exhibited
improved AUC for outflow measures (p < 0.05, Wilcoxon rank-
sum test). This suggests that grouping patients based on observed
connectivity patterns can enhance the distinguishing power of these
network measures. Interestingly, the observed improvement was
preserved when DTF was used to extract inflow-based and outflow-
based AUC values in both groups (Supplementary Figure S3).
Comparative analysis of AUC values between the preictal and
ictal periods for both inflow-dominant and outflow-dominant
groups reveals that the preictal period consistently yields
significantly higher median AUC values than the ictal period.

This finding suggests improved performance in identifying SOZ
channels when focusing on the preictal phase, with statistical
significance demonstrated for both groups (p = 2.07e-11,
Wilcoxon rank-sum test, for the inflow-dominant group and p =
2.29e-12, Wilcoxon rank-sum test, for the outflow-dominant
group). Figures 6A, B illustrate the distribution of AUC values
within each group, showcasing the marked difference in SOZ
identification potential between these phases.

3.3.4 The effect of number of implanted electrodes
on connectivity classification categories

We conducted a correlation analysis to assess the potential
influence of the distance between electrodes and number of
implanted electrodes on our findings. Specifically, we observed
no significant difference in the number of implanted electrodes
between high-inflow and high-outflow groups (Supplementary

TABLE 2 This table summarizes the key findings of this study. Median values of AUC and the interquartile range (IQR) are presented for each group. The
following symbols are used in the table: ↑” Higher values in SOZ compared to non-SOZ. ≈ ” No significant different was observed.

Patient
Group

Inflow (SOZ vs
non-SOZ)

Outflow (SOZ vs
non-SOZ)

AUC (PDC-
inflow)

AUC (PDC-
outflow)

Key Observation

Inflow-Dominant ↑ SOZ (higher inflow) ≈ (no significant difference) 0.57 [IQR: 0.51–0.64] 0.46 [IQR: 0.40–0.51] SOZ receive more information

Outflow-
Dominant

≈ (no significant difference) ↑ SOZ (higher outflow) 0.48 [IQR: 0.42–0.55] 0.58 [IQR: 0.52–0.65] SOZ distribute more information

Pooled Dataset Mixed trend Mixed trend 0.49 [IQR: 0.44–0.56] 0.51 [IQR: 0.45–0.57] No dominant pattern when pooling
all datasets

FIGURE 2
(A, C) Dynamics of PDC-based inflow and outflow for SOZ and non-SOZ channels over 28 s during the preictal and ictal periods is presented for
pt09 from CHUM dataset (B, D) Although no significant difference is observed in the median outflow between SOZ and non-SOZ channels (p = 0.26,
Wilcoxon rank-sum test; Cohen’s d effect size = 0.063), the median inflow to SOZ channels is significantly higher than that of non-SOZ channels (p =
9.2572e-15, Wilcoxon rank-sum test; Cohen’s d effect size = 0.49). IF: inflow; OF: outflow.
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FIGURE 3
(A, C) Dynamics of PDC-based inflow and outflow for SOZ and non-SOZ channels over 28 s during the preictal and ictal periods is presented for
pt14 fromCHUM dataset (B, D) Statistical analysis reveals that the median outflow from SOZ channels is significantly higher than from non-SOZ channels
(p = 3.58e-11, Wilcoxon rank-sum test; Cohen’s d effect size = 0.38), while the median inflow to non-SOZ channels is significantly higher than to SOZ
channels (p = 9.95e-5, Wilcoxon rank-sum test, Cohen’s d effect size = 0.19). IF: inflow; OF: outflow.

FIGURE 4
Distribution of outflow-based and inflow-based AUC values when all patients and seizures are pooled. The median of two distributions is close to
0.5, representing a random guess.
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Figure S6; p = 0.80, Wilcoxon rank-sum test; Cohen d effect
size = 0.055).

3.3.5 The effect of implantation approaches on
connectivity classification categories

We analyzed the distribution of implantation approaches among
patients and their association with connectivity classification. We
observed that larger number of patients who underwent a combined
implantation approach (grid/strip/depths) were classified in either
the high inflow or high outflow groups (Table 3; Supplementary
Figure S1). Additionally, we compared AUC values across the three
implantation approaches (ECoG, sEEG, and combination of grid/
strip/depth electrodes) and found that patients with a combined
grid/strip/depth implantation exhibited significantly higher AUC
values than those with either ECoG or sEEG alone. This pattern was
consistently observed in both high inflow and high outflow groups
(Supplementary Figure S8).

These findings highlight the importance of considering
implantation methodology when interpreting connectivity analyses
and reinforce the notion that a hybrid implantation strategy may
provide a more comprehensive assessment of epileptogenic networks.

3.3.6 The effect of neuroimaging findings on
connectivity classification categories

We examined whether lesional vs non-lesional status influenced
our results. Among patients classified as high inflow or high outflow,
we observed that a higher number of patients were lesional, as
indicated by imaging findings (Supplementary Figure S9).
Additionally, statistical comparisons between lesional and non-
lesional groups revealed that within the high inflow group,
lesional patients exhibited significantly higher AUC values,
suggesting stronger discriminability in this subgroup
(Supplementary Figure S10A). However, in the high outflow
group, no significant difference was observed between lesional
and non-lesional patients (Supplementary Figure S10B).

4 Discussion

4.1 Summary of key findings

The analysis of iEEG recordings across three datasets from
four different institutions highlighted two distinct patterns of
network connectivity preceding seizure onset, with implications
for understanding seizure dynamics. In one subset of patients,
there was an increase in inflow of information to SOZ channels
during the preictal period, suggesting that these channels are
influenced by surrounding areas before seizures. Our analysis
revealed no significant difference in the number of implanted
electrodes between patients classified into high-inflow and high-
outflow groups. We found that patients who underwent a
combined implantation approach (grid/strip/depths) were
more frequently classified in either the high inflow or high
outflow groups. Notably, these patients exhibited significantly
higher AUC values compared to those with ECoG or sEEG
alone, a pattern consistently observed across both connectivity
groups. Additionally, we examined the influence of lesional vs
non-lesional status and found that a greater proportion of high-
inflow and high-outflow patients were lesional. Within the high
inflow group, lesional patients demonstrated significantly
higher AUC values, indicating stronger discriminability in
this subgroup. However, in the high outflow group, AUC
values did not significantly differ between lesional and non-
lesional patients. While these findings suggest distinct preictal
network dynamics, we do not claim that they directly explain
seizure initiation mechanisms. Instead, they highlight
variability in how SOZ and non-SOZ regions interact before
seizure onset, which may reflect different underlying
susceptibilities to ictogenesis. By refining our presentation,
we aim to provide a clearer link between these network
interactions and seizure localization without overinterpreting
their mechanistic implications.

FIGURE 5
(A) Inflow-dominant group: In this group, themedian AUC values based on inflow are significantly higher than those based on outflow (p = 7.87e-31),
Wilcoxon rank-sum test (B)Outflow-dominant group: In this group, themedian AUC values based on outflow are significantly higher than those based on
inflow (p = 3.87e-30, Wilcoxon rank-sum test).

Frontiers in Network Physiology frontiersin.org11

Jahani et al. 10.3389/fnetp.2025.1539682

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2025.1539682


We observed that 77% of patients in the CHUM dataset, 30%
in the ds004100 dataset, and 20% in the ds003029 dataset could
be classified into one of these two groups. However, the overall
performance of inflow and outflow measures in distinguishing
SOZ from non-SOZ channels was limited when all patients were
pooled together, as demonstrated by the low median AUC values.
By regrouping patients based on their dominant connectivity
patterns (either high inflow or high outflow), the performance of
these measures improved, with both inflow and outflow metrics
showing higher, although still modest, AUC values in their
respective patient subgroups. This suggests that personalized
connectivity patterns may enhance the ability to identify SOZ
channels and underscores the need for patient-specific analyses
when using network measures to analyze seizure onset and
propagation.

In this study, we evaluated connectivity measures on a
comprehensive dataset comprising three different sources,
including one local CHUM dataset and two open-access datasets
and one local CHUM dataset. This approach allows for a realistic
estimation of the performance of connectivity measures in
identifying the SOZ. By including multiple datasets with varying
structures—such as patient-level versus seizure-level SOZ
annotations—we aimed to capture a wide array of seizure
dynamics and preictal patterns. This diversity is critical for

evaluating the robustness of connectivity-based methodologies, as
it mitigates potential biases introduced by dataset-specific patterns
or patient selection criteria.

Our results demonstrate that both PDC-based and DTF-based
approaches consistently revealed significant differences between
SOZ and non-SOZ regions in the preictal period, regardless of
whether the patients exhibited inflow-dominant or outflow-
dominant connectivity patterns. Despite the conceptual and
mathematical distinctions between these two methods—PDC
focusing on the direct influence of regions and being more
sensitive to inflow dynamics, while DTF accounting for both
direct and indirect connections and having the tendency to
capture subtleties in outflow—our findings suggest that these
approaches can converge in identifying key network dynamics.
This convergence underscores the robustness of both methods in
capturing meaningful connectivity patterns during the
preictal period.

4.2 Comparison to existing literature

A collective body of work highlights a growing consensus that
the analysis of changes in network connectivity during interictal,
preictal, and ictal periods, both in human patients and animal

FIGURE 6
(A)Distribution of AUC values for the inflow-dominant group, comparing preictal and ictal periods. The preictal period shows a higher median AUC,
highlighting an enhanced ability to identify SOZ channels compared to the ictal period (B) Distribution of AUC values for the outflow-dominant group,
similarly, showing elevatedmedian AUC values in the preictal period. Both panels underscore the improved performance in SOZ identification during the
preictal phase across distinct network flowpatterns, with statistically significant differences evident between preictal and ictal phases for each group.

TABLE 3 This table represents the percentage of classified patients in each group (i.e., high inflow and high outflow) with respect to the implantation
approach. Three approaches are identified to be used across three datasets, including ECoG, SEEG, and combination of grid/strip/depth electrodes.

Type of iEEG implantation approach High inflow High outflow

ECoG 20% 4%

SEEG 25% 8%

A combination of grid/strip/depth electrodes 25% 16%
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models, can contribute to improve our understanding of the
mechanisms of seizure initiation (Li et al., 2016; Johnson et al.,
2023; Doss et al., 2024; Van Mierlo et al., 2013).

Despite some contradictory findings in the literature (Lagarde
et al., 2022), most recent studies using functional directed
connectivity and other advanced approaches support two main
hypotheses regarding the interaction between SOZ and non-SOZ
regions. First, during the interictal period, SOZ regions are
suppressed by non-SOZ regions, indicated by high inflow to SOZ
regions (Johnson et al., 2023; Doss et al., 2024). Second, during the
ictal period, SOZ regions act as drivers, exhibiting high outflow
toward non-SOZ regions (Van Mierlo et al., 2013; Van Mierlo et al.,
2016). Interestingly, although the preictal period likely holds critical
insights into the mechanisms of seizure generation, only a limited
number of studies have explored the dynamics of information flow
between SOZ and non-SOZ regions during this crucial time frame.
This gap in the literature underscores the need for further
investigation into preictal connectivity patterns to better
understand seizure initiation.

Li et al. (2016) explored the effectiveness of PDC-based graph
measures, including indegree, outdegree, and betweenness
centrality, in localizing the epileptogenic zone during the preictal
period in seven patients with 21 seizures. They observed that highly
connected nodes appear immediately before seizure onset, with
information flowing into channels identified by epileptologists.
Indegree proved highly effective across all seven patients, with a
median AUC of 0.93 [IQR: 0.89–0.97], while outdegree and
betweenness centrality showed only partial effectiveness,
demonstrating a broader range of AUC values and considerable
individual variation.

Building upon these findings, Sumsky and Greenfield (2022)
further emphasized the significance of the preictal period in
revealing the underlying mechanisms of seizure generation. Using
iEEG data from 20 patients, the authors applied a novel multiple
input, single output state-space model to create directed network
graphs. Their analysis showed that highly connected nodes in the
SOZ displayed increased connectivity about 37 s before seizure
onset, and these changes propagated to non-SOZ regions roughly
8 s before the seizure began, pointing to distinct pre-seizure
network dynamics.

In another related study, Krishnan et al. (2024) examined the
spatiotemporal dynamics of seizure propagation in 10 patients with
drug-resistant focal epilepsy using stereoelectroencephalography
and ictal single-photon emission computed tomography. Their
work revealed that the EZ exhibits significant outflow to other
brain regions during both preictal and ictal phases. Notably,
hypoperfused regions demonstrated enhanced connectivity with
the EZ during seizure evolution, suggesting that these regions
may play a critical role in modulating seizure activity and further
illustrating the complexity of seizure propagation.

Complementing these human studies, Broggini et al. (2016)
investigated preictal synchrony between the hippocampus and
medial prefrontal cortex in a rat model of temporal lobe epilepsy
induced by perforant path stimulation (Broggini et al., 2016). The
authors hypothesized that alterations in theta-band oscillatory activity
between these regions might precede seizures and contribute to our
understanding of epileptogenesis. Their results revealed a significant
increase in theta coherence between the hippocampus and medial

prefrontal cortex before seizure onset, indicating heightened
synchrony during this period. Furthermore, the coupling between
hippocampal theta and medial prefrontal cortex gamma oscillations
increased prior to seizures, with Granger causality analysis suggesting
that hippocampal networks drive this synchrony. These findings
underscore the potential of preictal theta coherence as a biomarker
for predicting seizures and provide insights into the network dynamics
of temporal lobe epilepsy.

While current study is used metrics of network theory to study
dynamics of epileptic brain during preictal period, recent evidence
shed light on the applicability of other innovative approaches to
study alteration of SOZ and EZ (Bernabei et al., 2023; Bernabei
et al., 2022). Specifically, Bernabei et al. (2022) constructed a
normative iEEG atlas by retrospectively aggregating more than
5,000 iEEG channels from 166 subjects with mesial temporal lobe.
They showed that normalized spectral power and coherence across
frequency band could serve as biomarkers in distinguishing SOZ
from non-SOZ, with connectivity abnormalities being more
effective than univariate spectral power metrics (Bernabei
et al., 2022).

The proportion of patients with each implantation type differs
across datasets, which may explain the observed variations in
classification distribution. Specifically, 77% of patients in the
CHUM dataset, 30% in the ds004100 dataset, and 20% in the
ds003029 dataset were classified into one of these two groups. As
shown in Table 1, all patients in the CHUM dataset were implanted
with a combined grid/strip/depth implantation approach, which
aligns with the observed superiority of this implantation method in
distinguishing SOZ from non-SOZ. Furthermore, Bernabei et al.
(2021) showed that the implantation approach may affect the
distinguishability of strength connectivity metrics in classifying
nodes (iEEG electrode contacts) as resected or non-resected
(Bernabei et al., 2021). Our analysis is consistent with this
hypothesis and suggest that a combined grid/strip/depth
implantation may provide a higher distinguishability of strength
metrics, as demonstrated by the significant difference between AUC
values of three different implantation approaches.

4.3 Neural correlates of sink and source
hypotheses

Seizures have traditionally been linked to an imbalance between
excitatory and inhibitory mechanisms, where glutamatergic
neuronal populations are primarily involved in initiating focal
seizures and driving the network towards hyper-synchronization.
This hypothesis is supported by observations that interictal spikes
are characterized by increased neuronal firing followed by reduced
excitability. Directed connectivity analysis, such as PDC, in patients
with drug-resistant epilepsy has shown that during resting state,
connectivity towards SOZ increases (i.e., high inflow) while
connectivity outward from SOZ decreases (i.e., low outflow)
(Johnson et al., 2023; Doss et al., 2024). Building on these
findings, it has been proposed that the transition from interictal
activity to seizures is driven by a reduction in inhibition, favoring
enhanced excitation (de Curtis and Avanzini, 2001). Aligned with
this hypothesis, our observations suggest that as the seizure onset
approaches, non-SOZ may lose their inhibitory influence over SOZ,
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potentially manifesting as increased outflow from SOZ in the
outflow-dominant group.

Emerging evidence has further enriched this perspective by
highlighting the key role for GABAergic interneurons in seizure
generation. Under certain pathological conditions, such as focal
seizures, GABAergic signaling-traditionally considered inhibitory-
may instead exert a depolarizing effect (Ziburkus et al., 2006).
Studies have demonstrated that optogenetic activation of
GABAergic interneurons can induce seizure-like events, while
blocking GABAergic signaling often prevents seizure initiation
(Chang et al., 2018). In light of these findings, our results in the
inflow-dominant group revealed that SOZ exhibited increased
inward connectivity (i.e., high inflow) during the 28 s preceding
seizure onset. This further supports the idea that both excitatory and
inhibitory networks, including GABAergic signaling, play a complex
role in driving the pre-seizure dynamics. Although excitatory/
inhibitory mechanisms could not be directly correlated with
outflow/inflow of information measured by Granger causality
methods, these lines of evidence suggest that the high inflow to
SOZ channels during the preictal period, observed in the current
study and some previous studies (Li et al., 2016), could be indicative
of specific pathophysiological processes rather than a byproduct of
methodological variation.

The role of inhibitory circuits in focal seizure initiation and
speard has been studied in an acute rodent model (Liou et al.,
2018). Liou et al. (2018) observed that ictal neuronal bursts were
confined to a 2–3 mm region, but these bursts were accompanied
by increased interneuron activity outside the seizure focus,
suggesting a protective role of inhibitory circuits in limiting
seizure spread. When inhibition was disrupted by applying
bicuculline, a GABA-A receptor antagonist, the propagation
of seizures became more contiguous, highlighting the critical
role of intact inhibitory mechanisms in shaping seizure
dynamics. Consistent with these findings, we observed that in
a subset of patients who exhibited high inflow of information
towards SOZ during the preictal period, non-SOZ regions
appeared to exert regulatory control over the SOZ, potentially
acting to prevent or delay the transition to the ictal state. In
contrast, in another group of patients, the SOZ exhibited greater
outflow compared to non-SOZ regions, suggesting that the SOZ
had already begun to exert control, potentially driving the
transition into seizure onset. It is important to note that these
estimates were derived from a 28-s window preceding seizure
onset, and the directional flow dynamics between SOZ and non-
SOZ regions may vary at different timescales or stages of the
preictal period.

From a Network Physiology perspective, our findings suggest
that seizure generations are governed by dynamic shifts in
information flow within the brain’s functional network. The
observed preictal connectivity patterns—characterized by
increased inflow of information to SOZ in some patients and
high outflow from SOZ to the rest of the network in
others—highlight the role of network reorganization in epileptic
transitions. These results support the notion that epilepsy is not
merely a focal disorder but a network-level phenomenon,
reinforcing the importance of applying Network Physiology
concepts to better understand seizure dynamics and improve
localization strategies for surgical intervention.

5 Limitations and future directions

While our study provides valuable insights into preictal
connectivity patterns, several limitations should be
acknowledged, including variability among patients in
epileptic focus localization, etiology, and implantation
strategies. Additionally, a significant limitation of this study
arises from the differing data structures across the three
datasets. While the CHUM dataset provided seizure onset
channels for each seizure, the two open-access datasets
provided seizure onset channels at a patient level. This
disparity may have contributed to the observation that a larger
proportion of CHUM patients could be classified into either the
inflow or outflow scenarios, as their seizure onset data was more
specific. Furthermore, the lack of follow-up time points used for
Engel classification across all datasets prevented a direct
comparison between them.

Additionally, incorporating high-frequency oscillations (HFOs)
and slow-wave activity into the analysis could provide more
comprehensive insights into how specific frequency bands
interact with connectivity measures. This would allow for a more
nuanced classification of seizure onset patterns and potentially lead
to the identification of novel biomarkers for predicting seizure onset
across different patient populations. Future studies should also
consider increasing the sample size and exploring machine
learning approaches to classify seizure onset patterns based on
both frequency and connectivity measures, to enhance the
reliability of these findings and support clinical applications.

One limitation of this study is the absence of a baseline interictal
period for comparison. Since seizure-free intervals were not
consistently available across all datasets, we were unable to
evaluate how the observed preictal connectivity patterns differ
from interictal activity. Including interictal data could provide a
clearer distinction between pathological and normal connectivity
dynamics, offering deeper insights into seizure onset mechanisms.
Future studies should aim to incorporate interictal periods to
strengthen the interpretation of preictal connectivity changes.

Another limitation of this study is the lack of information
regarding the exact distances between implanted electrodes
(Supplementary Figures S4, S5). Electrode spacing can influence
connectivity estimates, potentially affecting the observed inflow and
outflow patterns (Wang et al., 2020). Future studies with precise
electrode localization data could further clarify the impact of spatial
distribution on network measures.

Finally, it is important to acknowledge the lack of consensus in
the literature regarding the duration of the preictal period. In this
study, we defined the preictal period as the 28 s preceding seizure
onset. This duration was chosen to ensure a consistent preictal
period length across patients from multiple centers. While our
analysis of this 28-s window identified two distinct patterns of
interactions between SOZs and non-SOZs, we did not investigate
the dynamics of inflow and outflow beyond this time frame.
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