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Introduction: Pulmonary fibrosis (PF) is a heterogeneous progressive lung
disease characterized by excessive extracellular matrix (ECM) deposition and
cross-linking, leading to irreversible tissue stiffening and loss of function. Previous
evidence suggests that percolation behavior, where increasing local stiffness
facilitates the emergence of stiff regions that span the tissue, underlies the
stiffening of the ECM and drives the irreversible mechanical dysfunction.
However, it is not fully understood how percolation emerges from the
complex interactions between cells and the ECM.

Methods: In this study, we investigated a previously published agent-based spring
network model of PF that exhibited bifurcation behavior between healing and
fully developed fibrosis as network members were gradually stiffened. By
systematically analyzing the configuration of the initial tissue injury, we
identify key structural determinants that govern whether an injury heals or
transitions into fibrosis.

Results: Results demonstrate that fibrosis is strongly associated with increased
initial clustering of injured springs, reduced intercluster distances, and the
presence of critical stiffening sites, or hotspots, that act as bifurcation points
for disease progression. Furthermore, we show that selectively modifying the
stiffness of pivotal network regions at the time of injury can shift the network’s
trajectory from fibrosis to healing, highlighting potential intervention targets.
These findings suggest that the network structure of tissue injury may serve as a
predictive marker for fibrosis susceptibility and provide a mechanistic basis for
understanding the nonlinear progression of PF.
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Introduction

Pulmonary fibrosis (PF) is a chronic progressive lung disease characterized by excessive
scarring and stiffening of lung tissue, ultimately leading to respiratory failure and death
(Nathan et al., 2011). Currently there is no cure, treatment options are limited, and the
prognosis is poor, with a median survival time of less than 3 years (Zisman et al., 2005). The
activated fibroblasts in the lung play a key role in the progression of PF due to the increased
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deposition of ECM proteins, which leads to collagen accumulation
and ECM stiffening (Martinez et al., 2017; Savin et al., 2022).
Although the mechanisms underlying this process are complex
and not yet fully understood, PF can be categorized into three
stages (Fukuda et al., 1987): 1) the acute stage, characterized by
hyaline membrane formation and alveolar damage; 2) the early
proliferative stage, marked by prominent interalveolar fibrosis and
significant cellular activity; and 3) the remodeled stage, defined by
fibrotic and obliterated alveoli with varying airspace sizes. The
interaction between signaling pathways and stochastic dynamics
determines how the alveolar structure progresses through each stage.
For example, cyclic stretch-induced mechanotransduction
influences the behavior of fibroblasts by activating the stretch-
sensitive ion channels (Murata et al., 2014). In addition, stretch
can help release latent TGF-β (Hinz, 2009; Klingberg et al., 2014;
Ezzo and Hinz, 2023), which in turn can trigger the transition from
fibroblasts to myofibroblasts (Hinz, 2009).

The rich mechanosensitive interactions among the ECM
components and the cellular signaling pathways (Tschumperlin
et al., 2018) may be studied via a network approach. The general
field of network physiology relates to the connectivity and
interdependency among physiological systems and their
components, and has advanced the understanding of physiology
and medicine by analyzing how coupled systems evolve across
different stages (Ivanov, 2021). Thus, this can be a useful tool for
analyzing the behaviors in PF. For example, an agent-based model
on a network was able to explain the formation of the subpleural
honeycomb structure in PF (Wellman et al., 2018). Another
computational model of PF simulated how profibrotic mediators
such as TGF-β1 interact with pulmonary fibroblasts in order to
identify potential therapeutic targets (Warsinske et al., 2016). These
previous models, however, have not investigated how mechanical
stretch and ECM stiffness may affect fibroblast behavior. Therefore,
they fail to represent the lung as a dynamic organ, as proposed by
network physiology. We recently developed an agent-based spring
network model to investigate the dynamic interactions between
fibroblasts and their mechanical microenvironment. This model
addresses the issue by incorporating a nonuniform network of elastic
springs, where migrating agents, representing fibroblasts, can
remodel the network by stiffening each member in a stretch- and
stiffness-dependent manner (Hall et al., 2024). The outcome of this
model showed strong resemblance to histological images of patients
with PF. The model also demonstrated a unique feature: as the
amount of initial injury increased, the network exhibited a
bifurcation behavior whereby the system could self-heal or turn
fully fibrotic at a critical level of injury. Furthermore, the model
exhibited percolation behavior that leads to different disease
phenotypes and outcomes. The implications of such nonlinear
dynamic features are of obvious clinical interest because certain
patients with the same clinical observation in COVID-related PF
may heal (Lorx et al., 2022), whereas others may not, and currently,
what determines the final outcome is not understood.

Accordingly, the purpose of the current study was to shed light
on the bifurcation behavior of the networkmodel of PF developed by
Hall et al. (2024). We hypothesized that the spatial pattern of the
initial injury of the spring network is a key determinant of whether
an injury can heal or not. We therefore assessed whether the spatial

organization of the initial injury could be used to predict the
percolation of fibrosis and the ultimate behavior of the network.

Methods

An agent-based spring network model

The computational experiments in this study are based on the
agent-based spring network model developed by Hall et al. (2024),
which simulates the interaction between stiffness and stretch in
pulmonary fibrosis. Briefly, the model represents the ECM of lung
tissue as a two-dimensional (2D) Voronoi network-based
heterogeneous system of interconnected springs, where each
spring has its own stiffness (K), strain (ϵ), and cross-sectional
area (CSA). This network is repeatedly solved for equilibrium
using simulated annealing (Cavalcante et al., 2005), creating a
mechanically responsive structure. Fibroblasts, represented as
agents, randomly migrate within the spring network and sense
and respond to the local properties of the springs. Specifically,
any change in the CSA or ϵ of a spring alters the activation of
the agent, which in turn triggers deposition (high activation) or
digestion (low activation) of collagen based on the spring’s ϵ and K.
This expresses the notion that individual collagen molecules have
the same Young’s modulus, but the fiber stiffness depends on how
many molecules are in parallel, which in turn determines CSA.
Hence, K is proportional to CSA.

Fibrotic threshold

The agents within the network operate on two physiologically
based rules. First, the agents stiffen springs in response to high strain
and digest springs in response to low strain; this is a homeostatic
negative-feedback system and is responsible for self-healing in the
network. Second, the agents stiffen springs in response to high
stiffness, which is a positive-feedback system, and it is responsible
for fibrosis within the network. Specifically, whenever an agent
traverses a spring, it evaluates K and ϵ for that spring, which
influence the agent’s activation level. The total activation of an
agent (a) after traversing a spring is as follows:

a � w1aε + w2ak − c,

where aε is agent activation in response to ϵ, ak is agent activation in
response to K, and w1 and w2 are the weighting factors that reflect
genetic predispositions or environmental influences toward fibrosis,
respectively. The dependence of aϵ and ak on ϵ andK is given by two
separate Hill functions (Hall et al., 2024). The constant c is
determined in such a way that a � 0 when the ϵ and CSA are at
their homeostatic level. The agent then updates the spring’s CSA as it
steps over the spring. As a can be positive or negative, a spring can
become stiffer or softer. When aϵ > ak and ϵ on the spring is large,
the agent attempts to increase CSA and hence K, to reduce ϵ.
Alternatively, if ak > aϵ, the agent will enter a fibrotic mode to
further increase CSA. The complete description of the model
together with the parameters used in the simulations can be
found in the study by Hall et al. (2024).
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In the case of springs with high stiffness, the agent’s response to
stiffness dominates the response to strain, and instead of digesting,
agents amplify the injury in a positive feedback loop of collagen
deposition. The point at which the homeostatic negative feedback
turns into positive feedback represents the fibrotic threshold, beyond
which the network will not be able to heal from an injury.

Creating initial network injuries

The homeostatic value of CSA was set to 1. To create an injury at
time 0, an initial fibrosis was generated by mimicking the tissue
response to some insult such as local inflammation in 20% of the
springs within the network by setting their CSA to 5. We tested two
different initial injury cases. First, 20% of injured springs were chosen at
random. Second, injured springs were localized to a single large cluster
to help pinpoint what areas of the injury drove the development of
fibrosis. We further evaluated the effects of removing a spring that was
deemed to greatly increase the chances of fibrosis.

To simulate disease progression, agents would take a single step
across a spring in the network, and then the equilibrium
configuration would be solved. This constitutes a single iteration
of the simulation. We ran simulations for up to 2,000 iterations,
which correspond to the duration of approximately 5 months in real
time (Hall et al., 2024; Supplementary Equation S12). To visualize
the effects of the injury, each solved network was color-coded to the
respective CSAs of the springs to visualize how patterns of stiffness
developed and finalized over the progression of fibrosis.

Figure 1 shows an example of a network with an applied injury at
iteration 150 (Figure 1a) and the result of that injury at iteration
2,000 (Figure 1b). In this case, the network was unable to heal, and
the injury progressed into fibrosis, which was highlighted by central
clustering of stiffened springs and the surrounding affected springs
stretched toward the direction of the cluster.

Geometry of the initial injury

Several methods were used to quantify the geometric
configuration of initially injured springs in the network to identify

which network configurations result in percolating clusters with a
high likelihood of entering an irreversible fibrotic phase transition.

The first method involved tracking the number of injured spring
neighbors at the initial injury (iteration 150) within a specified
proximity to a selected spring. We calculated a clustering coefficient
(CC) for each spring in the network as follows. Similar to tree-like
data structures, the spring being evaluated was designated the 0th
generation. Injured springs connected to the spring being evaluated
were designated as first-generation neighbors. Injured springs
connected to any first-generation neighbors were designated as
second-generation neighbors. To avoid ambiguity in looped
topologies common in Voronoi networks, a spring was included
in a cluster at generation 2 only if it was connected to generation 0 by
an injured spring at generation 1. Figure 2a depicts this branching
structure. For example, if a spring and two of its neighbors within
two generations are injured, the CC of that spring is 3. Thus, a higher
CC indicates greater local clustering of fibrotic injury. Figure 2b
illustrates the CC of two clusters, with CC = 3 and CC = 1.

To determine how the structure of the initial injury affected the
long-term evolution of the network, we determined the clusters of
connected injured springs. To do this, we used MATLAB’s sparse()
function, which converts a matrix with the nodes of every injured
spring into a sparse form. Each nonzero entry in the matrix
represents a connection between two nodes. Then, MATLAB’s
conncomp() function uses the sparse matrix to determine
connected nodes as contiguous clusters and stores the size and
nodes of each cluster. Having identified each cluster of injured
springs in the network, we evaluated two metrics. First, the
Euclidean distance between any two nodes of a cluster was
determined (Figure 3), and the largest distance within the cluster
was taken as the maximum diameter of the cluster. Second, the
minimum distance between each cluster was also computed by
calculating the Euclidean distance between the nodes in one
cluster and all the nodes in all other clusters (Figure 3).

Results

Because of the random migration of the agents, the model is
fundamentally stochastic in nature. To investigate which statistical

FIGURE 1
Injury and fibrosis in a 2D spring network. Spring thicknesses are plotted as the logarithm of their relative cross-sectional area (CSA). (a) Initial
network at the point of injury, where 20% of randomly selected springs were stiffened to a CSA five times their initial value. (b) Network with a fibrotic
response after 2,000 iterations, showing changes in spring CSA and network topology. Note that the colors represent different CSA values on panels (a)
and (b).
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parameters related to each injury configuration determine whether a
network can heal, 100 different simulations (100 different spring
networks, injuries, and network outcomes) were tested, and the
properties of the initial injury configurations were analyzed. When
20% of the springs were randomly selected and their CSA was
increased from the baseline value of 1 to 5, 43 out of the
100 networks turned fibrotic.

The number of stiff members in a connected cluster serves as an
index of local connectivity, providing insight into whether a region is
approaching or has surpassed the percolation threshold, which has a
value of ~0.67 for Voronoi networks in 2D (Becker and Ziff, 2009). To
evaluate how regional connectivity changed during the simulations,
we analyzed the evolution of the CC of “fibrosis-bound springs,”
which are injured springs that turned fibrotic (defined as having a

CSA ≥ 5) by 2,000 iterations. The high stiffness of a spring after a long
period of healing, 2,000 iterations in this case, indicates a path of
irreversible fibrosis. First, the CC of each fibrosis-bound spring was
obtained at every iteration, and the total number of springs with a
given CC was determined. Then, the fibrotic probability, calculated as
the number of fibrosis-bound springs divided by the total number of
springs, was obtained as a function of CC and iteration number. These
four parameters—CC, total number of springs, number of fibrosis-
bound springs, and fibrotic probability—were then calculated for each
fibrotic network and summed over all the networks. Figure 4
illustrates the relationship between CC and the fibrotic probability
as the simulation progressed. The probability of a fibrosis-bound
spring with lower CC occurring decreases as iterations increase,
whereas the number of fibrosis-bound springs with higher CC
increases with each iteration. This suggests that areas with a higher
clustering of springs tend to produce percolation. Indeed, as the
simulation progresses, the higher a spring’s CC, the more likely it is to
be a fibrosis-bound spring, with a high probability of becoming a part
of a developing large fibrotic cluster. This is clearly seen when
examining the relationship among iterations 400, 1,200, and
2,000 in Figure 4. As an example, clusters with CC = 5 at iteration
400 may still be developing, and by iteration 2,000, they could be part
of a much larger and more connected cluster with CC = 9; this is
shown by a lower probability of fibrosis-bound springs with CC = 5 at
2,000 iterations than at 400 iterations.

Figure 5 shows the distributions at the injury of the minimum
cluster-to-cluster distance and the cluster diameter measured by
the largest internal distance within a cluster for networks that
healed or turned fibrotic. The distribution of the minimum
distances in fibrotic networks tend to be smaller, suggesting
that injured clusters are more densely packed than those in
cured networks (Figure 5a). The cluster diameters are larger in
fibrotic networks than in cured networks (Figure 5b). A two-
sample Kolmogorov–Smirnov test confirms that these differences
between fibrotic and cured networks are statistically significant,
supporting the hypothesis that smaller distances among the
initial fibrotic clusters (p < 0.0001) and larger cluster
diameters (p = 0.02) are characteristics of networks developing
into fibrosis.

FIGURE 2
Representation of the clustering coefficient (CC) in a spring network. (a) Generations of springs visualized with distinct color coding: generation 0
(green), generation 1 (blue), and generation 2 (red). Labels g0, g1, and g2 denote the corresponding generations. (b) CC is calculated by counting the
number of injured springs (brown) within two generations of the spring of interest. Green dashed ovals highlight example calculations, with CC = 3 for the
central spring and CC = 1 for the top-right boundary spring.

FIGURE 3
Examples of connected clusters of fibrotic springs in an injured
network. Visualization of a network showing clusters that are color-
coded by size, as indicated by the color bar on the right. The network
includes three key metrics: (1) the minimum Euclidean distance
between nodes of one cluster to another cluster (dotted black lines)
and (2) the maximum cluster diameter within individual clusters
(dotted magenta lines).
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These results suggest that depending on the initial injury
configuration, certain springs are more likely to steer the network
toward a fibrotic pathway. To investigate this possibility, we
examined a single fibrotic network. The primary contributors to
fibrosis were assumed to be (1) the first springs to cross the threshold
and enter the positive feedback loop of collagen deposition and (2)
the springs with the highest stiffness at the end of the simulation.
Springs fitting these criteria usually reside near the center of the
cluster and, thus, have the strongest influence on fibrosis
progression. Once located, these springs were manually healed to

various levels by setting their CSA to a value between 1 and 5 at
injury. To do this, the original networks and their injuries were
recreated, with the exception of the modified springs, and the
network simulations were run again to iteration 2,000. In
Figure 6a, the original network’s initial injury configuration
highlights spring 39 and spring 143 as the first and second most
stiffened springs, respectively, by iteration 2,000. Figures 6b, c show
the resulting evolution of the total stiffness of the network as a
function of integration of various initial values of CSA. Spring 39 is a
critical spring as setting its CSA to 1 at iteration 150 fully prevented

FIGURE 4
Fibrotic probability as a function of CC for several iteration numbers. Fibrotic probability, calculated as the number of fibrosis-bound springs divided
by the total spring count for all simulation data, was plotted over iterations across different CC values. Each colored line represents a specific spread of
CC, highlighting geometric differences in the progression of fibrosis. As an example, the probability that a spring with CC of 2 becomes fibrosis-bound is
~0.8 at iteration 400 but is only ~0.1 at iteration 2,000.

FIGURE 5
Distributions of the minimum distance between clusters (a) and the maximum cluster diameter (b) at iteration 150 of the initial injury for both cured
and fibrotic networks. The Kolmogorov–Smirnov test found statistically significant differences between the distributions for minimum distance
(p < 0.0001) and cluster diameters (p = 0.02).
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the network from turning fibrotic. However, as the initial CSA of
spring 39 was gradually increased, the network’s stiffness trajectory
diverged from healing to fibrosis at a critical CSA value of 4.3,
marking a bifurcation behavior. In contrast, Figure 6c shows that
spring 143 is not critical as altering its stiffness at the time of injury
had no impact on the final outcome. Furthermore, we observed no
apparent correlation between the initial CSA of spring 143 and the
final network behavior, as each tested CSA value led to a random
final network.

Discussion

Using a previously published model of pulmonary fibrosis (Hall
et al., 2024), we examined the extent to which the spatial
configuration of an initial injury determines the long-term
outcome of the model. We found that the CC of the initial
injury, the size of the clusters, and the spatial arrangement of the
clusters all significantly influenced the final state of the network.
Furthermore, the model also exhibited a bifurcation behavior similar
to that of previously published results: as the stiffness of a single
network element within the injury was gradually increased, the
system switched from a healing to a fibrotic phenotype.

We expected that regions with high clustering of injured springs
were closer to reaching a critical threshold of percolation, resulting
in a higher probability of fibrosis. Therefore, we defined the CC for
each spring at the time of injury to elucidate the role of connectivity
in regions with stiff springs. A high CC suggests a high probability of
forming a percolating stiff cluster, which plays a crucial role in the
total network stiffness and the corresponding mechanical function
(Bates et al., 2007). Evidence of progressive clustering early in

fibrosis development is shown in Figure 4. At iteration 400, all
fibrotic springs exhibited the highest CC in the network, which was
equal to 5. However, by iteration 2,000, the CC increased to 9,
indicating that springs with high numbers of stiff neighbors early on
in the process persist to become central to percolation and fibrosis
progression. Alternatively, low initial CC is expected to lead to
healing. Hence, the spatial distribution of the initial injury may
differentiate fibrotic networks from those that heal.

For full percolation in the entire network, additional geometric
considerations of the initial injury structure may provide insight into
whether the network is approaching a critical density of injury. As
stiff springs begin to cluster within close Euclidean distances, the
density of stiff springs increases, indicating a growing number of
interconnected pathways. This clustering effect signifies that the
network is approaching a point where a continuous path of stiff
springs could span the entire structure, first achieving local and then
global percolation, as seen in Figure 1b. Similarly, as the minimum
distance between neighboring clusters decreases, a more
interconnected and denser stiff network forms, which again
moves closer to the threshold where percolation occurs. We
expect that a network that has turned fibrotic would, on average,
contain larger lengths of initial injury clusters and lower distances
between these clusters. Figure 5 suggests that this is indeed the case,
as fibrotic networks had lower minimum distances between injured
springs and larger lengths of injury than healed networks. These
factors provide a metric for the prediction of whether percolation
would occur and may also be used to characterize different initial
injury structures based on their geometric configuration.

The difficulty in predicting which initial injury leads to fibrosis is
also related to the particular agent-based model that we
implemented. Specifically, the process of percolation in this

FIGURE 6
Impact of a single spring’s cross-sectional area on the development of network fibrosis. (a) Schematic representation of a network that turns fibrotic,
where spring 39 and 143 are part of the initial injury and are the two springs with the highest cross-sectional area by iteration 2,000. (b) Trajectories of
network stiffness over 2,000 iterations with varied cross-sectional areas of spring 39 at time of injury, illustrating a bifurcation in the network’s response as
the stiffness of spring 39 decreases. (c) Trajectories for spring 143 across all network simulations, depicting how altering its cross-sectional area has
no critical influence on the overall network fibrosis development. In panels (b) and (c), red curves indicate simulations where the network ultimately
becomes fibrotic, whereas green curves indicate simulations where the network heals.
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model is different from the conventional percolation that fills up a
lattice randomly with elements that can cluster and percolate. The
model presented in the study by Hall et al. (2024) is an active
network in the sense that the agents move around and change their
activation depending on their environment. This allows them to
carry the information, their activation, to neighboring sites they visit
and gradually stiffen. Thus, this behavior is similar to diffusion. A
further complication arises from the fact that this diffusion-like
process also depends on local strain. If we consider two clusters of
stiff springs that are separated by a single soft spring, the strain on
this intermediate spring will be high. Consequently, the agents
attempt to return strain to the homeostatic level by stiffening the
spring. However, this stiffening step may not reduce the strain
because the spring bridges two larger stiff clusters that are difficult to
stretch. This leads to excessive deposition until the spring’s stiffness
exceeds the fibrotic threshold, leading to positive feedback. Hence,
two clusters of stiff springs become preferentially connected by a stiff
bridge in a near-deterministic manner that cannot happen in regular
percolation. This mechanosensitive process in turn accelerates the
progression of irreversible fibrosis in a manner reminiscent of the
rich-get-richer mechanism (Barabasi and Albert, 1999).

In a dynamical system, bifurcation can be defined as a sudden
transition from one type of behavior to a qualitatively different
behavior as a model parameter is tuned. Our spring network can be
considered a high-dimensional dynamical system with the
dimension equal to the number of springs in the network.
Figure 6a is an initial condition for the evolution of the system.
However, visualizing such a bifurcation is difficult and non-intuitive.
Therefore, instead of fully characterizing the bifurcation of the high-
dimensional system, we can consider the system as being low-
dimensional, with the total network CSA being the dynamical
system variable. In this case, the CSA of each spring is a tunable
model parameter, and Figure 6b shows that as the CSA of spring
39 is gradually lowered, a new solution, the healed network, becomes
possible. In contrast, altering the CSA of spring 143 does not bring
about this transition in behavior. Hence, varying the CSA of spring
143 does not cross the boundary of the bifurcation and does not lead
to a qualitatively different behavior, that is, healing. To demonstrate
this, we consider the following 1D dynamical system:

dK

dt
� −q K +K0( ),

where K is the total stiffness of the network, K0 is the baseline
stiffness corresponding to a homogeneous network with each spring
having a CSA = 1, and q is a structural parameter that is a function of
the full network configuration such as that shown in Figure 6a. If the
initial condition is K(0) � Ki, the solution of the above equation is
as follows:

K t( ) � Ki −K0( )e−qt +K0.

If q is constructed such that q> 0 for all curable configurations,
whereas q< 0 for all fibrosis-bound configurations, then this system
will exhibit a bifurcation from a state of no stable fixed point (red
lines in Figure 6b) to a state with a stable fixed point (green lines
in Figure 6b).

By examining the fibrotic network in Figure 6a, we determined
that the first springs to cross the fibrotic threshold play a central role
in steering the network toward fibrosis. The ability to alter the

network’s trajectory by modifying just one spring’s initial stiffness at
the time of injury demonstrates that divergence of network stiffness
is directly initiated by the first spring to enter fibrosis. This finding
suggests that within this model, fibrosis progression is not a gradual,
distributed process but rather one that is predetermined by the
injury configuration and dictated by a single pivotal spring, which
may be called a hotspot, through a cascade of events leading to
positive feedback, as described above. Indeed, spring 39 is central to
a set of seven nearby injured springs separated by several soft
springs. When these soft springs become stiffened, suddenly a
large, regionally percolating cluster forms in the network, which
drives the network toward fully developed fibrosis. However, when
the initial injury of spring 39 is lowered below the bifurcation point
(4.3), it may be unable to turn the nearby soft springs into fibrotic
ones, and the network can heal. Thus, this bifurcation is a result of
complex nonlinear network effects providing evidence that the onset
of fibrosis—and the subsequent bifurcation between healing and
disease—is driven by the earliest structural changes in the network.
It therefore appears that the fastest stiffening region may
significantly influence the ultimate fate of the tissue, making
early intervention at such sites of initial stiffening a potential
point of control.

There are two key limitations of this study. The first is that all
computational findings come from a single computational model,
which constrains the ability to generalize our conclusions to diverse
physiological conditions and other modeling frameworks.
Nevertheless, this model was developed based on established data
from the literature and has been shown to produce highly realistic
network structures reminiscent of human pulmonary fibrosis (Hall
et al., 2024). Another limitation is that the computational model
imposes lung ECM injury instantaneously, whereas in reality,
alveolar damage can occur over a time span of 1–2 days. Animal
models (Izbicki et al., 2002; Bonatti et al., 2023) and patients
following acute lung injury (Zapol et al., 1979) suggest that
significant collagen deposition may take several weeks.
Additionally, inflammatory cell infiltration, alveolar fluid
accumulation, and progressive epithelial cell damage unfold in
distinct phases rather than as a single event, emphasizing that
some real-world injury processes are more gradual and dynamic
(Zemans et al., 2015). Clinically, the initial injury becomes
noticeable on CT images only after approximately a year (Snyder
et al., 2020), and hence, our modeling results may be relevant to the
state of the tissue at the time of diagnosis. The second key limitation
is that the network is 2D, whereas the real tissue is 3D. Two
important issues arise. First, in 2D, the propagation of
mechanical stresses in a random network can be different from
that in a regular network (Hall et al., 2023). For our purposes, it is the
local strain and the local stiffness that drives the system toward
healing or fibrosis. The random nature of the network significantly
attenuates stress propagation. Second, the overall behavior is
characterized by the overall stiffness of the network, which is
primarily determined by whether or not percolation has been
reached. The percolation threshold in 3D is significantly lower
than that in 2D (Zhukov et al., 2019). These two factors appear
to have opposite influences on whether the network heals or
becomes fibrotic. Although a bifurcation behavior is expected in
3D, this issue warrants further systematic investigation.
Furthermore, our model incorporates separate signaling pathways
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responsible for how cells respond to stretch and stiffness, whereas in
reality, these pathways are not independent (Throm Quinlan et al.,
2011). However, it is also known that stiffness, separately from
stretch, can induce a fibroblast-to-myofibroblast transition in a
positive feedback loop through a COX-2 suppression-related
pathway (Liu et al., 2010). Therefore, although the biological
responses to these two inputs overlap, to our knowledge, only
pathologically high stiffness can trigger pathways that are
involved in progressive fibrosis. Finally, we note that there are
additional limitations of the model, including the lack of
different cell types, lack of airway structures, and the simplistic
linear model of ECM mechanics.

The results of the current study provide evidence that
pulmonary fibrosis, a heterogeneous disease, can be linked to the
ECM’s level of percolation, as quantified by factors that define the
connectivity of fibrous tissue. Regions with high connectivity,
depending on their stiffness, are more likely to drive the network
toward terminal PF. Despite the limitations of the model, the results
raise the intriguing possibility that topographic features of fibrotic
lesions that can be clinically assessed may be used to predict disease
progression in the future.
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