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Collective behavior is among the most fascinating complex dynamics in coupled
networks with applications in various fields. Recent works have shown that
higher-order interactions widely exist in complex systems. Both positive
couplings among nodes, as the majority of studies have assumed, and
negative couplings are very common in real-world systems, like physiological
networks. Positive coupling (excitatory coupling) promotes synchronization and
drives excitatory synaptic transmission between neurons. Meanwhile, negative
coupling (inhibitory coupling) inhibits synchronization and sustains inhibitory
synaptic transmission between neurons. Since high-order coupling patterns
and different coupling patterns strongly affect the synchronous performance
of complex systems, this article develops a globally coupled higher-order
oscillatory system model that incorporates both positive and negative
couplings. It is shown that, in the case of positive couplings, a second-order
interaction has a negligible impact on the synchronization capability of a network
within a certain range. In contrast, a higher-order network with purely negative
couplings exhibits asynchronous states for any values of the second-order
interactions. However, the synchronous region gradually shrinks with the
increase of the negative coupling in the case of mixed couplings. This
indicates a prominent role of coupling patterns on the onset of globally
higher-order network synchronization.
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1 Introduction

Both power networks and neuronal networks featuring synaptic plasticity describe real-
world complex systems of critical importance in modern times (Parshani and Stanley,
2011). The majority of our infrastructure and activities crucially depend on a reliable supply
of electric power. Hence, various real-world networks have been successfully modeled as
coupled dynamical systems with many interacting units. In general, complex dynamic
networks can be regarded as ensembles of nodes with various dynamics connected by links,
where the connections denote pairwise interactions (Grzybowski et al., 2016; Gomes-
Gardenes et al., 2007; Fan et al., 2018). The majority of previous studies have focused on
analyzing networks with pairwise interactions, thereby neglecting the higher-order
interactions that can exist between these networks. Indeed, pairwise interactions fall
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short when describing any realistic process responses and fail to
describe practical situations.

Researchers have developed a general method for analyzing the
attribution of symmetry breaking. Their findings give the first
demonstration of symmetry breaking in power grids (Nishikawa
and Motter, 2021). Instead, higher-order interactions among nodes
have been discussed in the context of the characteristics of complex
system structures and dynamics. Specifically, higher-order
interactions (Battiston et al., 2020; Boccaletti et al., 2023) contain
hypergraphs and simplicial complexes (Zhang et al, 2023; Xu et al.,
2021). Recent studies have revealed that the presence of higher-order
interactions plays a significant role in the dynamics of networked
systems (Dai et al., 2021; Bairey et al., 2016; Zhang et al., 2023;
Skardal and Arenas, 2020a). The higher-order interaction plays a
critical role in shaping complex systems and their collective
behaviors. It is well known that the performance of the dynamic
behavior of networks has been significantly influenced by coupling
patterns (Gambuzza et al., 2021; Tlaie et al., 2019). In recent years,
some efforts have been devoted to studying the dynamic behaviors of
complex networks with higher-order structures because of this
special characteristic being more accurate while analyzing
dynamic behaviors for real-world complex networks (Estrada and
Ross, 2018; Battiston et al., 2020; Grilli et al., 2017; Benson et al.,
2016; Witthaut et al., 2016).

Researchers have also investigated the optimization of collective
behavior in networks with higher-order interactions encoded in
clique complexes. This work demonstrates that strengthening
higher-order couplings enhances collective behavior and
broadens the range of possible dynamics, with an ideal balance
between pairwise and higher-order interactions yielding the
strongest collective behavior (Skardal et al., 2021). In particular,
synchronous behavior is a phenomenon appearing in many real
complex systems. The majority of systems exhibit striking
similarities in their behavior when passing from a disordered to
an ordered state. Many researchers have investigated the
relationship between coupling patterns and synchronized states.
Self-organized synchronization in physiological networks can
potentially lead to epilepsy, cardiac arrhythmias, or immune
dysregulation. Gaining a deeper understanding of these
synchronization mechanisms offers targets for disease
intervention strategies. Kuramoto oscillators describe phase
synchronization and are applicable to the study of the rhythmic
coordination within neuronal populations. Authors investigated the
dynamics of Kuramoto oscillators with higher-order structures and
found the emergence of explosive synchronization (Rodrigues et al.,
2016). Fatemeh et al. (2022) studied the effects of pairwise and three-
body interactions on the emergence of synchronization in
Hindmarsh–Rose neurons. Their results indicated that the overall
synchronization cost is reduced due to the introduction of three-
body interactions. Additionally, Skardal and Arenas studied the
dynamics of phase oscillators with higher-order interactions. They
found that the higher-order structure may cause self-organized
features and achieve synchronization of the overall system
(Skardal and Arenas, 2020a).

Power systems are one of the most critical infrastructures in the
real world. These systems can be modeled as complex networks that
contain generations, electricity consumers, and transmission lines
(Schäfer et al., 2018; Yang et al., 2023; Mandal and Banerjee, 2016;

Witthaut et al., 2022). All of these components are linked by various
interactions. The majority of existing results focused only on power
systems with single connectivity, which does not take into account
the effects of higher-order structures in the real power system. In
fact, there exist pairwise and higher-order interactions among
elements simultaneously. However, the crucial role of higher-
order structures is still unclear in the coupled oscillatory power
systems. Hence, it is necessary to investigate the relationship
between higher-order structures and complex dynamics in
power systems.

The second-order swing equation provides a standard
dynamical model of the power system (Filatrella et al., 2008).
This model has stimulated further studies in the field of power
systems (Berner et al., 2021; Frasca and Gambuzza, 2021; Nauck
et al., 2022). For instance, Berner, Yanchuk, and Schöll offered
profound insights into the fundamental relationship between power
grid networks and neuronal networks. Their findings proved that
phase oscillator models with inertia were applicable to more general
categories of power grid models. Moreover, they uncovered a
plethora of multicluster states for phase oscillators with inertia
(Berner et al., 2021). León et al. (2024) studied a globally coupled
identical oscillator model, revealing the important role of higher-
order interactions in synchronization transitions and multistability
by introducing a three-body interaction with a phase lag.
Particularly, when the coupling strength or phase lag varies, the
system exhibits different synchronized, incoherent, and two-cluster
states. Higher-order structures are ubiquitous in such networks and
profoundly influence their dynamic behaviors.

Synchronization is among the most important collective
behaviors in coupled oscillatory systems. In 1977, Hermann
Haken investigated how biological networks spontaneously
organize into ordered structures through the collective
interactions of subsystems. His work demonstrated that even
disordered systems can transition to a state of coherence via
order parameters, which dominate the macroscopic behavior of
the networks. This framework has become foundational for
modeling networks in neuroscience and power systems (Haken,
1977). Most importantly, this behavior plays a vital role in the
reliable operation process of power systems (Rohden et al., 2012;
Menck et al., 2014; Schäfer et al., 2015). The robust operation of a
power system relates to the synchronization of all elements from the
perspective of a complex network. Therefore, due to the importance
of synchronization emergence in real-world complex networks,
many researchers have been motivated to study the mathematical
aspects of synchronization and its influential factors. For example,
Wilson et al. (2018) discussed the synchronous behavior of coupled
oscillators with weak and strong coupling. They derived the
expression of upper bounds on the critical coupling strength of
networks under different perturbations and predicted
synchronization using graph theoretical techniques. Taher H.
et al. investigate the synchronization and stability of power grids
using the Kuramoto model with inertia, focusing on time-delayed
feedback control strategies to achieve synchronization and
Lyapunov stability across different network configurations and
models (Taher et al., 2019). Costa et al. (2024) combined
external periodic forcing and higher-order interactions in the
Kuramoto model, revealing a rich bifurcation scenario that
produced 11 distinct asymptotic states and demonstrated the
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competition between forced and spontaneous synchronization. The
dynamics of coupled oscillator networks with higher-order
interactions and their ability to store information have been
studied in recent works. For instance, Skardal and Arenas
(2020b) propose a stability criterion to identify stable states in
such systems while also exploring how these systems switch
between stable states under random perturbations. In an
extension of the Kuramoto model, Xu and Skardal (2021) explore
three-way simplicial interactions, revealing novel dynamical
properties such as clustering, multistability, and abrupt
desynchronization transitions, while providing a rigorous spectral
analysis of the stability of multicluster states in the thermodynamic
limit. Additionally, researchers have demonstrated that phase
frustration in networks of phase-frustrated coupled oscillators
with higher-order interactions can unexpectedly promote
explosive synchronization, a result explained through a low-
dimensional model and bifurcation analysis (Dutta et al., 2023).

Later, researchers investigated synchronization of Kuramoto
oscillators for power grids with general connectivity and damping
(Choi and Li, 2019). Results are given as an estimate for a
synchronous basin in a power system with general damping.
Tang et al. investigated synchronous performance in a multilayer
network. They proposed an approximation method of enhancing
the predictive power for stable synchronization in multilayer
networks (Tang et al., 2022). In 2023, Chen et al. revealed that
the power system has higher-order connectivity features and studied
the influence of topology structure on stability and construction cost
(Liu et al., 2023). As power grids become more complex due to
renewable energy integration and large-scale expansions,
maintaining synchronization and preventing cascading failures
are major challenges. Totz et al. (2020) introduced a two-layer
control scheme for power grids, where the first layer represents
the grid itself and the second layer manages frequency
synchronization. Their study shows that a control strategy
minimizing frequency differences between nodes can effectively
handle various perturbations. Olmi et al. (2024) expanded on this
by proposing a multilayer network control system to address node
failures and cascading line failures. Their study of an Italian high-
voltage grid demonstrates that distributed proportional and integral
control laws can stabilize the grid even under extreme conditions.
Schäfer et al. (2022) explored Braess’ paradox in power grids,
showing that adding transmission lines can sometimes reduce
system performance and cause blackouts. Their work emphasizes
the importance of considering network topology when expanding
grid capacity.

Despite many theoretical advances, little attention has so far
been given to the performance of higher-order power systems with
multiple coupling patterns. In reality, coupled oscillators are
subjected to a mixture of both positive and negative couplings.
From an energy perspective, multiple couplings are more beneficial
for power transmission. Therefore, it is of great interest to study the
collective dynamics of real-world networks with multiple coupling
types, as this interaction substantially impacts the system’s
critical phenomena.

In light of these concerns, this article addresses the scenario in
which positive and negative interactions coexist in a high-order
power system. Moreover, we further analyze the complex behaviors
of the proposed model. Specifically, the synchronous solution is

derived through theoretical analysis, and the influence of higher-
order structures on synchronous stability is discussed.

The remainder of this article is organized as follows. First, we
present a globally coupled higher-order oscillatory power system
model with mixed coupling types in Section II. Then, in Section III,
stability analysis for the condition of the synchronous solutions of a
globally coupled higher-order oscillatory network system is
investigated. In Section IV, we test our theory on higher-order
coupled networks and perform numerical simulations to analyze the
influence of coupling patterns. Section V concludes the article.

2 Mathematical model

To study the dynamics of a power system with coupled
oscillators, we assume that the oscillators evolve through first-
and second-order interactions. Then, the general mathematical
model can be described by the following Equation 1:

_Xi � f Xi( ) + K1∑N
j�1
a 1( )
ij h1 Xi, Xj( ) + K2∑N

j�1
∑N
j�1
a 2( )
ijk h2 Xi,Xj, Xk( )

(1)
where Xi denotes the state variable of the network, f(Xi) describes
the dynamic behavior of the nodes, and K1, K2 are the coupling
strengths associated with the first- and second-order interactions,
respectively. The coupling functions are given by
h1(Xi,Xj), h2(Xi, Xj,Xk). Moreover, the adjacency matrix of the
first-order coupling is denoted by A(1) � [a(1)ij ]. We allow the
elements of the matrix to take on three values. There, a three-
oscillator interaction is represented by a 2-simplex, and any
(d + 1)-oscillator interaction is represented by a d-simplex (also
called a simplex of order d), as illustrated in Figure 1. Specifically, we
randomly select the value of a(1)ij with

a 1( )
ij � −1 , with probability η,

1, with probability 1 − η,
{

Therefore, the values of η relate to the case of mixed positive and
negative interactions. Meanwhile, the adjacency matrix of second-order
coupling is denoted by A(2) � [a(2)ijk ], which shows that nodes i,j, and k
can construct a triangle. Similarly, a(2)ijk � 1 if nodes i, j and k have a
positive second-order interconnection, and a(2)ijk � −1 if nodes i, j and k
have a negative second-order interconnection. Moreover, a(2)ijk � 0
means that nodes i,j, and k cannot construct a triangle. The value of
a(2)ijk is the same as the first-order coupling matrix. Furthermore, we
assume that the network is undirected and unweighted. Furthermore,
we assume that the nodes are connected with the global coupling
patterns.Without loss of generality, to describe the topological structure
of a complex network with various interactions, a five-node complex
network is shown in Figure 2. As an illustration, a link (first-order) and
a triangle (second-order) are depicted in Figure 2, respectively.

As we know, the Kuramoto-like model (Rodrigues et al., 2016;
Acebrón et al., 2005) is regarded as a standard reduced model that
characterizes the collective phenomena, which is of great interest in
power systems. Before proceeding, we represent the power system as
a network of generators and consumers connected by transmission
lines. The starting point of our analysis is coupled second-order
oscillators:
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2Hi

ωR

€θi + Di

ωR

_θi � Pi +Kij ∑N
j�1,j ≠ i

sin θj − θi( ) (2)

for i � 1,/, N, where N denotes the number of nodes, and θi
represents the phase angle of oscillator i. The parameters Hi,Di

denote inertia and damping constants, respectively. ωR is the
reference frequency of the system. The parameter Pi is related to
the power of node i: Pi is positive for generators, while it is negative
for the consumer. Kij represents the coupling strength
between nodes.

In what follows, we focus on a higher-order coupled power system
with mixed coupling patterns. First, the synchronous stability of the
power system is studied for first- and second-order coupling strengths.
Here, we focus on the first-order interaction of the oscillator is diffusive,
that is h1(Xi,Xj) � [sin(θi − θj), 0], and for the second-order
communication, we consider diffusive coupling h2(Xi,Xj,Xk) �
[sin(θj + θk − 2θi), 0].

For simplicity, we neglect Ohmic effects and assume that the
oscillators have the same dissipative coefficients and the same
moments of inertia. Under these approximations, we rewrite
Equation 2 in the form of a dynamical system of first-order
ordinary differential equations (ODEs) and consider a second-
order connection:

_θi � ωi

_ωi � −αωi + Pi +K1∑N
j�1
a 1( )
ij sin θj − θi( ) +K2∑N

j�1
∑N
k�1

a 2( )
ijk sin θj + θk − 2θi( )

⎧⎪⎪⎨⎪⎪⎩
(3)

To measure the synchronization transition of the power system,
the following complex order parameter is introduced (see
Equation 4):

r t( )eiψ t( ) � 1
N

∑N
j�1
eiθj t( ) (4)

which is considered the average sum of the unit vectors associated
with the phases of each oscillator in the complex plane. Here, the
modulus of the resulting complex number is the order parameter,
given by Equation 5

R t( ) � 1
N

∑N
j�1
eiθj t( )

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣ (5)

In this way, R(t) � 0 stands for the network in low synchrony,
and r(t) � 1 corresponds to high levels of synchrony.

3 Stability analysis of
synchronous solutions

In this section, we aim to derive the synchronous solution of a
power system with high-order interactions. The corresponding
synchronized solution is ωs � ω1 � /ωN. First, we define two

new variables: χi � K1∑N
j�1a

(1)
ij sin(θj − θi), γi � K2∑N

j�1∑N
k�1a

(2)
ijk

sin(θj + θk − 2θi).
According to Equation 3, one can obtain Equation 6

_ωs � −αωs + Pi + χi + γi (6)

It is found that variables _ωs,ωs do not relate to index i. Then, let

_ωs + αωs � P1 + χ1 + γ1 � / � Pn + χn + γn � Ω0 (7)

So Equation 7 becomes

_ωs � Ω0 − αωs (8)

Suppose that _ωs � 0, the power system achieves frequency
synchronization. Hence, Equation 8 becomes the form of Equation 9.

ωs � 1
α
Ω0 (9)

Afterwards, the value of the parameter Ω0 can be calculated by
Equation 7

∑N
i�1

−αωs + Pi +K1∑N
j�1
a 1( )
ij sin θj − θi( ) +K2∑N

j�1
∑N
k�1

a 2( )
ijk sin θj + θk − 2θi( )⎡⎢⎢⎣ ⎤⎥⎥⎦ � 0

(10)
Because the power system is symmetric, we can then obtain

Equation 11.

K1∑N
j�1
a 1( )
ij sin θj − θi( ) +K2∑N

j�1
∑N
k�1

a 2( )
ijk sin θj + θk − 2θi( ) � 0 (11)

Subsequently, Equation 10 can be rewritten as Equation 12.

∑N
i�1

−αωs + Pi[ ] � 00ωs � 1
Nα

∑N
i�1
Pi � 1

α
�P (12)

FIGURE 1
The building blocks of the higher-order interactions consist of nodes (0-simplices), edges (1-simplices), and triangles (2-simplices).
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where �P denotes the average value of all Pi. Without loss of generality,
we assume that PGenerator

i > 0 at the generators, and PConsumer
i < 0 at the

consumers, and the total consumption equals the total amount of

generation, that is, ∑N
i�1Pi � 0. Thus, the average value of ωs � 0.

In the following, to assess the linear stability of the
synchronization, the linear stability analysis is developed on a
general network model with the first- and second-order
interactions by considering a small perturbation to the
synchronous manifold Xs as Xi � δXi +Xs. First, a new variable
δX � [δXT

1 , δX
T
2 ,/, δXT

N]T is defined. Then, we have that

_δXi � Jf Xs( )δXi +K1∑N
j�1
a 1( )
ij ×

∂h1 Xi, Xj( )
∂Xi

∣∣∣∣ Xs,Xs( )δXi +
∂h1 Xi,Xj( )

∂Xj

∣∣∣∣ Xs,Xs( )δXj
⎡⎣ ⎤⎦

+K2∑N
j�1
∑N
k�1

a 2( )
ijk ×⎡⎢⎢⎣∂h2 Xi, Xj, Xk( )

∂Xi

∣∣∣∣ Xs,Xs,Xs( )δXi +
∂h2 Xi, Xj, Xk( )

∂Xj

∣∣∣∣ Xs,Xs,Xs( )δXj

+ ∂h2 Xi, Xj, Xk( )
∂Xk

∣∣∣∣ Xs,Xs,Xs( )δXk
⎤⎦ (13)

where Jf(Xs) represents the Jacobianmatrix of the functionf, assessed
at the synchronous state Xs. Here, we focus on the fact that all the
coupling functions are synchronization noninvasive. In other words,
their value is constant at the synchronous manifold. Hence, we get

∂h1 Xi,Xj( )
∂Xi

∣∣∣∣ Xs,Xs( ) +
∂h1 Xi, Xj( )

∂Xj

∣∣∣∣ Xs,Xs( ) � 0,

∂h2 Xi,Xj, Xk( )
∂Xi

∣∣∣∣ Xs,Xs,Xs( ) +
∂h2 Xi,Xj, Xk( )

∂Xj

∣∣∣∣ Xs,Xs,Xs( )

+∂h2 Xi,Xj, Xk( )
∂Xk

∣∣∣∣ Xs,Xs,Xs( ) � 0

(14)

Moreover, we have that ∑N
j�1

a(1)ij � k(1)i ,∑N
j�1

∑N
k�1

a(2)ijk � 2k(2)i , based

on Equation 14, the previous Equation 13 reads

_δXi � Jf Xs( )δXi −K1∑N
j�1
L 1( )
ij ×

∂h1 Xi,Xj( )
∂Xj

∣∣∣∣ Xs,Xs( )δXj
⎤⎥⎥⎦

−K2∑N
j�1
∑N
k�1

τ ijk
∂h2 Xi,Xj, Xk( )

∂Xj

∣∣∣∣ Xs,Xs,Xs( )δXj +
∂h2 Xi,Xj, Xk( )

∂Xk

∣∣∣∣ Xs,Xs,Xs( )δXk
⎡⎣ ⎤⎦

(15)
Here, a tensor T is defined whose elements are

τijk � 2k(2)i δijk − a(2)ijk . In addition, the new notations are
introduced as follows (Equation 16).

Jh1 Xs,Xs( ) � ∂h1 Xi,Xj( )
∂Xj

∣∣∣∣ Xs,Xs( ),

J 1( )h2 Xs, Xs, Xs( ) � ∂h2 Xi, Xj, Xk( )
∂Xj

∣∣∣∣ Xs,Xs,Xs( ),

J 2( )h2 Xs, Xs, Xs( ) � ∂h2 Xi, Xj, Xk( )
∂Xk

∣∣∣∣ Xs,Xs,Xs( )

(16)

According to the above definition, Equation 15 can be
rewritten as

_δXi � Jf Xs( )δXi − K1∑N
j�1
L 1( )
ij Jh1 Xs,Xs( )δXj

−K2∑N
j�1
⎡⎢⎢⎣J 1( )h2 Xs,Xs, Xs( )δXj∑N

k�1
τijk + J 2( )h2 Xs,Xs, Xs( )δXk∑N

j�1
τijk⎤⎥⎥⎦ .
(17)

Based on the symmetric of the tensor T, Equation 17 becomes
Equation 18

_δXi � Jf Xs( )δXi − K1∑N
j�1
L 1( )
ij Jh1 Xs,Xs( )δXj

−K2∑N
j�1

J 1( )h2 Xs,Xs, Xs( )δXjL
2( )
ij + J 2( )h2 Xs,Xs, Xs( )δXkL

2( )
ij[ ]

� Jf Xs( )δXi − K1∑N
j�1
L 1( )
ij Jh1 Xs,Xs( )δXj

−K2∑N
j�1
L 2( )
ij J 1( )h2 Xs,Xs,Xs( ) + J 2( )h2 Xs,Xs, Xs( )[ ] δXj.

(18)

where L(1) � [L(1)ij ] � K − A(1) is the classical Laplacian matrix,
which is defined as shown in Equation 19

L 1( )
ij �

−Kij, i ≠ j

−∑n
i ≠ l

Lil, i � j

⎧⎪⎪⎨⎪⎪⎩ (19)

MatrixK is the diagonal matrix with the degree of the nodes, and
A(1) is the first-order adjacency matrix. The second-order Laplacian
matrix L(2) is defined as shown in Equation 20

L 2( )
ij � i ≠ j :

a 1( )
ij � 0: 0,

a 2( )
ij � 1: − k 2( )

ij ,

⎧⎨⎩
i � j : 2k 2( )

i

⎧⎪⎪⎨⎪⎪⎩ (20)

k(2)i � (N−1)(N−2)
2 k(2)ij where is the number of triangles that contain

node i, representing the degree of transmission link ij, that is, the
total number of triangles having the link ij. Then, a tensor T �
[τijk]N×N×N is defined as T � K(2) − A(2), where the elements of
K(2) � [kijk] � 2k(2)i for i � j � k; otherwise, kijk � 0. Moreover, we

have that ∑N
j�1a

(1)
ij � k(1)i ,∑N

j�1∑N
k�1a

(2)
ijk � 2k(2)i .

Let us rewrite Equation 18 in block form by introducing the
stack vector δX � [δXT

1 , δX
T
2 ,/, δXT

N]T. Furthermore, JF �
Jf(Xs), JG(1) � Jg(1) (Xs,Xs), JG(2) � J1g(2)(Xs,Xs, Xs) + J1g(2)

(Xs,Xs, Xs), one obtains Equation 21

δX
· � IN ⊗ JF − σ1L

1( ) ⊗ JG 1( ) − σ2L
2( ) ⊗ JG 2( )[ ]δX. (21)

We assume that the eigenvectors of the classic Laplacian matrix
L(1)ij are represented by β1, β2, ..., βN. Therefore, one defines new
variables ζ � (B−1 ⊗ Im)δX, where B � [β1, β2, ..., βN]. Then, we
obtain that Equation 22

_ζ � B−1 ⊗ Im( )
× IN ⊗ JF − k1L

1( )
ij ⊗ JG 1( ) − k2L

2( )
ij ⊗ JG 2( )[ ] B ⊗ Im( )ζ ,

(22)
IN represents the N × N unit matrix. It is noted that generalized
Laplacians are symmetric real-valued zero-row-sum matrices.
Furthermore, they are all diagonalizable and the smallest
eigenvalues λ1 � 0.Thereby, BL(1)ij B−1 � diag(λ1, λ2, ..., λN) � Γ,
here 0 � λ1 ≤ λ2 ≤ ..., λN are the eigenvalues of L(1)ij .
Simultaneously, BL(2)ij B−1 � Ω describe the transformed second-
order Laplacian matrix. One can get

_ζ � IN ⊗ JF −K1Γ ⊗ JG 1( ) − K2Ω ⊗ JG 2( )[ ]ζ , (23)

The following equations can be derived:
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_ζ1 � JFζ1

_ζ2 � JF −K1λ2JG
1( )( )ζ1 − K2∑N

j�2
ΩJG 2( )ζ2

⎧⎪⎪⎨⎪⎪⎩ (24)
where JF � Jf(Xs), JG(1) � Jg(1)(Xs,Xs), JG(2) �
J1g(2)(Xs,Xs, Xs) + J1g(2)(Xs,Xs, Xs) denote the Jacobian
matrices for the functions f, g(1), g(2).

FIGURE 2
(a) Schematic illustration of a five-node network with global coupling. A first-order (blue) and a second-order (triangle) of the network are described
by blue and pink colors as an example. (b) The corresponding adjacencymatrix A(1). The elements depicted in blue represent a link between nodes i and j.
(c) This panel represents the second-order adjacency tensor A(2)(1, : , : ), which is a three-dimensional tensor that encodes interactions between triplets
of nodes, specifically forming triangles in the network. Each entry in this tensor corresponds to a specific triangle (set of three interconnected
nodes). The blue blocks in thematrix indicate the presence of these triangles. For example, if nodes (1, : , : ) form a triangle, the corresponding element in
the tensor is blue. The presence of blue elements in this matrix represents the second-order interactions, meaning that these interactions occur between
three nodes at once, rather than only between pairs of nodes (as in first-order interactions). (d) The corresponding adjacency tensor A(2)(5, : , : ). They are
three-dimensional. The blue elements denote that the nodes (5, : , : ) construct a triangle. (e) The corresponding adjacency tensor A(2) is a three-
dimensional structure. The cyan-colored elements indicate that the nodes i, j, and k form a triangle.
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Thus, the stability of the coupled oscillators can be reduced by
solving Equation (24) and calculate the maximum transverse
Lyapunov exponents. We note that the necessary condition for
the stability of a synchronous solution requires that the
maximum transverse Lyapunov exponents be negative.

4 Numerical simulations

In this section, numerical simulations are performed under
different types of interactions coexisting within the same system
to better understand the dynamics that emerge in the higher-order
power system above. Here, we take Figure 1 as an example. In this
work, we address the scenario of a network with first-order and
second-order interactions. In each of the following cases, the

maximum Lyapunov exponents of the linearized equation for N �
5 are shown according to both coupling strengths. The integration is
performed using the fourth-order Runge–Kutta algorithm and with
a time step of h � 10−3. In particular, the interactions include
positive and negative couplings between nodes that coexist in the
same network. Following this direction, we focus on the following
cases to investigate the emergence of synchronized states.

4.1 Purely positive interconnections

For the sake of illustration, we start BY considering the case of
purely positive coupling, that is, η � 0. The maximum Lyapunov
exponent of the system is depicted in Figure 2a according to both
coupling strengths. In general, synchronization is achieved in a

FIGURE 3
System parameters: number of oscillators, showing the regions of synchronous and asynchronous states for coupled oscillators with purely positive
couplings. (a) The maximum Lyapunov exponent of the linearized Equation 23 in the parameter plane (K1 ,K2). This plot shows the transition regions
between the synchronous and asynchronous states of the coupled oscillators. The Largest Lyapunov exponent (LLE) is color-mapped, displaying
synchronous regions (low LLE) and asynchronous regions (high LLE). (b) The effect of K1 on the LLE for different K2 = 0, 0.00 15, 0.003, 0.05. This plot
shows how the synchronization and desynchronization behaviors evolve as K1 changes, with different curves representing the LLE for each fixed K2.

FIGURE 4
The system consists of (N � 5) coupled oscillators with purely negative couplings, and the figure shows the regions of synchronous and
asynchronous states in the parameter plane (K1 ,K2), where K1 and K2 are the coupling strengths between the oscillators. (a) The maximum Lyapunov
exponent of the linearized Equation 23 in the parameter plane (K1 ,K2). The plot shows the transition between stable (synchronous) and unstable
(asynchronous) states of the coupled oscillators, with the LLE value color-mapped. (b) The description of the system behavior according to different
values of K2 (set to K2 = 0, 0.00 15, 0.003, 0.05). The plot shows how the maximum Lyapunov exponent (LLE) changes with K1 for each fixed value of
K2.Each line corresponds to a different coupling value K2.
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smaller coupling strength K1, considering the second-order
interactions. This threshold is decreased with an increase in the
strength of the second-order interactions. The evolution curves for
different second-order coupling strengthsK2 are shown in Figure 2b
according to the first-order coupling strength K1.

According to Figure 3, we find that with increasingK2, a smaller
first-order coupling strength K1 ensures the synchronization. In
addition, one can observe that the second-order interaction has little
effect on the synchronization capability of the network within a
certain range for the first-order coupling strength. For instance, for
K2 � 0.0015 and K2 � 0.003, the synchrony can be obtained for the
same valueK1 � 0.072. In addition, it is noted that the power system
can achieve synchronization for any value of K1 when K2 � 0.05.

4.2 Purely negative interconnections

Then, we restrict our attention to the case of purely negative
couplings, that is, η � 1. Figure 4 shows the regions of
synchronization and asynchronization and the maximum
Lyapunov exponent of Equation 23 for N � 5.

From Figure 4, first, it can be observed that in the absence of
second-order interactions (K2 � 0), the oscillatory power system is
unable to achieve synchronization. In addition, we find that a
network with purely negative coupling still exhibits asynchronous
states regardless of the varying values of second-order interactions.
Hence, by combining insights from Figures 3, 4, these observations
indicate that positive couplings lead to the enhancement of
synchronous ability while negative couplings make the oscillators
repulsive and have disadvantageous effects on synchronous ability.

Figure 5 also shows the evolution of the order parameter for the
entire network under different coupling types. Here, for simplicity,
we assume the coupling strengths of the first-, second-, and higher-
order couplings are equal; thus, the parameter K represents a
uniform coupling strength across all interactions. Based on
Figure 5a, it can be observed that the order parameter
approaches 1 as the first-order coupling strength increases.
However, from Figure 4B, it is found that the order parameter
declines with the increase in first-order coupling strength.
Therefore, synchronization cannot be achieved for the negative

coupling strength. This indicates that the results are comparable
to a situation in which second-order coupling is disregarded. In the
following section, we turn our focus to the case of mixed positive and
negative couplings, that is, 0< η< 1.

4.3 Mixed positive and negative couplings

Here, we consider cases in which interactions can be either
positive or negative. Figures 6a–f show the regions of synchronous
and asynchronous states for coupled oscillators with mixed positive
and negative couplings. It can be found that for a small η,for
example, η � 0.2, the synchronous region is rather large. As η

increases to η � 0.6, the synchronous region becomes smaller.
With further increase of η, for example, η � 0.8, the synchronous
region almost disappears.

Based on the numerical results presented in Figure 6, when
second-order interactions are taken into account, purely positive
couplings lead to a synchronous state, while purely negative
couplings can impede synchronization. Additionally, both the
coupling strength and the ratio of the two types of couplings
jointly shape the collective behaviors of the oscillatory network.
It is important to note that the above-mentioned phenomena are
derived from the global coupling of all oscillators. In other words,
these numerical results are in line with those of conventional
networks with either purely positive or purely negative couplings.
Consequently, in small-scale oscillatory power systems, the
impact of second-order interactions on the synchronous state is
restricted.

The results presented above allow us to reach several
conclusions about how different coupling patterns affect the
synchronous stability of higher-order coupled oscillatory
networks. In particular, we note that these networks are
restricted to hybrid coupling types, which include binary
interactions and higher-order interactions among the units.
Finally, we explore the relationship between synchronizability
and the coupling patterns in globally coupled networks. Here, we
assume that all the couplings are positive. In what follows,
simulation results are presented to illustrate the impact of first-
and second-order interactions on synchronous performance.

FIGURE 5
The evolution curves of the order parameter of a high-order oscillatory network with different coupling patterns. (a) purely positive coupling; (b)
purely negative coupling.
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A smaller value of the maximum Lyapunov exponent implies
better synchronizability; that is, a smaller coupling strength is
required to realize synchronization. Here, we examine a network
of 10 nodes consisting of all-to-all coupled oscillators. We
estimate the synchronizability by measuring the maximum
Lyapunov exponent, taking into account both pairwise and
second-order interactions. Figure 7 displays the differences in
the stability of the coupled network under different
coupling patterns.

Figure 7 shows that a coupled network with fully second-order
interactions exhibits better synchronizability than the case of first-
order interactions. That is, second-order interactions enhance
synchronization with respect to first-order interactions.

5 Conclusion

High-order networks are a powerful framework for characterizing
real-world complex systems. Taking into account second-order
interactions, we explore the synchronous performance of a globally
higher-order network and derive the synchronous solutions of the
model. In contrast to previous oscillatory models where nodes typically
had uniform coupling patterns, in our model, the coupled oscillators
interact according to a common pattern, which can be either positive or
negative. According to the presented model, we analyze the impact of
higher-order interactions on synchronous performance under different
circumstances. Our findings disclose that the synchronization capability
of a network with purely positive couplings is not influenced by the

FIGURE 6
The regions of synchronous and asynchronous states for coupled oscillators with mixed negative and positive couplings. (a,b) η � 0.2, (c,d) η � 0.6,
(e,f) η � 0.8. Where (a,c,e) denote the maximum Lyapunov exponent of the linearized Equation (23) in the parameter plane (K1 ,K2). The blue part is the
fully synchronized region of the higher-order oscillatory power system. (b,d,f) show the description according to K1 for K2 = 0, 0.00015, 0.0003, 0.05.
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second-order interactions. However, the network with purely negative
coupling exhibits asynchronous states for any different values of
second-order interactions. In addition, with the increase of the
negative coupling, the region of synchrony gradually diminishes. In
summary, the coupling pattern plays a crucial role in shaping collective
dynamics within globally higher-order networks. Especially for
physiological networks, collective behaviors are crucial for
maintaining vital life functions such as heartbeat, respiration, and
cognition. The research not only reveals the principles of the
robustness of living systems but also provides theoretical support for
the treatment of diseases and the design of bionic systems.

Consequently, the proposed network model, along with the
synchronous analysis, offers valuable perspectives for the design
of more resilient real-world systems. As future work, we intend to
integrate real-world data with the topological structures of networks
featuring higher-order interactions to explore complex
dynamic behaviors.
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