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Cerebral physiological signals embody complex neural, vascular, and
metabolic processes that provide valuable insight into the brain’s dynamic
nature. Profound comprehension and analysis of these signals are essential for
unraveling cerebral intricacies, enabling precise identification of patterns and
anomalies. Therefore, the advancement of computational models in cerebral
physiology is pivotal for exploring the links between measurable signals and
underlying physiological states. This review provides a detailed explanation of
computational models, including their mathematical formulations, and
discusses their relevance to the analysis of cerebral physiology dynamics. It
emphasizes the importance of linear multivariate statistical models,
particularly autoregressive (AR) models and the Kalman filter, in time series
modeling and prediction of cerebral processes. The review focuses on the
analysis and operational principles of multivariate statistical models such as AR
models and the Kalman filter. These models are examined for their ability to
capture intricate relationships among cerebral parameters, offering a
holistic representation of brain function. The use of multivariate statistical
models enables the capturing of complex relationships among cerebral
physiological signals. These models provide valuable insights into the
dynamic nature of the brain by representing intricate neural, vascular, and
metabolic processes. The review highlights the clinical implications of using
computational models to understand cerebral physiology, while also
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acknowledging the inherent limitations, including the need for stationary data,
challenges with high dimensionality, computational complexity, and limited
forecasting horizons.
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1 Introduction

The notably high energy demand of brain cells, compared to
most other bodily tissues, necessitates a constant energy supply
through oxidative metabolism, and any momentary disruption in
oxygen delivery can lead to severe consequences potentially resulting
in brain damage or even fatality (Ainslie et al., 2007). Sustaining
oxygen availability relies on an intricate and resilient hemodynamic
regulation system called cerebral autoregulation, which modulates
cerebral blood flow (CBF) in response to variations in systemic
supply, such as blood pressure and oxygen saturation, and cerebral
demand, particularly energy consumption linked to neuronal
activity (Liu et al., 2019; Kostoglou et al., 2014). Dysfunction in
cerebral regulatory mechanisms is common in various disease states,
making the monitoring of cerebral oxygenation and metabolism an
essential aspect of neurocritical care management (Chen et al.,
2006). The dynamics of cerebral autoregulation, however, vary
significantly across different disease conditions, often impairing
the brain’s ability to maintain stable blood flow and oxygenation
in response to changes in systemic pressure. This monitoring, in
turn, allows for the acquisition of a wide range of cerebral
physiologic signals in high temporal resolutions allowing for the
implementation of sophisticated analytical techniques
(Katsogridakis et al., 2016).

Cerebral physiologic signals encapsulate intricate neural,
vascular, and metabolic activities within the brain, offering
insight into the dynamic and multifaceted nature of cerebral
function (Kuo et al., 1998). Continuous cerebral physiologic
signals, such as intracranial pressure (ICP), cerebral
autoregulation, and brain tissue oxygenation (PbtO2), are readily
available from patients with neural injuries and those critically
injured in intensive care units. Thoroughly understanding and
analyzing these signals is crucial for comprehending the
complexities of cerebral processes, which enables the
identification of intricate patterns and the accurate pinpointing of
anomalies (Peng et al., 2008; Zeiler et al., 2017). Thus, the
development of computational models of cerebral physiology
plays a crucial role in exploring the connections between
measurable signals and the underlying physiological state.

In this narrative review, we explore the landscape of time series
modeling and prediction of continuous cerebral physiology,
focusing on the nuanced power of multivariate statistical models.
Time series analysis serves as a fundamental tool in uncovering
hidden patterns within sequential data. In time series modeling and
prediction, multivariate models are used as versatile tools capable of
capturing the dynamic relationships and interactions across various
cerebral parameters simultaneously (Martins et al., 2020). Unlike
univariate models, which may oversimplify the intricacies of
cerebral physiology, multivariate models consider the

interdependence of signals, providing a holistic representation of
the brain’s dynamic state (Peng et al., 2008; Chacon et al., 2011).

Multivariate vector-based autoregressive (AR) models, such as
vector autoregressive (VAR) models in the context of cerebral
physiology, play a pivotal role in capturing the intricate dynamics
of interrelated variables. These models operate by considering
multiple time series simultaneously, with each variable
representing a specific aspect of cerebral function (Scherrer et al.,
2019). Through the estimation of lagged relationships among these
variables, VAR models reveal how changes in one component
influence others within the system over time. The core principle
of vector-based models lies in their ability to represent the dynamic
interplay and feedback loops inherent in complex physiological
systems (Olson et al., 2020). By incorporating the temporal
dependencies among multiple variables, these models provide a
more nuanced understanding of the interactions between the
cerebral processes (the time-based relationships). The estimation
process involves determining coefficients that characterize the
strength and direction of the relationships between variables,
allowing for the prediction of future states based on past
observations (Zivot and Wang, 2006). Additionally, multivariate
AR models offer integration into deep learning-based methods,
enhancing their capabilities for data prediction and statistical
analysis (He et al., 2023).

Other multivariate state-space models, such as Kalman filter, are
designed to represent and capture the evolving dynamics of a system
over time (Ferreira et al., 2022). Unlike multivariate AR models that
focus on relationships among observed variables, state-space models
introduce the concept of unobservable states, representing latent
processes that influence the observed signals (Aoki, 1990). These
models consider that there are underlying hidden factors driving the
observed data. The fundamental idea behind state-basedmodels is to
estimate these hidden states by combining information from the
observed signals and the dynamic evolution of the system
(Hamilton, 1994). They operate through a two-fold process: the
state equation, describing how the system evolves over time, and the
observation equation, detailing how the unobservable states
contribute to the observed signals. By iteratively updating the
estimates of both states and parameters, state-space models offer
a comprehensive framework for modeling the intricate temporal
dependencies within cerebral physiologic signals (Aoki, 1990;
Hinrichsen and Holmes, 2009). Figure 1 provides a concise
overview of the pathway from collected raw data to modeling
using multivariate time-series models, illustrating the main steps
involved in the process.

This review seeks to offer a comprehensive exploration of widely
employed multivariate statistical models, namely, multivariate AR
models and the Kalman filter, while intentionally excluding machine
learning approaches such as Gaussian processes to focus on
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traditional statistical methodologies. Through a detailed
examination of their operational principles and mathematical
formulations, this narrative review aims to elucidate the
intricacies inherent in these modeling approaches. Additionally,
the discussion will extend beyond theoretical foundations to
delve into the practical applications and clinical significance of
these models. This review aims to provide a nuanced
understanding that bridges the gap between theoretical concepts
of the multivariate statistical models and their implications with
respect to cerebral physiology.

2 Multivariate state-space models

State-space models comprise state variables, observation
variables, and a set of equations governing their dynamic
interactions (Hamilton, 1994). State-space modeling emphasizes
the existence of unobserved or hidden states that influence the
observed variables (Holmes et al., 2012). The mathematical
formulation involves transition equations that describe the
evolution of the system’s state over time, coupled with
observation equations establishing the relationship between the
state and observed variables (Aoki, 1990). State-space models
come in various forms, including linear, nonlinear, discrete-time,
and continuous-time models, each tailored to specific applications.
The following sub-sections focus on the linear state-space models
that are employed in cerebral physiology analysis, which is also
summarized in Table 1.

2.1 Vector autoregressive (VAR) models

AR models represent a fundamental class of time series models
that play a pivotal role in understanding and predicting sequential
data patterns. In essence, these models capture the idea that each
observation in a time series is linearly dependent on its own past
values. This singular focus on the relationship between a variable
and its own lagged values provides a powerful framework for
modeling temporal dependencies and capturing the inherent
autocorrelation present in time series data (Olson et al., 2020).
However, AR models have inherent limitations in capturing

interdependencies among multiple variables. Hence, extending
beyond the analysis of a single variable involves the utilization of
multivariate modeling through models such as VAR, and vector
autoregressive moving average (VARMA) models. These models
offer a nuanced perspective that enables the exploration of how
changes in one component influence others within a system
(Scherrer et al., 2019; Zivot and Wang, 2006).

VAR models represent a natural extension of AR models to
accommodate multiple parallel time series. The VAR model is
particularly valuable when analyzing systems where several
variables interact and influence each other over time. In essence,
a VAR model consists of a system of dynamic equations, wherein
each variable is regressed on its own lagged values and the lagged
values of all other variables in the system allowing for the
simultaneous consideration of interdependencies among multiple
variables and capturing the intricate dynamics within a system
(Zivot and Wang, 2006). The formulation for a VAR model of
order ’p’ (VAR(p)) encapsulates the relationships and dependencies
among the variables, providing a versatile tool for projecting time-
series variables and understanding the dynamic evolution of
multivariate time series data. The order p determines the number
of lagged observations included in the model. Mathematically,
VAR(p) can be formulated as given in Equation 1, where Yt is an
n-dimensional vector of endogenous variables at time t, A terms are
(n × n) coefficient matrices capturing the lagged effects, εt is a vector
of white noise disturbances, and c is an n-dimensional constant term
(Toda and Phillips, 1994).

Yt � c +∑p
i�1
AiYt−i + εt (1)

Each Ai matrix captures the contemporaneous relationships
among the variables. The estimation of a VAR model involves
determining the coefficients in these matrices which allows for
the analysis of the dynamic interactions among variables using
techniques such as least squares or maximum likelihood
estimation (Zivot and Wang, 2006). However, when few data
samples are available, VAR models can also be identified using
penalized regression techniques, which help address overfitting and
improve model stability (Antonacci et al., 2024a). VAR models
assume linearity, stationarity, and often normality of residuals, and

FIGURE 1
A schematic overview illustrating the pathway from raw data to final modeling.
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their effectiveness may vary depending on the characteristics of the
data being analyzed (Toda and Phillips, 1994).

VAR models prove invaluable for its ability to capture dynamic
interactions, model temporal relationships, and assess causality
within multivariate time-series data. As an essential component
of multivariate analysis, VAR models contribute to uncovering
network interactions, identifying functional connectivity patterns,
and enhancing sensitivity to subtle changes in brain activity.

2.2 Time-varying autoregressive
(TVAR) model

Time-varying autoregressive (TVAR) model extends the
traditional VAR model by allowing the parameters to vary over
time, thereby capturing the time-varying nature of the relationships
among variables (Haslbeck et al., 2021; Oikonomou et al., 2007). A
typical TVAR model can be expressed as shown in Equation 2,
where Yt is a p-dimensional vector time-series at time t, βi,t are the
coefficient matrices corresponding to each lag i varying over time, εt
is a p-dimensional vector of error terms assumed to be normally
distributed with mean zero and covariance matrix (Σt), allowing for
time-varying volatility (Haslbeck et al., 2021).

Yt � ∑p
i�1
βi,tYt−i + εt (2)

Estimating TVAR models involves estimating Σt and βi which
captures the dynamic relationships among variables over time (Guo
et al., 2022). Each element of βi represents the coefficient of the
corresponding lagged variable at time t. These coefficients are
allowed to change over time, reflecting fluctuations in the
relationships among variables (Guo et al., 2022). There are
various methods for estimating TVAR models, including Kalman
filtering, rolling window estimation, and Bayesian techniques
(Haslbeck et al., 2021; Oikonomou et al., 2007; Omidvarnia et al.,
2011). Additionally, least mean square methods and their recursive
counterparts provide alternative approaches for estimating TVAR
models, particularly in scenarios requiring adaptive filtering or
online learning (Antonacci et al., 2024a). TVAR models allow
capturing time-varying dynamics, improving forecasting accuracy,
detecting transient events, and exploring dynamic interactions,
offering valuable insights into the dynamic nature of cerebral
function (Haslbeck et al., 2021; Oikonomou et al., 2007).

2.3 Vector autoregressive fractionally
integrated (VARFI) model

Vector autoregressive fractionally integrated (VARFI)
framework is a time series modeling technique that combines
VAR models with fractional integration (FI) techniques. FI is
used to describe time series data that exhibit long memory or
long-range dependence allowing for non-integer differencing
orders, which enables capturing long memory properties in the
data, unlike traditional integer-order differencing (Pinto et al.,
2021). The VARFI framework combines these two concepts by
incorporating fractional integration into the VAR model allowing

the model to capture both the linear interdependencies among
multiple time series variables and the long memory properties
exhibited by the data (Martins et al., 2020; Balboa et al., 2021).
The VARFI process is depicted in Equation 3 where L refers to back-
shift operator (LiXn = Xn-i), A(L) represents VAR polynomial of
order p, Xn is the zero-mean stationary multivariate stochastic
process, and εt represents the uncorrelated Gaussian innovations
(Martins et al., 2020; Pinto et al., 2021).

A L( )diag ∇d( )Xt � εt (3)

(1 − L)di in Equation 4 refers to fractional differencing operator
with i = 1, 2, 3.

diag ∇d( ) � diag 1 − L( )di[ ] (4)

VAR model with polynomial order p is then represented by
Equation 5, where IM refers to the identity matrix of sizeM whereM
represents the number of endogenous variables in the system.

A L( ) � IM −∑p
i�1
AiL

i (5)

The parameter d = (dR, dS, dH) dictates the long-term characteristics
of the process Xi, while the coefficients of A(L) describe its short-term
dynamics. By approximating a VARFI(p, d) model with a finite-order
VAR(p + q) process, VARFI models prove advantageous for analyzing
time series data that commonly exhibit both multivariate dependencies
and long memory properties (Pinto et al., 2021).

VARFI models are capable of incorporating external factors
and interventions, capturing dynamic responses, assessing the
overall impact of long-term correlations, ensuring dependable
performance with short time series, and identifying intervention
effects (Balboa et al., 2021; Pinto et al., 2022a), thus providing
valuable insights into cerebral function under varying
conditions.

2.4 Vector autoregressive fractionally
integrated moving average
(VARFIMA) model

The Vector Fractionally Integrated Autoregressive Moving
Average (VARFIMA) model extends the traditional VARMA
model by incorporating fractional differencing, allowing for long
memory behavior in multivariate time-series data (Ehouman, 2020).
This is particularly useful for analyzing processes that exhibit long-
range dependencies and slow decay in autocorrelations, such as
physiological signals and economic time series. The general form of
VARFIMA (p,d,q) model is given in Equation 6, where Yt is a
n-dimensional vector of time-series observation at time t, Φ(L) is a
(n × n) matrix polynomial in the lag operator L, (1-L)d is the
fractional differencing operator with a diagonal differencing
matrix, θ(L) is a (n × n) matrix polynomial in L, and εt is a
white noise vector with mean zero and covariance matrix ∑.

Φ L( ) 1 − L( )dYt � θ L( )εt (6)
The fractional differencing operator (1-L)d is defined using the

binominal expansion given in Equation 7, where Γ(•) is the gamma
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function which allows for non-integer values of d, capturing long
memory behavior in time-series.

1 − L( )d � ∑∞
j�0

Γ j − d( )
Γ −d( )Γ j + 1( )Lj (7)

By incorporating fractional differencing, VARFIMA provides a
more flexible framework for modeling multivariate time series with
long-memory characteristics compared to standard
VARMA models.

2.5 Vector autoregressive moving average
(VARMA) model

VARMA models represent a sophisticated extension of time
series analysis that combines the strengths of both AR and moving
average (MA) processes. VARMA models provide a powerful
framework for capturing the temporal dependencies and
stochastic elements inherent in time series data (Scherrer et al.,
2019). Mathematically, VARMA(p, q) model can be expressed as
given in Equation 8, where Yt is a vector of endogenous variables at
time t, A terms are coefficient matrices capturing the lagged effects,
εt is a vector of white noise disturbances, c is a constant term, B terms
are coefficient matrices capturing the moving average effects, and εt-i
represent the lagged white noise disturbances.

Yt � c +∑p
i�1
AiYt−i + εt +∑q

i�1
Biεt−i (8)

The p parameter represents the order of the AR component,
while q represents the order of the MA component. The selection of
the appropriate order (p, q) is crucial for the model’s accuracy and is
often determined through model selection techniques. The
parameters of the VARMA model are estimated using methods
such as maximum likelihood estimation. VARMA models are
particularly useful for capturing the interdependencies and
dynamic interactions among multiple time series variables.

VARMA models extend the capabilities of VAR models by
incorporating AR and MA components for exploration of
temporal dependencies and stochastic processes within cerebral
physiologic data. VARMA models are, similar to VAR models,
capable of capturing dynamic interactions among multiple brain
regions, but they can additionally incorporate the impact of past
disturbances on the current state of the system (Nadalizadeh et al.,
2023). This integration allows for a more comprehensive
examination of the temporal dynamics of brain signals,
considering both the inherent autocorrelation and the influence
of random disturbances.

2.6 Vector autoregressive integratedmoving
average (VARIMA) model

VARIMA models are an extension of the univariate
autoregressive integrated moving average (ARIMA) models to
handle multiple time series variables simultaneously (Rusyana
et al., 2020). In a VARIMA model, each variable in the system is
treated as a linear function of its own past values, the past values of

all other variables in the system, and possibly the past values of some
white noise error terms. VARIMA models incorporate differencing
to achieve stationarity in the time series data, which is particularly
useful when dealing with non-stationary time series (Rusyana et al.,
2020; Anderson, 1977). The general form of a VARIMA(p, d, q)
model is expressed as given in Equation 9, where Yt is a vector of
endogenous variables at time t, εt is a vector of white noise
disturbances, c is a constant term, L is a lag operator, Φi are the
autoregressive parameters, Θi are the moving average parameters, d
is the order of differencing (Olson et al., 2020). The notations p, d
and q, similar to that in an ARIMA model, refer to the order of the
AR component, the order of differencing needed to make the series
stationary, and the order of MA component, respectively
(Anderson, 1977).

1 −∑p
i�1
ΦiL

i⎛⎝ ⎞⎠ 1 − L( )dYt � c + 1 +∑q
i�1
ΘiL

i⎛⎝ ⎞⎠εt (9)

VARIMA models are particularly useful for time series
data with trends, as the integrated component helps in
detrending the series (Rusyana et al., 2020). Similar to other
vector AR models, the estimation and forecasting procedures for
VARIMA models involve techniques like maximum likelihood
estimation and can be more complex than those for univariate
ARIMA models.

VARIMA models consider both AR and MA effects, as well as
trends in the data providing a comprehensive approach to modeling
and understanding the temporal dynamics of cerebral physiologic
data. Through techniques like granger causality and impulse
response function analyses, multivariate AR models enable the
investigation of directional influences, shedding light on the
causal relationships between different brain areas
(Manomaisaowapak et al., 2022; Barnett and Seth, 2015).

2.7 Kalman filter

The Kalman filter is an algorithm used for recursive estimation
and optimization of linear dynamic systems in the presence of noise
(Maybeck et al., 1990). The filter operates by combining predictions
from a mathematical model of the system with real-world
measurements to produce accurate and reliable estimates of the
system’s state (Welch, 1997; Barton et al., 2009). The Kalman filter
tries to estimate the state x in a discrete-time controlled process
using the linear stochastic difference equation given in Equation 10
where xt is the state at time-step t,A is the state transitionmatrix, B is
the control input matrix, ut is the control input, and wt is the process
noise (Welch, 1997).

xt � Axt−1 + But + wt (10)

The measurement equation that is used to relate the observed
measurements to the underlying state of the system is represented as
given in Equation 11, where zt is the measurement at time t, H is the
measurement matrix, and vt is the measurement noise. The
measurement equation defines how the true state influences the
measurements that are obtained from the real-world system (Kim
et al., 2019). The measurement equation plays a crucial role in the
update step of the Kalman filter, where it helps refine the estimate of
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the system’s state based on the comparison between the predicted
measurements and the actual measurements.

zt � Hxt + vt (11)

Two stages make up the Kalman filter algorithm, namely,
prediction and update. In the prediction step, the Kalman filter
predicts the current state, Equation 12 where x̂t refers to the
predicted state, and covariance, Equation 13 where Pt is the
predicted covariance, and the Q is the process noise covariance,
based on the previous state estimate and covariance, the state
transition matrix, and the process noise (Kim et al., 2019).

x̂t � Ax̂t−1 + But (12)
Pt � APt−1AT + Q (13)

In the update step, the Kalman gain (denoted as Kt), estimated
using Equation 14 where R represents the measurement noise
covariance, is applied to update the state as per Equation 15. The
covariance is also updated using Equation 16, where Pt signifies the
updated covariance, and I is the identity matrix. This update is
performed based on a comparison between the predicted values and
the actual measurement.

Kt � Pt−1HT HPt−1HT + R( )−1 (14)
x̂t � x̂t−1 +Kt zt −Hx̂t−1( ) (15)

Pt � I − KtH( )Pt−1 (16)

The Kalman filter continuously iterates through the prediction
and update steps as new measurements become available, providing
an optimal estimate of the system’s state even in the presence of
noise (Welch, 1997).

The Kalman filter can accurately estimate unobserved
physiological states, model dynamic processes, reduce noise in
measurements, integrate data from multiple sources, enable real-
time monitoring, and predict future physiological states
(Nadalizadeh et al., 2023; Rajabioun et al., 2017; Sun et al., 2008;
Azzalini et al., 2023), proving its importance in cerebral physiologic
signal analysis.

3 Clinical relevance

In the realm of cerebral signal analysis, multivariate time-series
analysis is crucial for simultaneously examining the spatial and
temporal dynamics of cerebral physiological signals to study how
different brain regions interact over time, consequently, capturing
the complexity of neural processes that cannot be fully understood
with univariate approaches (Kostoglou et al., 2014). Multivariate
analysis allows assessment of the correlations and functional
connectivity patterns between signals, helping to uncover
network interactions and the coordination of brain activity
(Salvador et al., 2020). Multivariate analysis is also more sensitive
to subtle changes in brain function which is crucial for detecting
early signs of neurological disorders, monitoring treatment effects,
or understanding the impact of interventions on brain function
(Brier et al., 2022; Gessell et al., 2021).

Vector-based models, with their multivariate nature, have the
ability to capture dynamic interactions, model temporal

relationships, assess causality, and provide valuable insights into
the complex dynamics of brain activity over time (Ferreira et al.,
2022; Aoki, 1990; Triantafyllopoulos and Triantafyllopoulos, 2021).
Multivariate time series models play a crucial role in life sciences,
providing powerful tools to analyze complex dynamics across
animal and human populations, offering enhanced classification
performance compared to simpler methods, such as univariate time
series models, enabling researchers to discern subtle patterns in
physiological signals such as EEG signals (Oikonomou et al., 2007;
Omidvarnia et al., 2011; Nadalizadeh et al., 2023; Anderson, 1977;
Rajabioun et al., 2017; Samdin et al., 2013; Pascucci et al., 2020; Hart
et al., 2021; Jajcay and Hlinka, 2023; Kamiński et al., 1997; Lie and
van Mierlo, 2017). They excel in capturing shared dynamics among
individuals and populations, shedding light on similarities in
physiological processes within and across groups.

Moreover, multivariate models facilitate the automatic
assessment of critical physiological parameters, allowing for a
deeper understanding of regulatory mechanisms such as cerebral
autoregulation (Pinto et al., 2022b; Schäck et al., 2018; Jachan et al.,
2009). Additionally, multivariate AR models serve as valuable tools
for mitigating data overload by reducing data resolution, aiding in
the integration of high-resolution cerebral data into predictive
models, such as neural networks (Thelin et al., 2020), and
enhancing utility in clinical decision-making processes. By
uncovering intricate neural dynamics underlying cognitive
processes and serving as tools for data resolution reduction, these
models provide valuable insights into brain function, functional
connectivity patterns, and the integration of high-resolution cerebral
signal monitoring data into trajectory models.

Furthermore, multivariate modeling techniques enhance the
analysis of EEG recordings by improving signal quality and
reducing noise, leading to more accurate interpretations of brain
activity and functions (Oikonomou et al., 2007). They also enable
the detection of rapid changes in connectivity patterns, providing
valuable information about brain network dynamics and the
functions that emerge from these networks (Omidvarnia et al.,
2011). Additionally, these models offer insights into
cerebrovascular dynamics and the relationship between
physiological variables such as ICP, mean arterial pressure, and
brain oxygenation, contributing to our understanding of conditions
like traumatic brain injury and their effects on brain function
(Thelin et al., 2020; Zeiler et al., 2020; Zeiler et al., 2021; Valdés-
Sosa et al., 2005; Antonacci et al., 2020; Antonacci et al., 2021a).

Moreover, penalized regression techniques for identifying VAR
models have shown particular promise in brain-computer interface
applications, where such methods are used to enhance model
robustness and performance with limited data samples
(Antonacci et al., 2024a). These applications should be
highlighted in the context of clinical relevance, emphasizing their
potential to translate complex cerebral signal analysis into actionable
insights for neurological and clinical applications.

Additionally, it is worth noting that VARFIMA, currently, has
not been widely applied in cerebral physiology modelling research,
despite its potential advantages. Given its ability to capture both
short and long-range dependencies in multivariate time-series data,
VARFIMA could offer a more nuanced representation of cerebral
physiologic signals, particularly in scenarios where fractional
differencing can better model effects in autoregulatory indices
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such as pressure reactivity index (PRx). Integrating VARFIMA into
cerebral physiology studies could enhance trend analysis and
predictive modeling, offering a valuable framework for
understanding complex neural interactions over varying temporal
resolutions.

In summary, multivariate time series models are indispensable
tools for studying complex physiological phenomena, offering
valuable insights into brain function, cerebral dynamics, and
neurological disorders across diverse populations. Table 2
presents the studies utilizing linear multivariate state-space
models for analyzing various cerebral physiological signals.
Majority of the studies focused on EEG signal analysis
(Oikonomou et al., 2007; Omidvarnia et al., 2011; Nadalizadeh
et al., 2023; Anderson, 1977; Rajabioun et al., 2017; Samdin et al.,

2013; Pascucci et al., 2020; Hart et al., 2021; Jajcay and Hlinka, 2023;
Kamiński et al., 1997; Lie and van Mierlo, 2017; Antonacci et al.,
2023; Pagnotta and Plomp, 2018; Astolfi et al., 2008; Antonacci et al.,
2024b; Antonacci et al., 2021b; Endemann et al., 2022; Milde et al.,
2010), with a few focused on other cerebral physiology such as ICP
(Pinto et al., 2022b; Schäck et al., 2018; Jachan et al., 2009; Thelin
et al., 2020; Zeiler et al., 2020; Zeiler et al., 2021; Swiercz et al., 1998;
Swiercz et al., 2000; Gomez et al., 2023a; Gomez et al., 2023b) for
tasks ranging from assessment of physiological dynamics
(Oikonomou et al., 2007; Jajcay and Hlinka, 2023; Kamiński
et al., 1997), connectivity analysis (Omidvarnia et al., 2011;
Rajabioun et al., 2017; Pascucci et al., 2020; Lie and van Mierlo,
2017), transfer entropy estimation (Pinto et al., 2022b), classification
or prediction and pattern recognition (Nadalizadeh et al., 2023;

TABLE 1 The summary of the linear state-space models.

Model Definition Advantages Disadvantages and limitations

VAR Describes the linear relationship between multiple
variables by regressing each variable on its own lagged
values and the lagged values of all other variables in the
system

- Capturing dynamic interaction
- Modeling temporal relationships

- Requirement for stationary data
- Sensitivity to model specification
- Challenges in determining the appropriate lag
length

- Potential overfitting with high-dimensional data

TVAR Allows the parameters to vary over time, thereby
capturing the time-varying nature of the relationships
among variables

- Capturing time-varying dynamics
- Improving forecasting accuracy
- Detecting transient events
- Exploring dynamic interactions

- Difficulties in interpreting time-varying
coefficients due to model complexity

- Computational intensity
- Challenges in model selection
- Adequate data requirements
- Risk of overfitting due to model flexibility

VARFI Combines VAR models with FI techniques to describe
time series data that exhibit long memory or long-
range dependence allowing for non-integer
differencing orders

- Capturing dynamic responses
- Incorporating external factors and interventions
- Assessing the overall impact of long-term
correlations

- Ensuring dependable performance with short
time series

- Identifying intervention effects

- Requirement for stationary data
- Sensitivity to model specification
- Challenges in determining appropriate lag
length and fractionally differencing parameters

- Potential overfitting with high-dimensional data
- Difficulty in interpreting causal relationships
among variables

- Limited forecasting horizon

VARFIMA Models multivariate time-series with both short and
long-range dependencies, making it ideal for capturing
memory effects in complex systems

- Capturing long range dependencies
- Handling fractional differencing
- Improving predictive accuracy for time-series
with long-memory characteristics

- High computational cost due to estimating of
fractional differencing parameters

- Parameter estimation challenges
- Requires long time-series data to capture long-
range dependencies

- Interpretability issues due to fractional
integration

VARMA Combines VAR and MA to capture the temporal
dependencies and stochastic elements inherent in time
series data

- Capturing dynamic interactions and temporal
dependencies

- Incorporating lagged effects
- Assessing intervention effects

- Requirement for stationary data
- Substantial computational resources and
complexity especially with increasing variables
and lags

VARIMA Incorporates ordered differencing to AR and MA to
achieve stationarity in the multivariate time series data,
which is particularly useful when dealing with non-
stationary time series

- Capturing temporal dynamics
- Accounting for non-stationarity
- Providing forecasting capabilities
- Assessing intervention effects

- High computational cost
- Identification challenges
- Stationarity assumption
- Interpretability complexity
- Risk of overfitting
- Limited forecasting horizon
- Model specification requirements

Kalman
filter

Estimates and optimizes linear dynamic systems
recursively in the presence of noise

- Estimating unobserved physiological states
- Modeling dynamic processes
- Reducing noise in measurements
- Integrating data from multiple sources, enable
real-time monitoring, and predict future
physiological states

- Model assumptions (linearity, Gaussian noise,
known model parameters)

- Sensitivity to model mismatch
- Computational complexity
- Initialization challenges
- Lack of robustness to outliers
- Limited forecasting capability

FI, fractional integration; MA, mean average; TVAR, time-varying vector autoregressive; VAR, vector autoregressive; VARFI, vector autoregressive fractionally integrated; VARFIMA, vector

autoregressive fractionally integrated moving average; VARIMA, vector autoregressive integrated moving average; VARMA, vector autoregressive moving average.
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TABLE 2 The studies employing linear multivariate state-space models for various cerebral physiologic signal analysis.

Study Study group Multivariate model Studied
cerebral
physiology

Significance of the model in the
study

Astolfi et al.
(2008)

Healthy participants TVAR Test-state EEG signals The proposed model was able to correctly
estimate the changes in connectivity
relationships between cortical areas of human
brain

Anderson et al.
(1998)

Healthy participants VAR Test-state EEG signals Better classification performance was observed
with the coefficients extracted with VAR model
compared to univariate AR model

Antonacci et al.
(2021b)

Healthy participants VAR Test-state EEG signals The results showed the importance of β EEG
waves in analyzing multivariate interactions
during motor execution and imagery tasks

Antonacci et al.
(2023)

Healthy participants TVAR Resting-state EEG
signals

Better tracking of transient pathways and spatio-
temporal changes in physiological systems was
observed with the TVAR model compared to
stationary models

Antonacci et al.
(2024b)

Healthy participants VAR Task-state EEG signals The results showed that integrating advanced
information theory with EEG source
reconstruction enables anatomically localized
analysis of complex functional interactions

Endemann et al.
(2022)

Neurosurgical patients VAR Resting-state EEG
signals

Long data segments enabled the successful
estimation of high-dimensional VAR models,
yielding plausible connectivity profiles

Gomez et al.
(2023b)

Moderate-to-severe TBI
patients

VAR ICP, rSO2
Other; ABP

The changes in ICP and rSO2 responding to an
impulse change in ABP was examined using a
VAR model, aiming to identify similarities

Gomez et al.
(2023a)

Moderate-to-severe TBI
patients

VAR ICP, PbtO2, rSO2
Other; ABP

Impulse-response function plots drawn based
on VAR model illustrated the changes in
PbtO2 and rSO2

Hart et al. (2021) Healthy twin pairs VAR with Markov switching Resting-state EEG
signals

The suggested model demonstrated the capacity
to acknowledge that various epochs originating
from a single participant would exhibit identical
microstate dynamics, while also noting the
existence of shared microstates among twins

Jachan et al.
(2009)

Uni- or bilateral internal
carotid artery stenosis or
occlusion patients

VAR CBFv
Other; ABP

Parametric models (VAR and ARMAX models)
with lower model complexities were shown to
compete with a nonparametric method to
automatically assess CA.

Jajcay and Hlinka.
(2023)

Healthy participants VAR Resting-state EEG
signals

Fitting VAR model to the EEG data
demonstrated that microstate properties
predominantly rely on the linear structure of the
underlying EEG data

Kamiński et al.
(1997)

Healthy participants VAR Resting-state EEG
signals

The utilization of the VAR model for
simultaneous assessment of EEG signals enabled
exploration into brain synchronization and
functional relationships

Lie and van
Mierlo. (2017)

Surgical patients VAR based on Kalman filter Intracranial EEG
signals

Kalman filter-based VAR models show the
ability to conduct adaptive, multivariate
functional-connectivity analyses on high-
dimensional time-series EEG data

Nadalizadeh et al.
(2023)

Healthy participants VAR, VARMA, dual Kalman filter Resting- and fatigue-
state EEG signals

For classification between the resting- and
fatigue state EEG signals, VAR model was fitted
to selected sources to create state-space model,
dual Kalman filter allowed estimation of
dynamic source activity over time and their
interrelations. Finally, VARMAmodel was fitted
between EEG and source activity signals before
feature selection and classification processes
took place

(Continued on following page)
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TABLE 2 (Continued) The studies employing linear multivariate state-space models for various cerebral physiologic signal analysis.

Study Study group Multivariate model Studied
cerebral
physiology

Significance of the model in the
study

Oikonomou et al.
(2007)

Epilepsy patients TVAR, Kalman filter Resting-state EEG
signals

Kalman filter was used to estimate the time-
varying coefficient for the TVAR model. TVAR
model was used for enhancement of the spikes
in the EEG recordings achieving improvement
in the signal-to-noise ratio and considerable
decrease in the number of false positives

Omidvarnia et al.
(2011)

Neonates TVAR, dual extended Kalman filter EEG signals Dual extended Kalman filter was used for
estimation of TVAR model parameters. TVAR
models were compared in their ability to detect
rapid changes in the cortical connectivity
between EEG channels

Pagnotta and
Plomp. (2018)

Rats VAR, Kalman filter Epicranial EEG signals The study showed that when properly tuned,
Kalman filter-based algorithms can model
multivariate brain time series and reveal
dynamic interaction patterns

Pascucci et al.
(2020)

Rats Self-tuning optimized Kalman filter Epicranial EEG signals The suggested model demonstrated its
capability to monitor swiftly evolving patterns of
directed connectivity within multivariate non-
stationary time-series EEG signals

Pinto et al.
(2022b)

Severe TBI patients VARFI ICP, CPP, ECG
Other: ABP, MAP,
EtCO2

The effectiveness of the VARFI model in
estimating Transfer Entropy was shown,
demonstrating its capability in evaluating the
overall impact of long-term correlations and
maintaining reliability when applied to short-
time series

Rajabioun et al.
(2017)

Healthy children Dual Kalman filter Resting-state EEG
signals

The dual Kalman filter was employed to
estimate effective connectivity among active
regions concurrently

Samdin et al.
(2013)

Healthy participants TVAR Task-state EEG signals TVAR model was employed for dynamic
classification of single-trial EEG signals,
showing improvement in classification accuracy
when compared to hidden Markov Model

Schäck et al.
(2018)

TBI patients Robust time-varying generalized partial
directed coherence with Kalman filter, dual
extended Kalman filter

ICP, PbtO2

Other: MAP
Both models were employed and contrasted to
quantify the relationship between concurrently
observed time series and unveil interactions
among the signals with dual extended Kalman
filter model showing slightly higher
computational time

Swiercz et al.
(1998)

Patients with intracerebral
hemorrhage or brain tumor

Kalman filter ICP Kalman filter was compared with ANN and
ARX for predicting ICP trends and detecting
unfavorable symptom configurations, where
ANN achieved superior prediction accuracy

Swiercz et al.
(2000)

Patients with intracerebral
hemorrhage or TBI

AR with Kalman filtering ICP AR with Kalman filtering was compared to
ANN for prediction of on-line ICP where ANN
achieved the best prediction accuracy

Thelin et al.
(2020)

Mild to severe TBI patients VARMA, VARIMA ICP, PRx
Other: ABP, MAP

Impulse response function plots were derived
from the VARMA-derived coefficients.
VARIMA model was used for assessment of the
ICP and MAP relations over a minute interval

Zeiler et al. (2020) Moderate to severe TBI
patients

VARIMA ICP, CPP
Other: ABP, MAP

VARIMA and impulse response function plots
used for assessing relationships between ICP
and MAP during pre-, immediate post- and
beyond post-decompressive craniectomy in TBI
patients showing no variations between pre- and
post-decompressive craniectomy

(Continued on following page)
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Samdin et al., 2013; Zeiler et al., 2020; Zeiler et al., 2021; Swiercz
et al., 1998; Swiercz et al., 2000; Anderson et al., 1998). Majority of
these studies have utilized VAR model (Nadalizadeh et al., 2023;
Anderson, 1977; Hart et al., 2021; Jajcay and Hlinka, 2023; Kamiński
et al., 1997; Lie and van Mierlo, 2017; Jachan et al., 2009; Pagnotta
and Plomp, 2018; Antonacci et al., 2024b; Antonacci et al., 2021b;
Gomez et al., 2023a; Gomez et al., 2023b). Kalman filter was the
second most utilized multivariate model (Oikonomou et al., 2007;
Omidvarnia et al., 2011; Nadalizadeh et al., 2023; Rajabioun et al.,
2017; Pascucci et al., 2020; Lie and van Mierlo, 2017; Schäck et al.,
2018; Pagnotta and Plomp, 2018).

4 Limitations of linear multivariate
state-space models

While linear multivariate state-space models offer valuable
insights and tools for analyzing complex systems, they also come
with several inherent limitations effecting model selection,
applicability, and interpretation various contexts. Many of these
models assume linearity and stationarity of underlying processes,
which may not hold true for many real-world systems exhibiting
nonlinear and non-stationary behavior (Loaiza-Maya and
Nibbering, 2023). Parameter estimation in multivariate state-
space models can be challenging, particularly for high-
dimensional data or complex systems, leading to potential biases
in model predictions (Hinrichsen and Holmes, 2009). Sensitivity to
initial conditions and limited flexibility in capturing complex
interactions further constrain the utility of these models
(Triantafyllopoulos and Triantafyllopoulos, 2021). Moreover, the
computational complexity of analyzing and fitting multivariate
state-space models, coupled with the risk of model overfitting
and challenges in interpretability, poses significant hurdles in
their application (Gessell et al., 2021; Triantafyllopoulos and
Triantafyllopoulos, 2021). However specific models retain their
own limitations and disadvantages.

The main limitation shared among the autoregressive models is
the requirement for stationary data, which affects VAR, VARFI,
VARFIMA, VARMA, and VARIMA models (Hinrichsen and
Holmes, 2009; Triantafyllopoulos and Triantafyllopoulos, 2021).
This assumption may not hold true in real-world datasets,
potentially biasing parameter estimates and leading to unreliable
forecasts. However, this limitation could be addressed through
techniques such as differencing or, in some cases, incorporating

fractional integration, i.e., VARFI and VARFIMA, with careful
consideration during model specification and estimation.
Additionally, all autoregressive models face challenges in dealing
with high dimensionality, posing difficulties in accurate parameter
estimation, and increasing the risk of overfitting (Triantafyllopoulos
and Triantafyllopoulos, 2021), particularly in cerebral physiologic
datasets, which often exhibit high dimensionality with numerous
variables recorded simultaneously. Computational complexity is
another common limitation, especially with increasing variables
and lags, demanding substantial computational resources. Model
interpretation complexity arises due to the intricate relationships
among variables, requiring additional statistical techniques or
domain knowledge (Olson et al., 2020).

Furthermore, all models have a limited forecasting horizon,
typically suited for short-to medium-term predictions, and
extrapolating beyond observed data may lead to unreliable
forecasts, particularly if underlying relationships change over
time (Olson et al., 2020; Triantafyllopoulos and
Triantafyllopoulos, 2021). Additionally, careful model
specification is crucial across all models to avoid bias in
parameter estimates and inaccurate forecasts (Gessell et al.,
2021). The limitations of the Kalman filter include its reliance on
specific model assumptions such as linearity and Gaussian noise,
which if violated, can lead to biased estimates (Maybeck et al., 1990).
Moreover, its sensitivity to model mismatch, computational
complexity, and the challenge of accurate initialization can
hinder its performance, especially in complex systems (Kim et al.,
2019; Sun et al., 2008). Tuning parameters and the assumption of
complete observability further contribute to its limitations, along
with its susceptibility to outliers and limited forecasting capability
(Maybeck et al., 1990).

Additionally, cerebral physiologic data present unique
challenges for multivariate state space modeling due to several
factors. Apart from high dimensionality of the data, constructing
appropriate multivariate state space models for cerebral physiologic
data requires making assumptions about underlying physiological
processes and interactions, which may not always hold true, leading
to model misspecification and potential biases. Parameter
estimation in such models is also challenging, especially with
nonlinearities or non-Gaussian distributions in the cerebral
physiologic data. Moreover, the complexity of multivariate state
space models can hinder their interpretability, making it difficult to
relate estimated parameters to underlying physiological
mechanisms. Validation of these models is further complicated

TABLE 2 (Continued) The studies employing linear multivariate state-space models for various cerebral physiologic signal analysis.

Study Study group Multivariate model Studied
cerebral
physiology

Significance of the model in the
study

Zeiler et al. (2021) Moderate to severe TBI
patients

VARIMA ICP, PbtO2

Other: ABP, MAP
VARIMA generated impulse response function
plots were used to assess relationship between
slow wave fluctuations in ICP, MAP and PbtO2

showing strong directional relation between
MAP and ICP.

ABP, arterial blood pressure; ANN, artificial neural network; AR, autoregressive; ARMAX, autoregressive moving average with exogenous input; ARX, autoregressive with exogenous input;

CBFv, cerebral blood flow velocity; CPP, cerebral perfusion pressure; ECG, electrocardiography; EEG, electroencephalography; EtCO2, end-tidal carbon dioxide; ICP, intracranial pressure;

MAP, mean arterial pressure; PbtO2, brain tissue oxygenation; PRx, pressure reactivity index; rSO2, regional cerebral oxygen saturation; TBI, traumatic brain injury; TVAR, time-varying vector

autoregressive; VAR, vector autoregressive; VARFI, vector autoregressive fractionally integrated; VARIMA, vector autoregressive integrated moving average; VARMA, vector autoregressive

moving average.
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by the limited availability of ground truth measurements, risking
overfitting and poor generalization performance. Finally, handling
missing data and noise in cerebral physiologic datasets is crucial for
accurate inference, as is addressing inter-subject variability
stemming from factors like age, gender, and pathology.

5 Conclusion

This narrative review aimed to explore the significance of
multivariate time-series analysis in understanding cerebral
physiology. These analyses offer insights into the spatial and
temporal dynamics of cerebral signals, aiding in the study of
brain interactions, functional connectivity patterns, and detection
of early signs of neurological disorders. Multivariate models, such as
VAR models and state-space models, capture dynamic interactions,
temporal relationships, and hidden states within cerebral signals,
facilitating the development of trajectory models and clinical
decision-making processes. Moreover, these models enable the
integration of high-resolution cerebral data, reduce data overload,
enhance signal quality, and provide valuable information about
brain network dynamics and cerebrovascular dynamics.
Additionally, they offer integrability into deep learning models,
further enhancing their capabilities for analyzing cerebral
physiology. By focusing on traditional statistical methodologies,
such as multivariate AR models and the Kalman filter, this
review aimed to bridge the gap between theoretical concepts and
practical applications, offering a comprehensive understanding of
their implications in cerebral physiology.
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