
Eigenvector biomarker for
prediction of epileptogenic zones
and surgical success from
interictal data

Sayantika Roy  1, Armelle Varillas  2,3, Emily A. Pereira  4,
Patrick Myers  2,3, Golnoosh Kamali  3,
Kristin M. Gunnarsdottir2,3, Nathan E. Crone5, Adam G. Rouse6,
Jennifer J. Cheng6, Michael J. Kinsman6, Patrick Landazuri6,7,
Utku Uysal7, Carol M. Ulloa7, Nathaniel Cameron6, Sara Inati8,
Kareem A. Zaghloul8, Varina L. Boerwinkle  9, Sarah Wyckoff9,
Niravkumar Barot10, Jorge González-Martínez11, Joon Y. Kang5*‡

and Sridevi V. Sarma2,3*‡

1University of Rochester School of Medicine and Dentistry, Rochester, NY, United States, 2Department of
Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States, 3Institute for
Computational Medicine, Johns Hopkins University, Baltimore, MD, United States, 4Department of
Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States, 5Department of
Neurology, Johns Hopkins University, Baltimore, MD, United States, 6Department of Neurosurgery,
University of Kansas Medical Center, Kansas City, KS, United States, 7Department of Neurology, University
of Kansas Medical Center, Kansas City, KS, United States, 8Surgical Neurology Branch, National Institute
of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States, 9Barrow
Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ, United States, 10Department of
Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States, 11Department of
Neurosurgery, University of Pittsburgh, Pittsburgh, PA, United States

Introduction: More than 50 million people worldwide suffer from epilepsy.
Approximately 30% of epileptic patients suffer from medically refractory
epilepsy (MRE), which means that over 15 million people must seek extensive
treatment. One such treatment involves surgical removal of the epileptogenic
zone (EZ) of the brain. However, because there is no clinically validated biomarker
of the EZ, surgical success rates vary between 30%–70%. The current standard for
EZ localization often requires invasive monitoring of patients for several weeks in
the hospital during which intracranial EEG (iEEG) data is captured. This process is
time-consuming as the clinical team must wait for seizures and visually interpret
the iEEG during these events. Hence, an iEEG biomarker that does not rely on
seizure observations is desirable to improve EZ localization and surgical success
rates. Recently, the source-sink index (SSI) was proposed as an interictal (between
seizure) biomarker of the EZ, which captures regional interactions in the brain
and in particular identifies the EZ as regions being inhibited (“sinks”) by neighbors
(“sources”) when patients are not seizing. The SSI only requires 5-min
snapshots of interictal iEEG recordings. However, one limitation of the SSI
is that it is computed heuristically from the parameters of dynamical network
models (DNMs).

Methods: In this work, we propose a formal method for detecting sink regions
from DNMs, which has a strong foundation in linear systems theory. In particular,
the steady-state solution of the DNM highlights the sinks and is characterized by
the leading eigenvector of the state-transition matrix of the DNM. To test this, we
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build patient-specific DNMs from interictal iEEG data collected from 65 patients
treated across 6 centers. From each DNM, we compute the average leading
eigenvectors and evaluate their potential as a biomarker to accurately predict
EZ and surgical success.

Results: Our findings show the ability of the leading eigenvector to accurately
predict EZ (average accuracy 66.81% ± 0.19%) and surgical success (average
accuracy 71.9% ± 0.22%) with data from 65 patients across 6 centers from 5
min of data, which we show is comparable with the current method of localizing
the EZ over several weeks.

Discussion: This eigenvector biomarker has the potential to assist clinicians in
localizing the EZ quickly and thus increase surgical success in patients with MRE,
resulting in an improvement in patient care and quality of life.

KEYWORDS

epilepsy, network physiology, dynamical network models, interictal, epileptogenic
zone (EZ)

Introduction

More than 50 million people worldwide suffer from epilepsy, a
disorder characterized by repeated, unprovoked seizures in the
brain due to abnormal electrical firing of neurons (World Health
Organization, 2024). Approximately one-third of epileptic patients
cannot be treated with medication and are subsequently diagnosed
with medically refractory epilepsy (MRE) (Granata et al., 2009;
Sinha et al., 2017; Gallagher et al., 2024). The most effective way to
treat MRE is by surgically resecting the epileptogenic zone (EZ),
which is the cortical region responsible for the generation and early
spread of seizures (Lüders et al., 2006). The success of surgical
outcomes varies often due to the inability to accurately locate the
EZ. To localize the EZ, a patient may spend 2–3 weeks in an
epilepsy monitoring unit in a hospital while their neural activity
data is collected from intracranial electrodes (Bernabei et al., 2022;
Bernabei et al., 2023; Sinha et al., 2023). Throughout the patient’s
stay, the electrodes record activity both during seizures (ictal
phase), and in between seizure events (interictal phase). The
gold standard for identifying the EZ requires clinicians to spend
many hours visually examining intracranial EEG (iEEG)
recordings during seizure events to accurately pinpoint the EZ
(Bernabei et al., 2022). Clinicians look for signatures of the EZ
including low voltage fast activity (Bernabei et al., 2023; Litt et al.,
2001). Despite large volumes of data collected from MRE patients,
surgical success rates vary from 30% to 70% (Bernabei et al., 2023;
Jobst and Cascino, 2015; González-Martínez et al., 2007;
Malmgren and Edelvik, 2017; Bulacio et al., 2012; McIntosh
et al., 2004). Such grim outcomes stem from reliance on
capturing iEEG during seizure events and visual inspection of
iEEG which is prone to human error and requires EEG expertise.

In this paper, we present a method to automatically identify the
EZ from interictal iEEG data. Our approach has the potential to save
time and money because clinicians could spend less time analyzing
the data and more time treating more patients due to the short
amount of interictal data needed. Furthermore, patients could spend
less time in the epilepsy monitoring unit, which reduces time and
risks associated with electrode implantation in the brain (Rosenow
and Lüders, 2001).

The prevailing method for identifying the EZ from interictal
data has been high-frequency oscillations (HFOs) analysis (Gliske
et al., 2016; Nariai et al., 2019; Varatharajah et al., 2018; Murphy
et al., 2017; Akiyama et al., 2011; Cimbalnik et al., 2019). HFOs have
been well studied both in research and in clinical trials, but there are
mixed results as to whether they are a reliable marker. HFOs are not
well-defined and there is difficulty deciphering clinically important
and naturally occurring HFOs (Gliske et al., 2018; Park and Hong,
2019). Detecting HFOs also consists of preprocessing the signals
through methods, such as applying bandpass filters, that require
signal processing knowledge.

More recently, the source-sink index (SSI) was proposed as an
interictal biomarker of the EZ, which captures regional
interactions in the brain (Gunnarsdottir et al., 2022). The SSI
outperformed HFO analysis when compared using iEEG
recordings from 65 MRE patients from multiple centers
(Gunnarsdottir et al., 2022). Patients with a successful outcome
(Engel 1) were able to have their surgical success predicted,
whereas patients with an unsuccessful outcome (Engel 2–4)
could not be as accurately predicted using the SSI. In particular,
the SSI identifies the EZ as regions in the brain acting as “sinks”,
meaning they are inhibited by surrounding regions, referred to as
“sources.” This characterization is based on interictal periods,
when patients are between seizures. The SSI is derived from
dynamical network models (DNMs) that are estimated from
iEEG data. While the SSI performs well, it remains a heuristic
measure derived from the DNM and is not directly grounded in
systems theory. It is analogous to describing a road as “windy”
versus providing the actual trajectory of the road.

In this study, we present a method that encapsulates the
properties of the SSI by computing the leading eigenvectors of
the state-transition matrices derived from the DNMs. These
eigenvectors represent steady-state solutions, indicating the
predicted trajectory of the multivariate iEEG signals as time
approaches infinity. Moreover, our eigenvector-based approach
can provide an explanation for the observed distinctions between
regions of the brain associated with the EZ, and those that are not.

This work presents three main contributions. First, we present a
biomarker grounded in dynamical systems theory for identifying the
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EZ. Second, we use this biomarker to accurately predict surgical
success. Finally, we compare our results to the source sink index and
find that our method does as well or better than the current methods
for locating the EZ.

Materials and methods

Patient population

This retrospective study included 65 adults with medically
refractory epilepsy, aged between 16 and 68 years (mean age
33.5 ± 13.0 years). The patients underwent intracranial EEG
(iEEG) monitoring using stereotactically placed depth electrodes
(stereo-EEG) and subsequently received surgical intervention. Post-
iEEG treatments consisted of resective surgery (39 patients), laser
ablation (17 patients), or responsive neurostimulation (9 patients;
RNS). Patients were treated at one of six institutions: Cleveland
Clinic (CC), Johns Hopkins Hospital (JHH), University of Kansas
Medical Center (KUMC), University of Miami Hospital (UMH),
National Institutes of Health (NIH), and University of Pittsburgh
Medical Center (UPMC). All participants had at least 1 year of
follow-up to assess treatment outcomes. A summary of patient
demographics is provided in Table 1, with detailed clinical
information available in Supplementary Table S1.

Stereo-EEG recordings

Stereo-EEG recordings are intracranial EEG (iEEG)
obtained using EEG monitoring and diagnostic systems from
Nihon Kohden or Natus (Natus Medical Inc.), with typical
sampling rates of 1 or 2 kHz. A small portion of the data
was collected at 500/512 Hz. Electrode placement was
determined by the clinical team at each center. For analysis,
one interictal snapshot was randomly selected per patient, with
an average duration of 5.3 ± 4.2 min. Interictal periods were
chosen at least one hour away from seizure events, without
applying specific selection criteria, such as the presence or
absence of epileptiform activity.

Clinical annotations of the EZ

At each epilepsy center, the clinical team independently
developed an EZ hypothesis for each patient as part of the

presurgical evaluation, using both non-invasive scalp EEG and
invasive iEEG data. The clinically annotated EZ refers to the
anatomical region(s) targeted for treatment, whether through
resection, ablation, or stimulation. This includes iEEG channels
showing the earliest electrophysiological changes at seizure onset,
commonly characterized by low-voltage fast activity (Litt et al.,
2001). It is important to note that, since surgical treatment is
guided by the EZ hypothesis (as well as early spread regions) with
minor variations, there is typically significant overlap between
the clinically annotated EZ and the areas ultimately treated for
each patient.

Data preprocessing

The iEEG data underwent bandpass filtering between 0.5 and
300 Hz using a fourth-order Butterworth filter, with notch filtering
applied at 60 Hz and its harmonics (2 Hz stopband) to eliminate
powerline interference. A common average reference was used to
mitigate common noise across signals. Electrode locations were
determined by combining co-registered post-implantation CT and
brain MRI data, processed with tools such as BioImage Suite52, and
subsequently validated by the clinical team at each center for accuracy.
Channels not recording from gray matter (e.g., those in white matter
or outside the brain) or identified as problematic (e.g., broken,
excessively noisy, or containing artifacts) were excluded from the
dataset. On average, 95 ± 32 iEEG channels per patient were retained
for analysis. The sEEG data were segmented into non-overlapping
500 m windows for modeling and feature extraction (described in
detail below). MATLAB R2020b (MathWorks, Natick, MA) was used
for data processing and analysis, while Python 3.6+ (Python Software
Foundation, Wilmington, DE) was employed for building models to
predict surgical outcomes.

Dynamical network models (DNMs)

Dynamical network models (DNMs) are a type of generative
model designed to capture the dynamic interactions between
individual iEEG channels within a network. The interictal DNM
is represented as a linear time-varying (LTV) model, which
mathematically describes the interactions between observed brain
regions (iEEG channel signals) over time. The LTV model is
constructed as a series of linear time-invariant (LTI) DNMs, each
derived from smaller temporal segments of the data. The structure of
each LTI model can be expressed as follows:

TABLE 1 Summary of patient information.

CC KUMC JHU NIH UPMC UMH Total

Number of patients 29 9 5 9 5 8 65

Sex (male/female) 15/14 4/5 2/3 7/2 3/2 6/2 37/28

Age (years) 16–65 22–68 23–62 16–46 23–46 21–52 16–68

Surgical Outcome (success/failure) 13/16 4/5 0/5 4/5 3/2 1/7 28/37

MRI Findings (normal/abnormal) 26/3 6/3 0/5 5/4 4/1 5/3 46/19
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x t + 1( ) � Ax t( ) + e t( ). (1)

In this context, N is the total number of channels, x(t) ∈ RN

represents the iEEG channel signals,A ∈ RN×N is the state transition
matrix that characterizes the interactions and temporal evolution of
the iEEG channels, and e(t) ∈ RN is white Gaussian noise
independent of the initial measurements x(0). A multivariate
autoregressive (MVAR) model, commonly used to analyze
effective connectivity in brain networks, adopts the form of an
LTI system at each time lag. The LTI DNM can be viewed as a
specific case of a first-order MVAR model, where interactions are
considered one time step in the past. In previous work, we
demonstrated that DNMs can be effectively constructed using
least squares estimation and shown to accurately reconstruct
iEEG signals (Gunnarsdottir et al., 2022).

Leading eigenvectors versus sinks of DNMs

Systems theory provides a framework to analyze the dynamics
and characteristics of DNMs, aiding in the precise localization of the
EZ. Within these models shown in (Equation 1), the element Aij

represents the influence of the current activity of channel j on the
future activity of channel i. More broadly, the i-th row of A captures
the cumulative functional effect of the network on channel i, while
the j-th column reflects the influence that channel j exerts on the
entire network. To compute the SSI, the norms of each row and
column of A are computed as described in (Gunnarsdottir et al.,
2022). In this paper, we show that the leading eigenvector of the A
matrix can capture the strongest sinks in a network without
computing a heuristic on its rows and columns. Instead, we use
the leading eigenvector of the network as a biomarker for predicting
surgical outcome and EZ.

In this section, we will illustrate the computation and meaning
behind the leading right eigenvector. To start, let’s consider a
network of three nodes–see Figure 1.

The network has the following adjacency matrix

A �
0.2 0.6 0
0.5 0.3 0.8
0 0.7 0.9

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (2)

To find the right eigenvector of A in (Equation 2), we must find the
eigenvalue decomposition, which determines the eigenvalues
(energy) and eigenvectors (direction) of A. Suppose we consider
the largest eigenvalue, which we will denote as λ1, and its
corresponding eigenvector, which is a 3 × 1 vector denoted as
v1, then

Av1 � v1λ1. (3)

In Equation 3, v1 is the leading right eigenvector for λ1. Simply
stated, when the adjacency matrix A is multiplied with its right
eigenvector v1, then the result is a scaled version of the right
eigenvector, that is λ1 scales v1.

Using our example network, when taking the eigenvalue
decomposition, the largest eigenvalue is λ1 � 1.487, so the right
eigenvector is given as

0.2 0.6 0
0.5 0.3 0.8
0 0.7 0.9

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
︸						︷︷						︸

A

0.287
0.6155
0.734

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
︸				︷︷				︸

v1

�
0.287
0.6155
0.734

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
︸				︷︷				︸

v1

1.487︸		︷︷		︸
λ1

. (4)

Note that the largest component in v1 (Equation 4) is the third
component corresponding to node 3. This also happens to be the
largest “sink” [formerly defined in (Gunnarsdottir et al., 2022)] in
the network in that there is more incoming influence to node 3.
Similarly, node 1 is considered to be more of a “source” in this
example because it has more outgoing influence.

To explain why the components of the leading eigenvector point
to sinks in the network, we consider the steady-state solution of the
system described in (Equation 1). For simplicity, we let e(t) � 0 for
all time. Let’s look at what happens to x(t) for a given initial
condition x(0) over time.

x 1( ) � Ax 0( ), x 2( ) � Ax 1( ) � A2x 0( ),
→ x t( ) � Atx 0( ) � ∑N

i�1
λi( )tviwT

i x 0( ) (5)

In Equation 5, wi is the ith left eigenvector of A. Now, note that
wT

i x(0) is a scalar quantity, we call αi ∈ R, so

x t( ) � Atx 0( ) � ∑N
i�1

λi( )tαivi (6)

Finally in Equation 6, without loss of generality, if we order and
label the eigenvalues as λ1 ≫ λ2 ≫ λ3 ≫ . . . ≫ λN, then as t gets
very large

x t( ) ≈ λ1( )tα1v1 (7)

Equation 7 indicates that the steady-state solution x(t)
points in the direction of the leading eigenvector (the
eigenvector associated with the largest eigenvalue). In the
context of sinks, the leading eigenvector can be seen
intuitively as follows. Suppose xi(t) is the amount of water
in bucket i, and at each time step, water gets poured from
bucket j to bucket i according to Aij. Then after a long time, all
the water will go into the buckets that are the sink nodes -
hence the connection to the SSI.

Our hypothesis states that the values of the leading right
eigenvector associated with the EZ channels will differ
significantly from those of the non-EZ channels. This hypothesis
is grounded in the premise that the steady-state solutions for the EZ
and non-EZ channels, as expressed by the leading right eigenvector,
exhibit inherent differences. The leading right eigenvector is of
interest because it represents the steady-state solution of the
linear time-invariant dynamics underlying the system. The
Algorithm found in Box 1 outlines the procedure we followed to
obtain the leading right eigenvectors from our data.

FIGURE 1
Illustrative three node network.
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BOX 1 | Our proposed novel biomarker feature.

1: Input: 5 minute snapshots of filtered and pre-processed
interictal data

2: Output: Our proposed novel biomarker feature
3: Using least-squares, compute a series of A matrices across the

data from 500 ms time windows
4: The leading right eigenvector v1 in Equation 3 is computed for

all A matrices
5: The average leading right eigenvector vavg is computed across

all time windows
6: From the average leading right eigenvector vavg, the elements

associated with EZ channels are averaged to obtain a single
value vEZ for all EZ channels

7: From the average leading right eigenvector vavg , the elements
associated with non-EZ channels are averaged to obtain a single
value vnEZ for all non-EZ channels

8: The final biomarker is computed by taking the difference
between vEZ and vnEZ , that is θ � vEZ − vnEZ

Logistic regression models

To evaluate the predictive power of the leading eigenvector
components (EVCs), we trained and tested three models using three
sets of features: EVCs, source sink metrics (SSMs), and EVCs
combined with SSMs. To predict clinically-annotated EZ (CA-
EZ) versus non-EZ (CA-nEZ), we developed the following
logistic regression models–see Table 2.

The logistic regression models in Table 2 were tested on the
channels of only Engel 1 patients having accurately localized
clinically annotated EZ to determine if the model could
distinguish the channels within and outside of the EZ. 26 of the
28 Engel 1 patients were determined by clinician review to have an
accurately localized EZ. For each model, the data was split into
training and test sets, where the test set contained all of the channels
from one patient. Thus, each model had 26 folds of cross validation.
These models were fit to the training set and an ROC curve was
generated. The optimal decision threshold was determined from
training and then applied to the testing patient to predict EZ and non-
EZ channels. Accuracy, sensitivity, and specificity of the
predictions were calculated.

To predict successful (Engel 1) versus failure (Engels 2–4)
surgical outcomes, we developed the following logistic regression
models–see Table 3.

For each model in Table 3, we performed a 10-fold cross
validation. These models were fit to the training set and an ROC
curve was generated. The optimal decision threshold was
determined from the training data and then applied to the
testing fold to predict surgical outcome. Accuracy, sensitivity,
and specificity of the predictions were calculated.

Results

The leading eigenvector correlates to the
source sink index

Figure 2 illustrates that the leading eigenvector components
(EVCs), correlate to the source sink indices for each channel. The
EVCs and source sink indices were averaged across time for each
channel and patient. The data reveals a clear nonlinear dependency
between the two variables, along with a statistically significant
linear correlation (p< 0.001). Furthermore, the Supplementary
Figure S1 demonstrates that the leading eigenvector components
correlate to all source-sink metrics introduced in (Gunnarsdottir
et al., 2022).

The leading right eigenvector points to EZ
channels in successful surgical outcomes

For each patient, we computed the leading right eigenvectors
and the source sink indices from the DNMs. Figure 3 presents
examples from three different patients (Engel 1, 2, and 4). For each
patient, Figure 3 shows the implantation map for the placement of
the electrodes, a sample snapshot of the iEEG, and the leading
eigenvectors over the sample snapshot. As seen in Figure 3, the
clinically annotated EZ (CA-EZ) has the largest eigenvector
component values (EVCs) for all patients.

We trained and tested three models (EVCs, SSMs, Combined) to
predict EZ v. non-EZ. Figure 4A shows the distributions of leading

TABLE 2 Logistic Regression Models for Predicting EZ v. non-EZ.

Name Features

Model 1 EVC average leading eigenvector

Model 2 SSMs average sink index, average source influence, average sink connectivity

Model 3 Combined average leading eigenvector, average sink index, average source influence, average sink connectivity

TABLE 3 Logistic regression models for predicting surgical outcome.

Name Features

Model 1 EVC average difference in average leading eigenvector (EZ - non-EZ channels)

Model 2 SSMs average difference in sink index, average difference in source influence, average difference in sink connectivity

Model 3 Combined average difference in average leading eigenvector, average difference in sink index, average difference in source influence, average
difference in sink connectivity
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eigenvector components for clinically annotated EZ and non-EZ
across patients stratified by surgical outcomes, Engel 1–4. As
shown in Figure 4A, the leading eigenvector components of the
EZ are significantly higher (p � 3.07 x 10−6) than those of non-EZ
for Engel 1, but this is not the case for Engel 2–4. This suggests
that there is a high correspondence between the clinically
annotated EZ and the largest components of the leading
eigenvector in patients who became seizure free after surgery.
For Engel 1 patients, the EZ is assumed to be localized accurately.
In Engel 2-4 outcomes, patients are not seizure free, and thus it is
possible that the EZ was not accurately localized. In these
patients, the channels with the largest eigenvector components
do not all correspond to the EZ.

Figure 4B shows the distributions of the performance metrics
across test patients for each of the three models: EVCs, SSMs, and
combined. Note that all models perform comparably, which is
not surprising as the EVCs are highly correlated to the SSMs–see
Figure 2. The mean accuracy, sensitivity, and specificity for each
of the models are shown in Table 4.

Figure 4C shows the ROC curves on the training data for each
model. The mean AUC statistics across training folds for the EVC,
SSM, Combined models are 0.70 ± 0.01, 0.71 ± 0.01, 0.72 ± 0.01,
respectively.

The leading eigenvector predicts
surgical outcomes

Finally, we trained and tested three models (EVCs, SSMs,
Combined) to predict surgical outcomes. Figure 5A shows the
distributions of predicted probabilities for test patients for
success (Engel 1) and failed surgical outcomes (Engels 2–4).
As shown in Figure 5A, the predicted probabilities of each
model are higher for success patients versus failed patients

(EVC: p = 6.55 x 10−6, SSM: p = 7.47 x 10−4, Combined: p =
4.17 x 10−6). Again, these models suggest that there is a high
correspondence between the clinically annotated EZ and the
largest components of the leading eigenvector in patients who
became seizure free after surgery. In Engel 2-4 outcomes,
patients are not seizure free, and thus it is possible that the
EZ was not accurately localized. In Engel 2-4 patients, the
channels with the largest eigenvector components do not all
correspond to the EZ.

Figure 5B shows the distributions of the performance metrics
across test patients for each of the three models: EVCs, SSMs, and
Combined for predicting surgical outcome. Note that all models
perform comparably, which is again not surprising as the EVCs are
highly correlated to the SSMs–see Figure 2. The mean accuracy,
sensitivity and specificity for each of the models are shown
in Table 5.

Figure 5 shows the ROC curves on the training data for each
model. The mean AUC statistics across training folds for the (EVC,
SSM, Combined) models are 0.75 ± 0.03, 0.85 ± 0.02, 0.85 ± 0.02,
respectively.

Discussion

Previously, the source-sink metrics (SSMs) as interictal iEEG
markers were proposed to support the localization of the
epileptogenic zone (EZ) (Gunnarsdottir et al., 2022). These
metrics are grounded in the hypothesis that seizures are
suppressed when epileptogenic regions are effectively inhibited by
neighboring areas. Our current study aimed to assess the
effectiveness of the leading eigenvector components (EVCs) in
capturing the SSMs into one theoretically sound measure. We
tested the EVCs across a diverse patient cohort, encompassing
various epilepsy etiologies, treatment approaches, and post-

FIGURE 2
Source-Sink Index (SSI) versus Eigenvector Components (EVCs) across patients where success cases are considered to be Engel 1 and failure cases
are considered to be Engel 2-4.
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treatment outcomes. The iEEG data were sourced from 6 different
clinical centers, resulting in a heterogeneous dataset that included
patients with varying case complexities (e.g., lesional vs. non-
lesional, and temporal vs. extra-temporal epilepsy), epilepsy types
(focal and multi-focal), and clinical practices. This diversity reflects
real-world conditions and aligns with the standard care success
rates, averaging approximately 50%.

Among the 28 patients in our dataset with successful outcomes,
the EVC interictal iEEG marker aligned with clinical assessments in
26 cases (93%). Conversely, for patients with unsuccessful outcomes,
agreement with clinicians was observed in only 54% of cases. This
indicates that the algorithm often identified additional potentially
epileptogenic regions not targeted in treatment. Moreover, the EVCs
demonstrated comparable predictive accuracy for surgical outcomes

FIGURE 3
Three patient examples. Patient 1 had a successful surgical outcome (Engel 1). Patient 2 (middle) had a failed surgical outcome (Engel 4). Patient 3
(bottom) had two surgeries. After the first surgery, Patient 3 continued to have seizures (failed outcome) but became seizure-free (successful outcome)
after the second surgery (Engel 2). (A) Average leading right eigenvector corresponding to each channel overlaid on a brain implantation map for each
patient. CA-EZ is shown in a red box. (B) A 1-min interictal iEEG snapshot and the resulting leading eigenvector of every channel. Channels are
arranged from highest to lowest value of the average leading eigenvector. CA-EZ channels are labeled in red text. For Patient 3, the CA-EZ from the
second surgery is labeled in orange text. Only the top 30% of channels are shown for better visualization, and all channels not shown have low
eigenvector component values (EVCs). (C) The resulting EVC of every channel. In Patient 1 (top), CA-EZ channels had the highest EVC values, whereas
only 1 of 6 CA-EZ channels had high EVCs in Patient 2 (middle). In Patient 3 (bottom), the CA-EZ that rendered the patient seizure-free had the highest
EVC values.
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as did the SSMs. The EVCs correctly predicted outcomes in 72% of
cases, surpassing the 67% accuracy achieved by the SSMs alone.

Why EVCs may disagree with clinicians in
patients with failed surgical outcomes

Surgical treatment for epilepsy may fail for a variety of reasons,
and in complex cases, removing the EZ alone may not be sufficient
to achieve seizure freedom. For example, in multifocal epilepsy,
removing the primary focus might lead to the emergence of seizures
from other regions that were not clinically evident before surgery. As
a result, the EVC algorithm might partially or fully align with the
treated areas, even in cases where surgical outcomes are
unsuccessful.

Failure can also stem from incorrect or incomplete localization
of the EZ, as well as incomplete treatment of these areas, which often
leads to seizure recurrence. This is particularly likely in cases where
the implanted electrodes do not adequately sample the true EZ,

making it difficult, if not impossible, for both clinicians and
algorithms to identify its full extent or widespread nature.

In some situations, a complete resection of the EZ is not feasible
due to the risk of causing significant neurological deficits, especially
if the EZ is located in the eloquent cortex. For these patients,
palliative treatments such as responsive neurostimulation (RNS)
or deep brain stimulation (DBS) are increasingly used as alternatives
to resective surgery. While these approaches can effectively reduce
seizure frequency, only a small percentage of patients achieve
complete seizure control. Therefore, patients undergoing RNS or
DBS may still have failed outcomes, even when the areas highlighted
by the source-sink algorithm overlap with the clinically-assessed EZ.

Limitations and future work

Validating any iEEG marker remains a significant challenge
because the epileptogenic zone (EZ) is a theoretical construct that
cannot be directly measured. Consequently, there is no definitive

FIGURE 4
Predicting EZ vs. non-EZ Channels - Performance of Three Models: EVCs, SSM and Combined. (A)Distributions of leading eigenvector components
for clinically annotated EZ and non-EZ across surgical outcomes. The diamond signifies outliers. (B) Distribution of performance metrics across test
patients in each fold. (C) ROC curves on training data for each model.

TABLE 4 Predicting EZ channels.

Model Mean accuracy Mean sensitivity Mean specificity

EVC 66.81% ± 0.19% 62.53% ± 0.30% 66.23% ± 0.23%

SSM 68.57% ± 0.12% 60% ± 0.28% 70.2% ± 0.12%

Combined 67.02% ± 0.13% 63.46% ± 0.29% 67.91% ± 0.13%

Bold values indicate the highest value of the performance metric (accuracy, sensitivity, and specificity, respectively) among the three models.
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ground truth for its precise location. Instead, the closest
approximation is achieved retrospectively, assuming the EZ was
included in the treated regions if surgical intervention results in
seizure freedom. While the presurgical EZ hypothesis and the
treated areas may not always perfectly align, particularly in
patients treated with responsive neurostimulation, we defined the
clinically-annotated EZ (CA-EZ) based on the presurgical
hypothesis rather than the treated regions for two key reasons.

First, postoperative MRI data were not consistently available for
research purposes across all centers, limiting our ability to confirm
the exact locations of treated areas in some cases. Second, the EVC
algorithm is intended as an assistive computational tool to aid
clinicians in forming their EZ localization hypothesis. The goal is
for the tool to complement existing clinical data, providing an
additional layer of information for refining the EZ hypothesis.
Despite some variability, the CA-EZ and the treated regions
typically overlap significantly, as surgical planning is primarily
based on the CA-EZ. Thus, we do not anticipate that the method
of defining the EZ introduces bias into the metrics used to evaluate
the algorithm’s performance.

Another limitation of this study is the reliance on 1-year post
surgical outcomes. While achieving 1 year of seizure freedom holds
some predictive value for long-term post-surgical outcomes, some
patients may experience recurrence, leading to fewer individuals
remaining in Engel Class 1 over time. Although this consideration
extends beyond the scope of the current analysis, it raises curiosity
about the robustness of the examined measures in relation to long-
term outcomes, an aspect that will be explored in future research.
Our study also lacks annotations of whether the interictal snapshots
were captured during sleep or wake. Results may differ in different
sleep stages when compared to wake and will be explored in
future work.

Due to the spatial resolution limitations of iEEG contacts, the
dynamical network models (DNMs) cannot differentiate between
excitatory and inhibitory connections. The models only provide
information about the degree of influence between network
nodes. However, the strong predictive performance of the
EVCs and SSMs suggest that the identified sources are
predominantly influenced by inhibitory activity, aligning with
the source-sink hypothesis.

FIGURE 5
Predicting Surgical Outcome - Performance of Three Models: EVCs, SSM, and Combined. (A) Distribution of performance metrics across test
patients in each fold. (B)Model predicted probabilities for eachmodel and for each surgical outcome for test patients. (C) ROC curves on training data for
each model.

TABLE 5 Predicting surgical success.

Model Mean accuracy Mean sensitivity Mean specificity

EVC 71.9% ± 0.22% 78.33% ± 0.24% 68.33% ± 0.24%

SSM 67.38% ± 0.15% 75% ± 0.23% 62.5% ± 0.15%

Combined 67.38% ± 0.18% 78.33% ± 0.24% 60% ± 0.19%

Bold values indicate the highest value of the performance metric (accuracy, sensitivity, and specificity, respectively) among the three models.
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Future research could aim to distinguish excitatory from
inhibitory influences by combining iEEG with other modalities,
such as resting-state functional MRI (rs-fMRI). While rs-fMRI has
lower temporal resolution compared to iEEG, it generally offers higher
spatial resolution, potentially enabling amore detailed understanding of
the directionality and nature of network connections. Integrating these
modalities could significantly enhance insights into the mechanisms
underlying epileptic networks.
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