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Levodopa is the most common therapy to reduce motor symptoms of
parkinsonism. However, levodopa has potential to exacerbate cardiovascular
autonomic (CVA) dysfunction that may co-occur in patients. Heart rate variability
(HRV) is the most common method for assessing CVA function, but broader
monitoring of CVA function and levodopa effects is typically limited to clinical
settings and symptom reporting, which fail to capture its holistic nature. In this
study, we evaluated the feasibility of a multimodal wearable chest patch for
monitoring changes in CVA function during clinical and 24-h ambulatory (at
home) conditions in 14 patients: 11 with Parkinson’s disease (PD) and 3 with
multiple system atrophy (MSA). In-clinic data were analyzed to examine the
effects of orally administered levodopa onCVA function using a pre (OFF) and 60-
min (ON) post-exposure protocol. Wearable-derived physiological markers
related to the electrical and mechanical activity of the heart alongside
vascular function were extracted. Pre-ejection period (PEP) and ratio of PEP
to left ventricular ejection time index (LVETi) increased significantly (p<0.05)
following levodopa, indicating a decrease in cardiac contractility. We further
explored dose-response relationships and how CVA responses differed between
participants with orthostatic hypotension (OH) from those without OH. Heart rate
variability, specifically root-mean-square-of-successive-differences (RMSSD),
following levodopa decreased significantly more in participants with OH (n =
7) compared to those without (no-OH, n = 7). The results suggest that the
wearable patch’s measures are sensitive to CVA dynamics and provide
exploratory insights into levodopa’s potential role in inducing a negative
inotropic effect and exacerbating CVA dysfunction. This work encourages
further evaluation of these wearable-derived physiomarkers for quantifying
CVA and informing individualized care of individuals with parkinsonism.
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1 Introduction

Parkinson’s disease (PD) and parkinsonian multiple system
atrophy (MSA) are alpha-synucleinopathies (αSNA) primarily
characterized by motor impairments involving rigidity,
bradykinesia, and resting tremor. Levodopa is the gold standard
therapeutic for combating motor symptoms in αSNA (Yahr et al.,
1969; Olanow et al., 2004; Sprenger and Poewe, 2013), but its effects
on cardiovascular autonomic (CVA) function can limit or preclude
its use for some patients. Impaired CVA function, quantified with
measures of heart rate variability (HRV), have long been reported in
PD independent of levodopa treatment (Kallio et al., 2000; Bouhaddi
et al., 2004). Further, these impairments appear to worsen with
disease severity (Devos et al., 2003; Mesec et al., 1993). Clinically,
levodopa’s potential hypotensive effect (Calne et al., 1970; Goldberg
and Whitsett, 1971; Kujawa et al., 2000; Noack et al., 2014; Cani
et al., 2024) is the most notable concern as it can cause or exacerbate
orthostatic hypotension (OH), a hallmark manifestation of
autonomic failure in PD and MSA (Senard et al., 1992; Goldstein
et al., 2005; Freeman, 2008).

The reported cardiovascular effects of levodopa vary widely as
studies often differ in route of administration, dosage, type and
timing of physiological measurements, and participant
characteristics. When administered in large doses, levodopa can
produce a sustained positive inotropic effect in individuals with PD
and heart failure (Whitsett and Goldberg, 1972; Rajfer et al., 1984);
however, in studies of parkinsonian individuals, typical therapeutic
amounts for motor parkinsonism observed a negative inotropic
effect (Wolf et al., 2006; Noack et al., 2014), with reductions in stroke
volume and blood pressure (BP) (Bouhaddi et al., 2004; Liu et al.,
2023; Cani et al., 2024; Earl et al., 2024). Notably, these
cardiovascular effects have primarily been assessed with
traditional bench-top sensors, confining this form of
physiological monitoring of levodopa responses to controlled
clinical settings. In addition to its hemodynamic effects, some
studies have reported that levodopa induces alterations in short-
term HRV measures (Sriranjini et al., 2011; Ruonala et al., 2015).
Given the complexity of levodopa’s influence on both hemodynamic
and autonomic function, wearable sensing technologies capable of
continuously extracting markers of CVA function beyond HRV
alone could enhance the characterization of levodopa’s effects and
facilitate measurements in a broader range of environments.

Outside of monitoringmotor symptoms in parkinsonisms (Patel
et al., 2009; Ossig et al., 2016; Heijmans et al., 2019; Kamo et al.,
2024), the use of wearable technology in αSNA remains limited. In
recent work, wearable sensors have been used tomeasure non-motor
markers to detect and predict a patient’s onset of wearing off of
levodopa effectiveness (Arasteh et al., 2023; Barrachina-Fernández
et al., 2023). The wristwatch devices employed in these studies
primarily focus on measuring electrodermal activity (EDA), due to
its association with sympathetic activity (Posada-Quintero et al.,
2016). While effective for detecting wearing-off of levodopa, EDA
lacks sensitivity to the cardiovascular changes that levodopa evokes,
which are clinically significant due to the drug’s potential
hypotensive effects. Approaches that leverage continuous
wearable sensing of CVA markers, such as those linked to
hemodynamic function, may provide a more effective method for
the detection of OH.

To address these gaps, we propose the use of a multimodal chest
patch that enables the monitoring of markers closely related to CVA
function, such as HRV, systolic timing intervals, and vascular
reactivity. The wearable patch measures raw physiological
waveforms including electrocardiogram (ECG), seismocardiogram
(SCG) and photoplethysmogram (PPG) signals (Chan et al., 2021)
from which several indices of CVA can be extracted on a beat-by-
beat basis. The pre-ejection period (PEP) and left ventricular
ejection time (LVET), both of which can be derived from the
combination of ECG and SCG signals, are strongly associated
with changes in beta-adrenergic sympathetic activity, cardiac
contractility, and, consequently, stroke volume (Lewis et al., 1977;
Kelsey, 2012). Notably, SCG has not been used, to our knowledge, to
characterize CVA responses to levodopa in individuals with
parkinsonism, despite its demonstrated efficacy in other contexts
(Inan et al., 2015). We hypothesize that sensing both
cardiomechanical and vascular activity, measured via PPG
signals, will provide a more comprehensive understanding of
levodopa’s hypotensive effects and provide early indications
suggesting their underlying mechanisms.

The aim of this study is to assess the feasibility of using wearable
multimodal sensing to monitor levodopa-induced changes in CVA
function and to investigate the potential of wearable-derived
physiological markers for capturing these effects. The conceptual
design of this work is illustrated in Figure 1. We collected data with a
wearable chest patch from n = 14 participants with PD (n = 11) and
MSA (n = 3) during a clinical protocol, where the participants
received their typical dosage of dopaminergic medication, and
during a 24-h period at home. We examined the patch’s markers
of CVA function before (OFF) and after levodopa administration
(ON), for the first time, in both clinic and at-home settings. We
additionally explored how the magnitude of the CVA responses
captured by the patch were related to the administered dosage, and
how they differed between participants with OH from those without
OH. As the use of wearables for CVA monitoring in parkinsonian
populations has been scarce, this work advances the state of wearable
research and provides complementary insight into the acute CVA
effects of levodopa, providing a framework to further explore
these findings.

2 Materials and methods

2.1 Study protocol

The experimental protocol, summarized in Figure 2, was
conducted under approval by the institutional review boards of
both the Georgia Institute of Technology (#H21492) and Emory
University School of Medicine (#00003055). Participants with mild
to moderate idiopathic PD (Hoehn and Yahr, stages 1–3 (Hoehn
and Yahr, 1967)) or the parkinsonian variant of MSA were enrolled.
Participants with a medical history of cardiac diseases, arrhythmias,
or other neurologic diseases beyond PD or MSA were excluded.

The protocol began early in the morning after a minimum of
12 h abstinence from dopaminergic medications, vasoactive
medications, caffeine, and other neurodepressants and
neurostimulants, including medications to combat OH, to
mitigate the potential cardiovascular influences of these
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substances. OFF-state motor symptom severity was examined via
Part 3 motor sub-scale of the Movement Disorders Society Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS III) (Goetz et al.,
2008) by a movement disorders trained neurologist. After the

wearable patch and additional sensors were attached, data were
acquired from periods of quiet rest and during autonomic function
testing. An active standing challenge was performed to identify OH
according to the census criteria, which specifies a sustained drop of
at least 20 mmHg systolic BP (SBP) or 10 mmHg diastolic BP (DBP)
within 3 min of upright posture (Freeman et al., 2011). Reference BP
values were acquired continuously by either a ccNexfin system
(Edwards Lifesciences, Irvine, CA, USA) or a CNAP monitor
(CNSystems, Austria), with a VS 9 brachial cuffed BP monitor
(Mindray, Shenzhen, China) to confirm the presence of OH.

Following the completion of these maneuvers in the OFF-
medication state, the participant’s typical levodopa equivalent
dosage (LED) was administered orally. Sensors other than the
wearable patch were disconnected and a battery of symptom
related questionnaires and assessments were completed. After
approximately 60 min had passed, a time imposed to allow for
the dopaminergic medication to take full effect (Noack et al., 2014),
motor symptoms were reassessed (ON-state).

Participants were then given the wearable patch to wear for the
next 24 h with an autonomic diary to log events relevant to
autonomic function such as meals, administration of
medications, sleep, and symptoms suggestive of OH (e.g.,
dizziness, light-headedness). Participants were instructed to carry
out their normal activities of daily living and partake of their normal
medications while wearing the patch. The patch was removed for
brief periods to replace the ECG electrodes, if needed, or while

FIGURE 1
Overview of wearable sensing system and aims of this study. A wearable chest patch that measures electrocardiogram (ECG), seismocardiogram
(SCG), and photoplethysmogram (PPG) signals was used in a population of Parkinson’s disease andmultiple system atrophy during a clinical protocol and
24-h ambulatory study at home. Physiological markers related to cardiovascular autonomic function were extracted from the patch’s signals and were
used to characterize the response to levodopa.

FIGURE 2
Clinical and at-home protocol overview. After a 12-h washout
period, participants underwent autonomic testing followed by
administration of their typical oral levodopa medication. The OFF-ON
response was measured and then a 24-h period of continuous
at-home monitoring was carried out. Participant diaries were used to
provide event timestamps, including administration of medications.
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bathing. Upon return of the wearable patch by the participant,
waveform data were extracted from the onboard secure digital (SD)
card and the logged autonomic diary events were converted to digital
timestamps to contextualize the data.

2.2 Wearable multimodal sensor

A multimodal wearable patch, shown in Figure 1, was attached
to the mid-sternum, roughly 2 cm below the suprasternal notch, to
capture physiological waveforms pertinent to CVA activity. The
patch was adhered to the chest with a pair of standard 3M-2670 Ag/
AgCl gel electrodes (3M, St. Paul, MN, USA). This device acquires
single-lead ECG, two sets of multiwavelength—infrared (IR), red,
and green—PPGs, and triaxial acceleration from which the SCG is
derived. The ECG, PPG, and SCG signals are sampled at 500, 67, and
1,000 Hz, respectively. The wearable patch’s hardware remains
unchanged from prior studies (Chan et al., 2021; Berkebile et al.,
2023). To briefly summarize: the ECG signal is measured from the
ADS1292 (Texas Instruments, Dallas, TX, USA) analog front-end
(AFE), the ADXL355 (Analog Devices, Norwood, MA,
United States) digital low-noise accelerometer captures the
triaxial SCG signal, and a combination of the Maxim 86,170
(Maxim Integrated, San Jose, California, United States) AFE, SFH
7016 (OSRAM, Munich, Germany) light emitting diodes, and
VEMD 8080 (Vishay Semiconductors, Heilbronn, Baden
Württemberg, Germany) photodiodes enable the extraction of
reflectance-based PPG. Similar versions of this hardware have
been deployed and validated in studies investigating heart failure
(Inan et al., 2018), stroke volume monitoring (Ganti et al., 2022),
and stress in participants with myocardial infarction (Nawar
et al., 2023).

2.3 Segmenting OFF and ON periods

In accordance with prior work (Sriranjini et al., 2011; Noack
et al., 2014; Ruonala et al., 2015), we analyzed periods prior to
levodopa administration (OFF) and an hour after taking levodopa
(ON) to assess its effects on CVA function. Raw waveforms
measured by the wearable patch during 5-min periods of seated
rest were extracted from both OFF and ON states during the clinical
protocol. The separation between these two periods was as close to
60 min as possible, but was dependent on participant behavior, e.g.,
bathroom break or delayed completion of assessments. We also
analyzed at-home levodopa administrations to gain insight into
CVA responses outside of controlled clinical environments.
Levodopa administration times were logged in the participant
diaries during the 24-h at-home portion of the study. These
times were referenced alongside the wearable patch’s
accelerometer to identify periods of inactivity similar to those
employed in the clinical portion (Godfrey et al., 2011). 5-min
periods were selected as close as possible to the administration
time and 60 min following administration. To ensure consistency,
these periods were further constrained to ensure that posture was
uniform across the OFF and ON periods, with minimal activity
during both the 5-min interval and immediately preceding
the period.

2.4 Signal processing and heartbeat
segmentation

The raw wearable patch signals acquired during the OFF and
ON states were preprocessed in Python (3.10.14) unless otherwise
noted. The signal processing and physiological marker
(physiomarker) extraction pipeline is shown in Figure 3 and
largely follows that of our prior work (Berkebile et al., 2025).
Only the dorsoventral (DV) component of the SCG and the IR
wavelength PPG were employed in this work to capture
cardiomechanical and vascular activity, respectively. Firstly, the
ECG, SCG, and PPG waveforms were uniformly resampled to
500 Hz. The SCG and PPG signals were bandpass filtered to
1–40 Hz and 1–8 Hz, respectively. The ECG was passed through
multiple filter banks as three R-peak detectors were used from the
Neurokit2 (NK) toolbox: the NKmethod, Kalidas (Kal) method, and
Martinez (Mar) method (Makowski et al., 2021; Kalidas and Tamil,
2017; Martinez et al., 2004). The final set of R-peaks was obtained by
fusing the three individual R-peak sets, with the NK method serving
as the reference. Only the R-peaks that multiple detectors
successfully located within a lenient tolerance of 150 ms were
reserved for further use. This fusion improved the reliability of
R-peak detection for participants where individual detectors were
less effective on the single-lead ECG waveform. The fused set of
R-peaks formed R-R intervals which were filtered based on
physiological implausibility for the given conditions (outside of
40–180 bpm) and flagged for outliers. Outliers were designated
using sliding windows (30-beat, 90% overlap), flagging values ±
5 median absolute deviation (MAD) away from the window’s
median. This final set of R-R intervals formed the normal-to-
normal (NN) intervals, which were manually inspected for
accuracy and were used for extracting HRV parameters.

The filtered SCG and PPG waveforms were segmented into
heartbeats using the R-peaks with a fixed duration of 600 ms,
which captures the salient systolic cardiac events and simplifies the
signal processing (Shandhi et al., 2021). These SCG and PPG beats
underwent signal quality assessment including amplitude-based
outlier removal and local morphological similarity scoring. First,
outlier SCG and PPG beats were removed using both global and
sliding windows (30 beats, step = 1) or beat amplitudes, with beats
flagged if the amplitude was ± 5 MAD away from the respective
global and window medians (Gazi et al., 2021). Next,
morphological outliers were removed by generating SCG and
PPG templates (30-beat windows, no overlap) and assessing the
distance each beat in the window to the template. Dynamic time
feature matching (DTFM) (Zia et al., 2019) and dynamic time
warping (DTW) (Giorgino, 2009; Li and Clifford, 2012) metrics
were used as the distance metrics for the SCG and PPG
assessments, respectively, to harness the expected similarities in
the physiological structure of beat-segmented waveforms.
Specifically, DTFM expands upon DTW, which estimates the
distance between two signals allowing for expansion or
compression in time, by additionally imposing constraints
regarding the matching of time-domain features on the SCG
signal. The thresholds imposed on the distance metrics were
heuristically determined, with a value of 0.4 for PPG signals
and 0.3 for SCG signals, to balance the extent of data removal
with the reliability of morphological features. Once outlier SCG
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and PPG beats were excluded, the final set of beats were ensemble-
averaged (15 beats, step = 1) to mitigate uncorrelated noise.

2.5 Physiomarker extraction

After the preprocessing stage, physiological markers
(physiomarkers) related to CVA function were extracted from
known landmarks found in ECG, SCG, and PPG beats. For
ECG-related features, an HR time-series was computed from NN
intervals and was further used in the computation of several time
and frequency indices of HRV using the NK library. HRV
parameters were computed from 5-min windows. After replacing
missing values in the NN interval time-series with piecewise cubic
Hermite interpolating polynomial (pchip) interpolation (Morelli
et al., 2019; Benchekroun et al., 2023), time-domain parameters
including root mean square of successive differences (RMSSD) and
standard deviation of NN intervals (SDNN) were computed. The
NN intervals were first resampled to 8 Hz before computing
frequency metrics (Clifford and Tarassenko, 2005; Singh et al.,
2004). Using NK’s implementation of the Welch method, the
power in the LF band [0.04–0.15 Hz] and HF band
[0.15–0.4 Hz] were derived, as well as the LF/HF ratio. The
length of the analysis window was computed following the NK
default implementation, which ensures at least two cycles of the
lowest detectable frequency (0.013 Hz) are captured in each analysis
window. An overlap of 50% was used to improve the robustness of
spectral estimates. These HRV parameters were selected as some of
the most commonly used to quantify levodopa responses in relevant
work (Sriranjini et al., 2011).

Physiomarkers related to cardiac contractility and vasomotor
reactivity were obtained from the SCG and PPG signals. PEP and

HR-corrected LVET (LVETi) values, as well as their ratio PEP/
LVETi, were derived from the aortic valve opening (AO) and the
aortic valve closing (AC) fiducial points identified on the SCG (Lewis
et al., 1977; Zia et al., 2019). Due to intersubject variability and
longitudinal differences in SCG morphologies, multiple prominent
peaks and valleys of the SCG waveform that strongly covary were
tracked as candidate fiducial points. The median of these candidates
was taken to mitigate errors in the PEP and LVET estimates that
could occur in single candidate tracking. Note that these PEP and
LVET estimates may be slightly offset from the true PEP and LVET,
due to the complexity of SCG morphology, but reliably track
longitudinal changes in these timings (Lin et al., 2021). The
maximum and minimum points in the AO complex were used to
compute the SCG amplitude (SCGamp). PPG physiomarkers also
consisted of amplitude and timing features. The pulse amplitude
(PPGamp) was computed for each beat as the difference in the
maximum and minimum amplitude. Pulse arrival time (PAT)
was extracted as the time between the R-peak and foot of the
PPG, the latter of which was identified as the median of multiple
metrics including the maximum, minimum, maximum of first
derivative, maximum of second derivative, 20% of pulse height,
and intersecting tangents (Mukkamala et al., 2015; Hemon and
Phillips, 2016). Fusing the PEP and PAT estimates formed the PTT,
which is the difference between the PAT and the PEP.

2.6 Statistical analysis of levodopa responses

The wearable-based features extracted during the 5-min seated
periods in both OFF and ON states were averaged for each subject
and then grouped by medication state for analysis. The features were
subsequently compared to identify any levodopa-induced change in

FIGURE 3
Signal preprocessing and physiomarker extraction. The electrocardiogram (ECG), seismocardiogram (SCG), and photoplethysmogram (PPG) signals
were initially filtered to their respective frequency bands where cardiovascular information is most prominent. From the ECG, R-peaks were located and
used to extract normal-normal (NN) intervals, from which the other signals were segmented on a beat-by-beat basis. The quality of these beats was
assessed using template distance metrics and amplitude outlier removal. The SCG and PPG beats were then ensemble-averaged before features
were extracted from each heartbeat.
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resting physiology, akin to comparisons made in (Noack et al.,
2014). While acknowledging the pathophysiological differences
between PD and MSA regarding the origins of autonomic failure
(Iodice et al., 2011), patients with PD and MSA were analyzed
together given that levodopa-induced worsening of orthostatic
hypotension is a commonly observed effect in both conditions
(Coon and Ahlskog, 2021). The comparisons included all
13 wearable patch features. Prior to comparisons between groups,
the groups were tested for normality with the Shapiro-Wilk test and
equality of variance via Levene’s test. If either normality or equal
variance was rejected, a two-sided Wilcoxon signed-rank test was
performed; otherwise, a two-sided paired t-test was performed.
Cohen’s effect size (d) for paired comparisons was computed.
Separately, the physiomarkers acquired in the OFF-ON levodopa
transitions detected at home required linear mixed effect models to
account for repeated measurements, as most participants took
levodopa multiple times over the 24-h monitoring period. The
effect of state (OFF vs. ON) was examined on each
physiomarker, with random intercepts fit for each participant.

Due to participants’ typical LED being taken, we investigated the
relationship of the magnitude of physiomarker changes from OFF to
ON with the LED that was administered. These correlations used
Spearman’s ρ in instances where the Shapiro-Wilk test indicated that
the data were not normally distributed; otherwise, Pearson’s r was used.

The potential hypotensive effects of levodopa are of primary
interest in people with αSNA, where known or latent autonomic
dysfunction may be worsened by levodopa-induced changes in CVA
function. Accordingly, we grouped the participants into OH and no-
OH groups and compared the magnitude of the OFF-ON changes
between groups as measured in the clinic. Groupwise differences in
CVA reactivity were assessed with two-sided independent t-tests. If
the assumption of normality was not met, Mann-Whitney U tests
were used instead. Cohen’s d was computed for each comparison. A
similar analysis was carried out at home, again using linear mixed
effect models due to repeated measures. The effect of group (OH vs.
no-OH) was examined for each physiomarker.

In alignment with the aims of this study, which is focused on
whether levodopa affects the patch’s multimodal physiomarkers in
addition to the commonly employed HRV markers,
Benjamini–Hochberg corrections were applied to control the false
discovery rate across related physiological parameters (Benjamini
and Hochberg, 1995). Specifically, HR and HRV parameters were
grouped together, representing the most studied markers of
autonomic regulation. Meanwhile, the cardiomechanical and
vasomotor-related physiomarkers from SCG and PPG signals
were analyzed as a separate group. P values are accordingly
corrected for each set of analyses. Given the exploratory nature
of this study, we report both adjusted (padj) and unadjusted p-values
(p) and clearly denote results as significant before or after correction.
All the above statistical tests were handled in this manner.

3 Results

3.1 Dataset characteristics

Wearable sensor data were collected from n = 14 participants,
11 with PD and 3 with MSA, for the clinical portion. OH was

confirmed through autonomic testing in n = 7 participants, 2 with
MSA and 5 with PD. The clinicodemographics, motor symptom
assessments, and levodopa dosages are detailed further in Table 1.
Average supine, seated, and standing heart rates and BPs, measured
during the autonomic testing are reported in Supplementary Table I.
Motor testing in the ON-state revealed significant reductions in the
MDS-UPDRS III score (p< 0.001, t = 7.978, d = 2.213) and Hoehn-
Yahr scale (p = 0.025, U = 0.0, d = 0.745) compared to OFF-state,
further recorded in Supplementary Table II. The time between the
clinical OFF and ON periods used in the physiomarker analysis was
61.4 ± 7.9 (mean ± SD) minutes. Following the clinical testing, n =
13 participants continued wearing the chest patch for 24 h of at-
home monitoring. OFF-ON levodopa-related transitions viable for
subsequent analyses were identified for 12 of the 13 participants, as
one participant did not take levodopa during the entire at-home
period. A total of N = 42 levodopa responses were captured from the
at-home portion, but 5 were excluded due to differences in posture
for the OFF-ON periods. An additional response was rejected due to
poor SCG signal quality; thus, a final count of N = 36 levodopa
responses were analyzed, with 3 ± 1 OFF-ON transitions per
participant. The time between the OFF and ON periods used in
the at-home analysis was 59.6 ± 5.1 min. Supplementary Table III
details concomitant blood pressure-related medications taken by
participants at home.

3.2 Levodopa-induced changes in
cardiovascular autonomic physiomarkers

Several seated physiomarkers differed significantly between the
OFF and ON states measured in clinic, as depicted by the boxplots in
Figure 4A. Specifically, significant increases in SCG-derived PEP
(padj = 0.003, t = −4.560, d = 1.264) and PEP/LVETi (padj = 0.025,
t = −3.175, d = 0.880) were observed. Decreases in SCGamp (p =
0.047, t = 2.186, d = 0.606) and HRV-LF (p = 0.040, t = 2.269, d =
0.629) were also found, though not significant after multiple
comparison correction. For the N = 36 levodopa responses
captured at home, there were no significant physiomarker
changes from OFF to ON states. The results of all clinical and
at-home OFF-ON comparisons are recorded in Supplementary
Tables IV, V, respectively.

3.3 Relationship of physiomarker changes to
levodopa dosage

We observed that the magnitudes of some physiomarker
responses were associated with the LED administered as part of
the clinical protocol. SCG-based features such as the change in PEP
(p = 0.031, r = 0.573), LVETi (p = 0.042, ρ = -0.547), and PEP/LVETi
(p = 0.014, r = 0.635) demonstrated noteworthy correlations.
Similarly, the change in PPGamp (p = 0.012, r = −0.644)
correlated to the LED. While these correlations did not survive
multiple comparison correction, and should be cautiously
interpreted, they are near the threshold for significance and may
warrant further investigation. The statistics associated with all
physiomarker correlations to LED are displayed in
Supplementary Table VI.
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3.4 Levodopa response differences between
OH and no-OH groups

In participants with OH, the in-clinic RMSSD of NN intervals
was significantly reduced (padj = 0.048, t = −3.171, d = 1.831) relative

to the no-OH group following levodopa. Additionally, SDNN (p =
0.031, t = −2.433, d = 1.404) and HRV-HF (p = 0.017, U = 6.0, d =
1.362) were reduced, nonsignificant after correction, in the OH
group relative to the no-OH group. In the at-home responses, ON-
state SDNN was reduced (p = 0.037, t (34) = -2.081), which was

TABLE 1 Cohort characteristics.

Parameter Overall
N = 14a

MSA
N = 3a

PD
N = 11a

p-valb

Sex (female) 5 2 3

OH (n) 7 2 5

Age (yrs) 68.5 (9.8) 65.3 (3.8) 69.4 (10.9) 0.31

Disease duration (yrs) 3.8 (3.5) 0.6 (0.1) 4.7 (3.4) 0.01

MDS-UPDRS III (OFF) 31.9 (10.2) 32.7 (8.7) 31.6 (11.0) >0.99

MDS-UPDRS III (ON) 20.1 (9.2) 25.3 (11.5) 18.7 (8.6) 0.44

Hoehn-Yahr (OFF) 2.1 (0.5) 2.3 (0.6) 2.1 (0.5) 0.56

Hoehn-Yahr (ON) 1.8 (0.6) 2.3 (0.6) 1.6 (0.5) 0.10

LED (mg) 167.9 (55.8) 158.3 (72.2) 170.5 (54.6) 0.87

LEDD (mg) 780.6 (376.8) 616.7 (325.3) 825.3 (391.3) 0.63

an, Mean (SD).
bWilcoxon rank sum test.

MSA, Multiple system atrophy; PD, Parkinson’s disease; OH, Orthostatic hypotension; MDS-UPDRS III, Part 3 of Movement Disorder Society Unified Parkinson’s Disease Rating Scale; LED,

Levodopa equivalent dose; LEDD, Levodopa equivalent daily dose.

FIGURE 4
Notable levodopa-induced physiomarker changes and dose-response correlations. (A) Boxplots indicating significant physiomarkers changes from
prior to levodopa (OFF) to an hour after (ON). Pre-ejection period (PEP), the ratio of PEP to left ventricular ejection time index (PEP/LVETi),
seismocardiogram amplitude (SCGamp), and the low frequency band of heart rate variability (HRV-LF) are shown. (B) Correlation plots between the
administered levodopa equivalent dosage (LED) and the magnitude of OFF-ON physiomarker changes in PEP/LVETi, PEP, LVETi, and
photoplethysmogram amplitude (PPGamp) are depicted. Pearson’s r and Spearman’s ρwere used, depending on the distribution of the data. *padj < 0.05;
†p < 0.05.
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nonsignificant after adjustment, in the OH group compared to the
no-OH group for the n = 12 participants with at-home levodopa
responses. Boxplots are shown for the discussed comparisons in
Figure 5, and the results of all statistical tests are summarized in
Supplementary Tables VII, VIII.

3.5 Case study: physiomarker time-series
during adverse levodopa response

A participant with PD and OH experienced an adverse reaction
to levodopa prior to completion of the clinical protocol. Symptoms
of nausea precipitated a marked fall in BP (SBP/DBP: 73/44 mmHg)
roughly 80 min after levodopa administration. The participant
recovered by lying supine until BP increased to 168/74 mmHg
and the feelings of nausea were reduced. Time-series of exemplary
physiomarkers from onset of nausea, about 40 min following
administration of 300 mg LED, to the resolution of symptoms
are shown in Figure 6. The physiomarkers depict the underlying
hemodynamic changes throughout the symptomatic period and
subsequent recovery, thus illustrating the sensitivity of the
measured waveforms to CVA dysfunction in an individual
participant.

4 Discussion

4.1 Principal findings

In this work, we demonstrate a novel wearable-based approach
for evaluating the CVA dynamics associated with levodopa in
patients with parkinsonism. Notably, this study is the first to
employ a small form-factor chest patch that captures multiple
physiological paradigms—namely the electrical and
cardiomechanical activity of the heart alongside vascular
reactivity—to extract meaningful measures of CVA state related
to the effects of levodopa. We found that markers of cardiac
contractility obtained from SCG waveforms were sensitive to the
administration of levodopa and depicted a potential negative

inotropic effect. We further explored the OFF-ON transitions
and observed relationships between physiomarker changes and
levodopa dosages as well as differences in HRV responses
between participants with and without OH. Finally, we illustrated
the utility of continuous monitoring via the wearable patch by
capturing levodopa responses in an uncontrolled, at-home
environment where the CVA effects of levodopa appeared
subtler. The presented results demonstrate the feasibility of
wearable sensing for improved monitoring of CVA function as

FIGURE 5
Comparison of levodopa responses between participants with orthostatic hypotension (OH) and without OH (no-OH). (A) Boxplots of the clinical
levodopa responses are shown for the root-mean-square-of-successive-differences (RMSSD), standard deviation of normal-normal intervals (SDNN),
and high frequency of heart rate variability (HRV-HF). (B) Boxplot of the difference in SDNNmeasured in the at-home responses. *padj < 0.05; †p < 0.05.

FIGURE 6
Case study of adverse levodopa reaction in participant with PD
and OH. The participant initially experienced nausea about 40 min
after taking levodopa, which worsened over the next 40 min. During
this time, a drop in blood pressure (BP) from 134/85 mmHg
(systolic/diastolic) to 73/44 mmHg was recorded. Concurrently, the
wearable patch measured an increase in pulse arrival time (PAT) and
pre-ejection period (PEP), which similarly indicates decreased arterial
stiffness and decreased cardiac contractility given the stable heart rate
(HR). After lying supine, the participant’s BP eventually surged (180/
84 mmHg) and their symptoms dissipated. The marked responses in
PAT and PEP, as well as the increase in photoplethysmogram
amplitude (PPGamp), upon assuming a supine position further illustrate
the return to a more normal physiological state.
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well as grant further insight into the influence of levodopa on CVA
health in patients with parkinsonism.

The multimodal sensing approach employed in this study enabled
a more comprehensive assessment of CVA function than was
captured in several prior studies examining the effects of levodopa,
which often measure HRV alone (Sriranjini et al., 2011; Ruonala et al.,
2015). The extracted physiomarkers themselves proved to be sensitive
to the levodopa-induced changes in CVA state, primarily in the
clinical data, during both periods of rest (Figures 4, 5) and the
exemplary symptomatic period (Figure 6). In addition to a richer
set of physiomarkers, the form factor of the wearable patch and
acquisition of ECG, SCG, and PPG signals also facilitated remote
continuous monitoring of ambulatory hemodynamic responses to
levodopa, which have not been previously reported. The
physiomarkers relying on cross-modal information, specifically the
systolic timing interval measures, were key to characterizing CVA
changes. Further work on coupling the presented physiomarkers with
the accelerometer’s measures, which provide activity and postural
context (Godfrey et al., 2011) and crude indices of motor symptoms in
parkinsonism (Thorp et al., 2018), could lead to a more holistic
solution for monitoring aspects of both non-motor and motor effects
of levodopa.

Our results provide further support for the previously reported
negative inotropic effect associated with levodopa in patients with
αSNA (Wolf et al., 2006; Noack et al., 2014). The significant increases
in PEP and PEP/LVETi with concurrent—though statistically
nonsignificant—decreases in LVETi and SCGamp following oral
levodopa administration, are indicative of decreased cardiac
contractility (Ahmed et al., 1972) or reduced beta-adrenergic
sympathetic activity (Kelsey, 2012). When additionally considering
the lack of notable changes to HR and in physiomarkers related to
arterial stiffness, such as PTT or PPGamp (Reisner et al., 2008;
Mukkamala et al., 2015), these findings align with the theory that
a potentially hypotensive effect of levodopa involves cardioinhibitory
effects, rather than solely direct vasomotor mechanisms (Noack et al.,
2014). We also observed that HRV parameters were largely unaltered
except for a significant, before correction, reduction in HRV LF. As
reported HRV responses to levodopa are widely varied, with prior
work showing increases (Ludwig et al., 2007; Sriranjini et al., 2011),
decreases (Ruonala et al., 2015), or no change (Sénard et al., 1995;
Noack et al., 2014) in HRV parameters, further study is needed to
characterize levodopa’s effects on HRV.

Whereas the levodopa evoked notable changes in physiomarkers
measured in the clinic, there were no similar findings in the at-home
data outside of the reduced RMSSD in the OH group compared to
the no-OH group. Several factors could be influencing this finding.
Given the at least 12-h washout period preceding the clinical
protocol, the CVA effects of levodopa measured in clinic may
have been exaggerated compared to typical administrations.
Potential habituation to levodopa may have contributed to
diminished autonomic responses measured at home, where
levodopa was taken more regularly by participants. Inaccuracies
in the patient-reported administration times could have introduced
differences in the timing of the OFF-ON periods as defined for the
in-clinic portion. Though the analyzed OFF-ON periods at home
were selected similarly to the clinical periods, i.e., same posture with
minimal activity, the lack of control in the at-home environment
likely introduced more noise to the physiomarker extraction

pipeline, thereby reducing the comparability between the clinical
and home data. Finally, the effects of levodopa could have been
obscured due to participants with OH taking other pressor agents
concurrent with levodopa in order to reduce its potential
hypotensive side effects. As this is the first study, to the best of
our knowledge, to characterize at-home CVA responses to levodopa
in this manner, future studies are warranted to validate these
findings and address potential confounding factors, such as
concurrent medication use, variable dosing schedules, and the
influence of environmental and activity-related noise on the
measurement of wearable physiomarkers.

Many studies examining the CVA effects of levodopa administer
a fixed LED for all participants (Sriranjini et al., 2011; Noack et al.,
2014). As the participants in this study took their typical LED, we
were able to explore several significant, before correction,
correlations between the magnitude of the physiomarkers
changes and the participant’s LED. These correlations suggest
that greater doses elicit larger changes in SCG-based systolic
timing intervals, trending towards the reduced contractile state as
discussed earlier. The relationship to PPGamp would additionally
indicate a greater level of vasoactivity with increased LED. We
hypothesize that this reduction in PPGamp is associated with a
reduction in pulse pressure, which could be dictated by decreases
in stroke volume (Reisner et al., 2008; Berkebile et al., 2023), rather
than sympathetically-mediated vasoconstriction given the known
post-ganglionic sympathetic denervation in PD (Jain and Goldstein,
2012). While these findings did not retain significance after
correction, validation in larger cohorts will reveal the association
between LED and the reported physiomarker changes. If upheld,
these findings could improve individualized dosing of levodopa,
particularly for people suffering from OH.

In analyzing how levodopa responses vary between people with
and without CVA dysfunction, specifically OH, we found that HRV
parameters responded distinctly between groups. A significant
reduction in RMSSD was accompanied by significant, before
correction, reductions in SDNN and HRV HF in the OH group
relative to the no-OH group following levodopa administration in
the clinic. The at-home data exhibited similar magnitudes of HRV
changes in the OH and no-OH groups compared to the clinical data,
with reduced HRV in the OH group relative to the no-OH
group. The HRV reduction following levodopa in the OH group
may indicate an exacerbation of baroreflex dysfunction (Earl et al.,
2024), which results in impaired heart rate and peripheral
vasoconstriction responses (Kaufmann and Palma, 2017). These
results, though exploratory, suggest that levodopa may further
impair autonomic regulation mostly in patients with known or
latent CVA dysfunction (Cani et al., 2024), highlighting the need for
improved monitoring of CVA function when initiating or escalating
an individual’s dose of LED.

4.2 Limitations

This study has several limitations that should be considered when
interpreting the results. Firstly, the number of participants and
inclusion of multiple pathologies (PD and MSA) constrains the
inferences made in this work. Specifically, CVA effects of levodopa
are more commonly examined in PD and not MSA (Sénard et al.,

Frontiers in Network Physiology frontiersin.org09

Berkebile et al. 10.3389/fnetp.2025.1543838

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2025.1543838


1995; Sriranjini et al., 2011; Noack et al., 2014). Indeed, peripheral
cardiac sympathetic denervation is near universal in PD (Goldstein,
2003), as opposed to severe central autonomic neurodegeneration in
MSA, which could impact cardiac contractility findings here and in
prior work (Noack et al., 2014). Yet, comparisons of PEP, PEP/LVET,
and LVET were significant participants with PD alone Additionally,
the complexity of the statistical modeling was limited by the number
of subjects. This limitation may have masked subtler effects of
levodopa on CVA function particularly for ambulatory analyses.
Furthermore, there was no direct comparison with gold-standard
measurements of cardiomechanical activity; however, the observed
levodopa-induced changes in CVA function align with prior findings
using controlled protocols and bench-top equipment (Noack et al.,
2014; Ruonala et al., 2015; Wolf et al., 2006). Additionally, the
ambulatory portion of this study was completely uncontrolled,
which introduces variability to the analyses of levodopa responses.
While the participant diaries provided some insight, a participant’s
autonomic state may have been influenced by other activities, such as
eating, or mental state (e.g., stress). The repeatability of at-home
responses could be better assessed in future work with a semi-
controlled measure at home whereby a participant performs a pre-
and-post levodopa supine-to-stand or sit-to-stand test.

Future work should aim to better understand the clinical
implications and mechanisms of the observed effects of levodopa,
both in the lab and at home. In larger populations, exploring
additional factors and interactions might unveil, or refute, further
relationships between levodopa, CVA dysfunction, concomitant
pressor agents, and parkinsonian state. Specifically, assessing the
interaction between levodopa state (OFF/ON) and orthostatic
responses with the wearable patch could provide insight into
levodopa’s influences on cardiomechanical activity during
postural changes. The integration of wearable sensing and clinical
decision-making is promising but remains unproven in individuals
with αSNA. Future work should determine if remote monitoring can
improve both motor and non-motor outcomes by optimizing and
personalizing levodopa dosing strategies.
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