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Understanding the relationship between structure and function in the human
brain is essential for revealing how brain organization influences cognition,
perception, emotion, and behavior. To this end, we introduce an interactive
web tool and underlying database for Yale Brain Atlas, a high-resolution
anatomical parcellation designed to facilitate precise localization and
generalizable analyses of multimodal neuroimaging data. The tool supports
parcel-level exploration of structural and functional data through dedicated
interactive pages for each modality. For structural data, it incorporates white
matter connectomes of 1,065 subjects and cortical thickness profiles of
200 subjects both from the Human Connectome Project. For functional data,
it includes resting-state fMRI connectivity matrices for 34 healthy subjects and
task-specific fMRI activation data acquired from two meta-analytic
resources–Neurosynth and NeuroQuery–which, once translated into Yale
Brain Atlas space and modified to include 334 function-specific terms, form
Parcelsynth and ParcelQuery, respectively. Altogether, to support investigation of
brain structure-function relationships, this study presents a web tool and
database for the Yale Brain Atlas that enable scalable, interactive exploration
of multimodal neuroimaging data.
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1 Introduction

The field of neuroscience has evolved to incorporate a variety of
methodological approaches for studying brain organization and
function, including structural and functional neuroimaging,
electrophysiological recordings, computational modeling, and
molecular techniques (Loosen et al., 2024; Ng et al., 2024;
Rizzolatti et al., 2018). These approaches provide complementary
measurements of brain structure, connectivity, and neural activity
across different spatial and temporal scales. However, integrating
data from these different approaches remains complex. Structural
and functional neuroimaging, particularly in the clinical sciences,
benefit from consistent spatial frameworks to standardize data
analysis and allow comparison across subjects and studies, yet
the availability of data tools to support this task remains limited.

For this purpose, in a prior study, we developed Yale Brain Atlas
(YBA), a high-resolution anatomical atlas with comprehensive
nomenclature well-suited for precise localization of multimodal
neuroscience data (McGrath et al., 2022). The focus on
facilitating multimodality was built into the design of YBA–the
parcels of YBA are approximately 1 cm apart on the cortical surface,
equivalent to the distance between intracranial
electroencephalography electrode contacts commonly used in
epilepsy surgery and neuro-oncology (Berger et al., 1993; Yang
et al., 2014; Yao et al., 2017; Zaveri et al., 2009). Our studies
have examined the usefulness of YBA in localizing the seizure
onset zones for epilepsy research (Sivaraju et al., 2024) and
mapping structure-function gradients in systems neuroscience
(Collins et al., 2024). In future clinical applications, YBA’s
anatomically precise and functionally informed framework could
help guide electrode placement for neuromodulation or selection of
resection targets that mitigate functional damage. However, despite
its demonstrated utility and future potential, YBA has lacked a
centralized, interactive platform to explore the atlas and
multimodal data.

While a number of brain atlases have been widely adopted for
neuroimaging analysis–including anatomical atlases such as
Destrieux (Destrieux et al., 2010), Harvard-Oxford (Desikan
et al., 2006; Frazier et al., 2005; Makris et al., 2006), and
Automated Anatomical Labelling (AAL) (Rolls et al., 2020), as
well as functional and connectivity-based parcellations such as
Glasser (Glasser et al., 2016), Schaefer (Schaefer et al., 2018), and
Brainnetome (Fan et al., 2016) – these resources are generally
distributed as static label maps or surface-based files and are not
paired with centralized web tools for interactive, multimodal data
exploration. Some platforms, such as the Brainnetome viewer (Fan
et al., 2016) and the EBRAINS viewer (Amunts et al., 2020), offer
some interactivity and include limited modalities such as
connectivity profiles or cytoarchitectonic features. Others, like the
Allen Brain Atlas viewer (Ding et al., 2016), are focused primarily on
molecular and histological data rather than MRI-based
neuroimaging. To our knowledge, no existing high-resolution
atlas provides an integrated, parcel-level web tool for exploring
multiple MRI-derived datasets–such as white matter connectomes,
cortical thickness, resting-state fMRI, and meta-analytic task
activations–within a unified, anatomically-grounded framework.
This accessibility gap motivated us to develop a new interactive

platform for the high-resolution YBA with expanded multimodal
neuroimaging data.

Here, we introduce a unified web tool and expanded database
(https://yalebrainatlas.github.io/YaleBrainAtlas/) that enable
interactive exploration of YBA parcels and structural and
functional neuroimaging data. The web tool is organized into
modality-specific interactive pages, each designed to facilitate
parcel-level exploration of the data, as well as dedicated pages for
examining the YBA parcellation itself. The underlying database is
designed to accommodate future data additions, ensuring scalability
as new datasets become available in YBA space. For structural data,
the tool incorporates the white matter (WM) connectomes of
1,065 subjects originally sourced from the Human Connectome
Project (HCP). It also includes cortical thickness profiles of
200 subjects originally sourced from HCP. For functional data, it
includes resting-state functional magnetic resonance imaging
(rsfMRI) correlation connectivity matrices for 34 healthy
subjects imaged at Yale. It also includes task-specific fMRI
activation data acquired from two meta-analytic web-scraped
resources–Neurosynth (Yarkoni et al., 2011) and NeuroQuery
(Dockès et al., 2020) – which, once translated into YBA space and
modified to include 334 function-specific terms, form
Parcelsynth and ParcelQuery, respectively. Altogether, this
study provides an easy-to-use interactive platform for
exploring YBA and its associated multimodal data.

2 Methods

2.1 Yale brain atlas

As introduced in our prior study (McGrath et al., 2022), YBA is a
high-resolution anatomical landmark-based atlas in MNI152
(ICBM 2009a nonlinear symmetric 1 × 1 × 1 mm) space
covering the cortex, insula, hippocampus, amygdala, and corpus
callosum. The technical details of YBA and neuroimaging data are
recorded in Table 1 (see following Methods subsections for more
information about each neuroimaging modality). YBA is provided
as two versions–one with 696 parcels, and another with 690 parcels
which excludes six parcels in the corpus callosum. For some
modalities such as cortical thickness, ascribing values to corpus
callosum parcels is impractical; thus, this reduced version of YBA is
provided. For each YBA version, this study provides the coordinates
and indices, parcel dictionary, and three-dimensional mesh files for
easy, accessible use.

2.2 White matter connectome

The white matter (WM) connectome consists of tracts of axons
that make up neural circuits, composing both short- and long-
distance interactions between brain regions (Douglas and Martin,
2004; Mišić and Sporns, 2016; Sporns et al., 2005). These neuronal
connections are regarded as the physiological basis of behavior,
perception, and cognition (Wei et al., 2021). This study provides the
processedWM connectomes for 1,065 healthy subjects in YBA space
and summary statistics, i.e., pairwise structural connectivity (SC)
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between parcels averaged across all subjects for 12 different SC
metrics described in further detail below.

As introduced in our prior study (Collins et al., 2024), we used
WM connectome data from Yeh (Yeh, 2022), which includes
tractograms processed from diffusion MRI (dMRI) data from
1,065 healthy young adult subjects (575 females, 490 males; mean
age 28.74 years; age range from 22 to 37 years). Yeh sourced the
dMRI data from the Human Connectome Project (HCP), converted
it to the DSI Studio file format, and reconstructed it in MNI
common space using q-space diffeomorphic reconstruction (Yeh,
2022; Yeh and Tseng, 2011). Details regarding the deterministic fiber
tracking algorithm used can be found in our prior study (Collins
et al., 2024).

A total of one million streamlines were created for each subject.
Two iterations of topology-informed pruning were executed to
remove false positive streamlines. To generate a SC matrix for WM
streamline count for each subject, we computed the number of
streamlines with endpoints in distinct parcel pairs. Next, to
generate a representative group-level SC matrix for WM
streamline count (SC-Count), we averaged the subject-level
WM streamline count SC matrices. Following a prior study
(Zamani Esfahlani et al., 2022), the group-level SC-Count
matrix was normalized by dividing by the geometric mean
volume of the two parcels. Although the YBA parcels are all
roughly the same size at the cortical surface, they have
significant differences in volumes (mean: 921.94 mm3; SD:
518.27 mm3). This volume-normalization step is essential for
being able to compare between parcels without the streamline
counts being skewed by differences in parcel volume. We did not
apply zeroing thresholds or length-based weighting to this volume-
normalized group-level SC-Count matrix.

For each of the 1,065 subjects, we also computed the SC matrix
for WM length (SC-Length) as the arithmetic mean of streamline
lengths between any connected parcels. A representative group-level
SC-Length matrix was computed as the average among the subject-
level matrices. Next, we computed the SC matrix for Euclidean
distance (SC-Eucl Dist) by taking the Euclidean distance between
parcel centroids. These group-level matrices of SC-Count, SC-
Length, and SC-Eucl Dist were subsequently inputted into
network analysis scripts from Zamani Esfahlani et al. (2022) to
generate additional group-level SC metrics. These additional SC
matrices are computed from seven different SC metrics: cosine
similarity (SC-Cosine), flow graphs (SC-Flow Graph), matching
index (SC-Matching Index), navigation count (SC-Nav Count),
navigation length (SC-Nav Length), search information (SC-
Search Info), and mean first passage time (SC-MFPT). We
computed two additional matrices by two more SC metrics: path
length (SC-Path Length) and path count (SC-Path Count).
Mathematical definitions of each metric can be found in the
prior studies (Collins et al., 2024; Zamani Esfahlani et al., 2022).
In total, this dataset thus includes 12 different group-level SC
metrics. The web tool allows users to interactively examine SC
among the YBA parcels.

2.3 Cortical thickness

From the 1,065 healthy young adult subjects from HCP
referenced for WM connectomes, we selected a representative
subset of 200 subjects (100 females, 100 males; mean age
28.85 years; age range from 23 to 36 years) for the cortical
thickness data provided in this study. We processed non-skull

TABLE 1 Technical details of Yale Brain Atlas and its multimodal data organized in this study.

Data type Data descriptions Sample size References

Yale Brain Atlas For either 690- or 696-parcel atlas versions
- Coordinates and indices
- Parcel dictionary
- 3D mesh

690 or 696 parcels McGrath et al.
(2022)

White matter
connectome

- Number of white matter streamlines and white matter length between
parcels for each subject

- Pairwise structural connectivity between parcels averaged across all subjects
for 12 different SC metrics

- 3D mesh

1,065 healthy adult subjects from HCP Yeh (2022)
Collins et al. (2024)

Cortical thickness - Cortical thickness values (mm) between parcels averaged for each subject
- Mean cortical thickness values (mm) between parcels averaged across all
subjects

200 healthy adult subjects from HCP Collins et al. (2024)

rsfMRI - rsfMRI pairwise Pearson correlation coefficients between parcels for each
subject

- rsfMRI pairwise Pearson correlation coefficients between parcels averaged
across all subjects

34 healthy adult subjects imaged at Yale Collins et al. (2024)

Parcelsynth - fMRI activation z-score values for 1,334 terms (all terms unmodified from
Neurosynth) for each parcel

- fMRI activation z-score values for 334 functional terms for each parcel
- Publications that report activations for each parcel
- Coordinates of reported activations for each parcel

334 functional terms from 14,371 neuroimaging
publications

Yarkoni et al.
(2011)
Collins et al. (2024)

ParcelQuery - fMRI activation z-score values for 334 functional terms for each parcel 334 functional terms from 13,459 neuroimaging
publications

Dockès et al. (2020)
Collins et al. (2024)
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stripped T1-weighted images for the 200 subjects using Advanced
Normalization Tools (ANTs) software to generate cortical thickness
values for gray matter. The results were nonlinearly normalized to
MNI152 space. The cortical thickness values of the voxels making up
each of the 690 YBA parcels (6 corpus callosum parcels excluded)
were averaged to produce a representative cortical thickness value
per parcel. Using the cortical thickness values per parcel for the
200 subjects, we also computed an averaged cortical thickness
map. The web tool allows users to interactively examine the
cortical thickness of each YBA parcel.

2.4 rsfMRI

This study provides rsfMRI pairwise correlation connectivity
matrices for 34 healthy adult subjects. As introduced in our prior
study (Collins et al., 2024), fMRI imaging for each subject was
performed on a 3-T Siemens Trio scanner (Siemens Medical
Systems, Erlangen, Germany) using a 64-channel head coil for
the 34 subjects (17 females, 17 males; mean age 33 years; age
range 18–55 years) (IRB 1003006485 & 0,702,002,395).
Informed consent was signed by all subjects. Each subject was
positioned within the coil, and head movements were reduced
with added pillows. Additional technical details regarding the
rsfMRI study can be found in our prior study (Collins
et al., 2024).

To align the individual subject data to a common reference
space, we performed sequential registrations within Yale
BioImage Suite (Papademetris et al., 2006) in two steps: (1) a
linear registration between the individual subject’s rsfMRI image
and their anatomical image, and (2) a nonlinear registration
between the subject’s anatomical image and the standard whole-
brain template (MNI152 1 mm). Mean rsfMRI activations across
the entire time course were computed for each parcel. Finally, the
connectivity matrix was obtained using the Fisher
transformation of the Pearson correlation coefficient for each
pair of parcels. Hence, the final output from this processing was a
rsfMRI pairwise correlation connectivity matrix (i.e., FC-rsfMRI)
of size 696 by 696 (parcels) for each of the 34 healthy subjects. An
averaged group-level rsfMRI connectivity matrix was also
computed. The web tool allows users to interactively examine
FC-rsfMRI among the YBA parcels.

2.5 Parcelsynth

This study provides the dataset for Parcelsynth, which was
introduced in our prior study (Collins et al., 2024). Parcelsynth is
the fMRI activation database of Neurosynth (Yarkoni et al., 2011)
translated into YBA space for 334 function-specific terms.
Neurosynth has aggregated fMRI activation data from
14,371 studies, recording voxelwise z-score maps of activations
across 1,334 terms. The z-scores by term in Neurosynth were
computed from a one-way ANOVA evaluating whether the
proportion of studies that record activation at a specific voxel
differs from the proportion that would be expected if activations
were uniformly distributed in gray matter. The 1,334 terms originate
from topic analysis of the web-scraped studies, which include both

resting-state and diverse task-based studies. The number of terms to
include in Neurosynth (i.e., 1,334) was determined by a minimum
threshold for the number of studies involving each term (Yarkoni
et al., 2011). As described in our prior study (Collins et al., 2024), we
reduced this list to 334 terms by (1) removing the terms describing
locations (“prefrontal”) and (2) combining redundant terms (e.g.,
“emotional” and “emotion”). The resulting list of 334 terms reflects
diverse function-specific terms (e.g., “write”). For terms that we
combined, we averaged their activation data in Neurosynth. Next, to
translate the Neurosynth data into YBA space, we averaged
activation z-scores from the voxels contained within each YBA
parcel for each of the 334 functional terms, resulting in
Parcelsynth, i.e., the averaged z-scores associated with
334 functional terms for 696 YBA parcels. Our dataset also
provides a functional connectivity matrix with dimensions 696 by
696 (parcels) based on the Parcelsynth data by computing the cosine
similarity between parcel pairs. The web tool allows users to
interactively examine different summary statistics of Parcelsynth
activation data by specific YBA parcel or by specific function.

2.6 ParcelQuery

This study provides the dataset for ParcelQuery, which was also
first detailed in our prior study (Collins et al., 2024). ParcelQuery is
the fMRI activation database of NeuroQuery (Dockès et al., 2020)
translated into YBA space for 334 function-specific terms. Similar to
Neurosynth, NeuroQuery is a meta-analytic resource for fMRI
activation data across a variety of terms. NeuroQuery expands on
Neurosynth primarily through a larger, updated corpus of text
(i.e., approximately 75 million words) and the use of semantic
smoothing based on word embeddings to synthesize activation
maps (Dockès et al., 2020). We analyzed the fMRI activation
data from NeuroQuery using the same set of 334 functional
terms previously selected from Neurosynth. Similar to our
approach with Neurosynth in forming Parcelsynth, we computed
the average NeuroQuery activation z-scores for each of the
334 functional terms across voxels contained within each YBA
parcel, resulting in ParcelQuery. Our dataset also provides a
functional connectivity matrix with dimensions 696 by 696
(parcels) based on this ParcelQuery data by computing the
cosine similarity between parcel pairs. The web tool allows users
to interactively examine different summary statistics of ParcelQuery
activation data by specific YBA parcel or by specific function.

3 Results

In this study, we introduce interactive web tool and
accompanying structural and functional neuroimaging data for
YBA. With relatively small and uniform parcel size
(i.e., approximately 1 cm2 on cortical surface) coupled with
standardized parcel nomenclature, YBA supports precise yet
generalizable analyses, as demonstrated in our prior study on
structure-function gradients (Collins et al., 2024). Altogether,
YBA provides a precise anatomical and functional reference
framework for scientific and clinical applications. Motivated by
the lack of publicly accessible tools for exploring multimodal
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datasets in standardized atlas space, this study centralizes all current
YBA resources and multimodal neuroimaging data into a single
downloadable resource and accompanying interactive
web tool (Figure 1).

The website includes pertinent references and links to download
each of the featured datasets. In addition to a parcel viewer, the web
tool features interactive viewers for each of the five neuroimaging
modalities described in Methods. These include white matter
connectomes, cortical thickness, rsfMRI, and meta-analytic
Parcelsynth and ParcelQuery. The tool is designed to be modular
and expandable, supporting future data additions (Figure 2).

4 Discussion

Yale Brain Atlas (YBA) has been designed as a high-resolution
anatomical atlas to facilitate the integration of multimodal
neuroscience data with precise spatial localization. This study
builds on the YBA framework by developing a centralized,
interactive web tool and expanding the underlying structure-
function neuroimaging data mapped in YBA space, including

white matter connectomes, cortical thickness profiles, resting-
state fMRI connectivity, and meta-analytic task-based fMRI
activations. By mapping all datasets to a high-resolution
anatomical framework with standardized nomenclature, this
platform facilitates reproducible and generalizable analyses across
domains of neuroscience and clinical research. Compared to existing
atlases that offer static label maps or modality-specific resources, this
tool fills an important accessibility gap by integrating multiple MRI-
derived modalities within a single, user-friendly web environment.
We anticipate that this tool will be useful for hypothesis generation,
region-of-interest selection, cross-modal comparison, future data
compilation, and educational applications.

The structure-function datasets and associated summary
statistics mapped to YBA space in this study contribute to its
role as a reference framework for studying brain organization.
Moreover, the platform allows for the addition of datasets,
supporting future extensions of the resource. Analyses conducted
in YBA space can continue to examine typical network organization
and identify changes associated with neurological disorders such as
epilepsy (Collins et al., 2024; Sivaraju et al., 2024) and, in the future,
could help guide electrode localization or resection strategies.

FIGURE 1
Localizing and interactively viewing multimodal data in Yale Brain Atlas space. (a) Multimodal structural and functional neuroimaging data are
acquired and translated into the 696 parcels of Yale Brain Atlas (YBA) space, a high-resolution anatomical parcellation well suited for precise yet
generalizable analyses. Structural data translated into YBA space includes white matter tractographies processed from 1,065 healthy subjects from the
Human Connectome Project (HCP) and cortical thickness data processed from 200 healthy subjects from HCP. Functional data includes resting-
state fMRI (rsfMRI) correlation connectivity matrices for 34 healthy subjects imaged at Yale and task-specific fMRI activation data acquired from two
meta-analytic resources–Neurosynth and NeuroQuery–which, once translated into YBA space and modified to only include specific functional terms
(e.g., “write”), form Parcelsynth and ParcelQuery, respectively. (b) The atlas and its multimodal data can be interactively viewed at https://yalebrainatlas.
github.io/YaleBrainAtlas/. Interactive viewer for the parcels themselves is shown left. Interactive viewer for “language” fMRI activation in Parcelsynth is
shown right.
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However, the current implementation has limitations to motivate
future research. The atlas is defined in a common reference space
(MNI152), which may reduce its applicability in studies requiring

subject-level analysis. Additionally, the task-based functional data
are sourced from meta-analytic repositories rather than individual-
level experimental datasets, which may limit interpretability in some

FIGURE 2
Example interactive views of neuroimaging data in Yale Brain Atlas space. (a) Example view of whitematter connectome data in Yale Brain Atlas (YBA)
space. In this case, the structural connectivity (SC) metric “cosine” and the parcel “R_S_L” (shown in green) have been selected. The other 695 parcels are
shaded according to their cosine SC value with respect to the selected parcel R_S_L. The user hovers the cursor over another parcel, R_M2_J, and an
overlay displays its SC value with R_S_L. (b) Example view of cortical thickness data in YBA space. The parcels are shaded according to cortical
thickness. In this case, the user hovers the cursor over a parcel, R_M2_J, to see its thickness value. (c) Example view of resting-state fMRI (rsfMRI)
connectivity data. In this case, the parcel R_S_L (shown in green) has been selected. The user hovers the cursor over another parcel, R_M2_J, to see its
Pearson correlation coefficient value with respect to the selected parcel R_S_L. (d) Example view of Parcelsynth. In this case, the parcel R_S_L has been
selected (top left). Tables of the papers and coordinates reporting activations in that selected parcel are shown (top right). The specific functional terms
with the greatest activation z-scores for the selected parcel R_S_L are shown in a wordcloud figure (middle left) and barplot figure (middle right). Instead
of selecting a specific parcel, the user can select a specific functional term, such as “language”. The user can then hover the cursor over each parcel, e.g.,
L_OP_B, to see its activation z-score for the selected functional term “language” (bottom). (e) Analogous to (d) for ParcelQuery. Example views shown; to
explore more features and visualizations, visit https://yalebrainatlas.github.io/YaleBrainAtlas/.
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contexts. Future work could consider incorporating other
modalities, including molecular or electrophysiological data.
Overall, the resources for YBA provided in this study offer a
spatial framework for exploring structural and functional
relationships across multiple neuroimaging modalities.
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