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The human brain is a complex dynamical system which displays a wide range of
macroscopic and mesoscopic patterns of neural activity, whose mechanistic
origin remains poorly understood. Whole-brain modelling allows us to explore
candidate mechanisms causing the observed patterns. However, it is not fully
established how the choice of model type and the networks’ spatial resolution
influence the simulation results, hence, it remains unclear, to which extent
conclusions drawn from these results are limited by modelling artefacts. Here,
we compare the dynamics of a biophysically realistic, linear-nonlinear cascade
model of whole-brain activity with a phenomenological Wilson-Cowan model
using three structural connectomes based on the Schaefer parcellation scheme
with 100, 200, and 500 nodes. Both neural mass models implement the same
mechanistic hypotheses, which specifically address the interaction between
excitation, inhibition, and a slow adaptation current which affects the
excitatory populations. We quantify the emerging dynamical states in detail
and investigate how consistent results are across the different model variants.
Thenwe apply bothmodel types to the specific phenomenon of slow oscillations,
which are a prevalent brain rhythm during deep sleep. We investigate the
consistency of model predictions when exploring specific mechanistic
hypotheses about the effects of both short- and long-range connections and
of the antero-posterior structural connectivity gradient on key properties of these
oscillations. Overall, our results demonstrate that the coarse-grained dynamics is
robust to changes in both model type and network resolution. In some cases,
however, model predictions do not generalize. Thus, some care must be taken
when interpreting model results.
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1 Introduction

The human brain is a complex dynamical system. It exhibits a rich
variety of spatiotemporally organized activity, where different patterns
correspond to different functionalities and mechanisms in human
cognitive processes. Rasch and Born (2013) state that slow
oscillations (SOs), that travel as plane waves in an anterior-posterior
direction (Massimini et al., 2004), play a crucial role in memory
consolidation during non-rapid eye movement (non-REM) sleep,
and Muller et al. (2016) identified a dominant rotational temporal-
parietal-frontal directionality of spindle oscillations that accompany
SOs. Beyond spatiotemporal patterns during sleep, Das et al. (2024)
showed that spatial modes that regulate plane waves are absent in
navigational memory tasks in humans while in verbal memory tasks,
they observed different clusters of traveling waves depending on the
letters that appear in words. Hence, an indicator of the functionality of a
rhythm is its spatiotemporal organization (see further, Breakspear et al.
(2003); Mohan et al. (2024)). While reductionist approaches to the
temporal dynamics of activity patterns have been widely researched to
understand the functionality of the more local dynamics in the brain,
most recently, neuroscientific research has shown an increasing interest
to include the identification of the spatial dynamics, especially on a
larger scale (see Pessoa, 2022; Sporns, 2022).

In-silico methods can support these investigations by
computational modeling of specific brain activity for the evaluation
of candidate mechanisms, as well as supporting clinical studies using
personalized whole-brain models such as the Virtual Brain Twins (see
Hashemi et al., 2025; Jirsa et al., 2023; Wang et al., 2024). Fousek et al.
(2024) introduced a principled framework which provides a
mechanistic description for resting state activity, suggesting a
fundamental pathway for the generalisation of large-scale models.
Additionally, in silico methods have been applied to surface EEG
measurements (Sanchez-Vives et al., 2017; Cakan et al., 2022), and
to intracranially recorded activity in humans (Deco et al., 2017; Das
et al., 2024; Mohan et al., 2024; Muller et al., 2016), rodents (see
Bhattacharya et al., 2022; Liang et al., 2023; Dasilva et al., 2021), and
other species (Muller et al., 2014). Intracranial recording methods
measure activity of higher spatial and temporal resolutions, hence, in
silico methods require an adjustment to spatially denser models. On a
smaller scale (i.e., not the whole brain), Capone et al. (2023) showed that
different granularity of the recorded space changed the measured
density of SO wave velocity in mice, where faster waves were
neglected on a lower spatial resolution. On a larger scale, Popovych
et al. (2021) found that the fit of simulated activity to empirical
functional connectivity depends both on parcellation schemes and
spatial resolution, and Proix et al. (2016) shows that the parcellation
size affects the dynamics of a whole-brain model whereas it was
challenging to identify a consistent type of change.

Key to the emergence of different types of spatiotemporal patterns is
the dynamical landscape of a computational model that can be
decomposed into different regions of interest by the different types
of stability a dynamical system experiences. Sanchez-Vives et al. (2017)
showed that bistability is required for the organization of neocortical SOs
both in silico, as well as empirically. Cakan et al. (2022) identified a
temporal destabilization of a stable high-activity state (up state) by a
fatigue mechanism (spike-frequency adaptation) for transitioning into a
low-activity state (down state) which is interrupted by noise to ultimately
alternate at a low frequency (<2 Hz). These SOwavefronts propagate as

global plane waves. For the formation of more complex patterns, the
presence of multi- or metastability is required (see Kelso, 2012). These
types of stability have been shown to play a crucial role in enabling
elaborate spatiotemporal organizations in computational models (see,
Roberts et al. (2019); Kelso (2012)) with hallmarks of them being present
in the human brain (see, Freyer et al. (2009); Freyer et al. (2011)).

Different types of instability can also enable the formation of
complex local patterns. Townsend and Gong (2018) applied methods
from the analysis of turbulent flows to determine velocity vector fields
over empirically recorded brain activity of mice. In those velocity vector
fields, outward (sources) or inward (sinks) rotational waves emerge from
unstable, or stable foci, respectively. Analogously for empirical data of
humans, Das et al. (2024) investigated the organization of sinks and
sources and their role for differentmemory tasks, showing that in spatial
tasks more sources, in verbal memory tasks more sinks were detected.
Deco et al. (2021a) found that large-scale models with regional
heterogeneity of excitatory-inhibitory receptors are capable of
reproducing the spatiotemporal structure of empirical functional
connectivity reliably. Along the line of diversifying connectivity
profiles (but without the inclusion of fine grained receptor-dynamics)
Breakspear et al. (2003) emphasized the importance of balance between
local short-range versus long-range connections1 for the transition from
independent, locally appearing oscillations to chaotic synchronization to
global patterns. Liang et al. (2023) supported this observation when
investigating the spatiotemporal patterns in awake and anesthetized
rodents. They not only emphasized the presence of complex local
patterns during wakefulness but also showed, with computational
modeling, that the coherence in low frequency bands is enhanced by
stronger long-range connections between cortical areas further apart.
Information processing has also been shown to be crucially affected by
long-range connections by Deco et al. (2021b), where the authors
compared two whole-brain models, one with connections which
exponentially decayed with distance and one with additional sparse
long-range connections that deviated from that rule. They investigated
complex brain activity that is functionally beneficial for the transmission
of information between cortical regions and found the information
cascade, i.e., the flow of brain activity across different spatial scales, to be
significantly improved by the presence of these long-range connections.
Studies such as the above, where brain activity is simulated with
networks equipped with empirically informed structure, have been
shown to reliably predict empirically observed patterns. Cakan et al.
(2022), for example, showed that the observed direction of SOs can be
implicated by the antero-posterior structural connectivity gradient that
decreases in connectivity strength from the anterior to the
posterior direction.

Given the large number of computational modeling studies
which investigate the spatiotemporal organization of neural
activity on larger scales, we are left with the question in how far
results generalize across the different whole-brain modeling
approaches. Here, we specifically investigate whether, and how
strongly, the specific choice of the dynamical system and of the
spatial resolution changes the observed patterns, and how the
connectivity profiles affect the emergent dynamics beyond

1 Breakspear et al. (2003) refer to excitatory couplings between cortical

columns as long-range connections.
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empirically observed variability. We compare the emergent
dynamics of whole-brain models based on the biophysically
realistic adaptive linear-nonlinear cascade (aLN) model (Augustin
et al., 2017; Cakan and Obermayer, 2020; Cakan et al., 2022) and the
phenomenological Wilson-Cowan model (Wilson and Cowan,
1972), both equipped with spike-frequency adaptation as a
fatigue mechanism. To identify the role of spatial density in the
models, we show the results for three network parcellations based on
the Schaefer local-global parcellation schemes (Schaefer et al., 2018)
with 100, 200, and 500 nodes. We find that the coarse-grained
dynamical landscape remains robust across models and network
resolutions. However, results may not generalize when exploring
specific dynamical states.

2 Materials and methods

2.1 Data

2.1.1 Participants
We used diffusion tensor imaging (DTI) data and anatomical

T1 scans which were acquired at the Universitätsmedizin Greifswald
from 27 participants (15 females; age range = 50–78 years, mean age =
63.55 years). Prior to participating in the study, all participants gave a
written informed consent and were subsequently reimbursed for
participation. The study was approved by the local ethics
committee at the Universitätsmedizin Greifswald and was
conducted in accordance with the Declaration of Helsinki.

2.1.2 Data acquisition and preprocessing
The acquisition parameters and preprocessing of the DTI and

anatomical T1 scans were identical to those described in Cakan
et al. (2022).

We defined the anatomical regions according to the Schaefer
cortical parcellation scheme (Schaefer et al., 2018) with 100, 200,
and 500 nodes, respectively. We employed the same probabilistic
tractography algorithm with 5,000 randomly sampled streamlines
per voxel, which yielded one structural connectivity matrix and
one fiber length matrix per participant. One participant was
excluded because the tractography procedure at the highest
network resolution failed. Following probabilistic tractography,
we normalized the resulting structural connectivity matrix for each
participant by dividing the connection probability Cij from seed
region i to target region j by 5,000 (number of streamlines per
voxel) x n (number of voxels in the seed region i). As probabilistic
tractography contains no directional information, we estimatedCij

by averaging the connection probabilities from i to j and j to i
(Cabral et al., 2012).

In addition to the individual connectomes, we constructed
average structural connectivity matrices C and average fiber
length matrices D for each parcellation.

2.2 Whole-brain network models

We used whole-brain networks that consist of
N ∈ {100, 200, 500} nodes following the parcellation schemes
described in Section 2.1.2. Each node represents a brain region

and consists of an excitatory (E) and an inhibitory (I) population of
model neurons. The nodes are connected by edges with the
connections strengths given by the connectivity matrices C. Each
excitatory population is equipped with an activity-dependent
adaptation mechanism (A) that acts as a hyperpolarising
feedback current.

2.2.1 The aLN model
The adaptive linear-nonlinear (aLN) model is a mean-field

neural mass model of a network of coupled adaptive exponential
integrate-and-fire (AdEx) neurons. It was developed in
Augustin et al. (2017) and validated against simulations of
spiking neural networks in Cakan and Obermayer (2020).
We used the neurolib framework introduced in Cakan et al.
(2021) for the numerical simulations. The dynamics of each
node (Cakan et al., 2022) is summarized by the
following equations:

τα
dμα
dt

� −μsynα t( ) + μextα t( ) + μouα t( ) − μα t( ),
μsynα t( ) � JαE�sαE t( ) + JαI�sαI t( ),

σ2α t( ) � ∑
β∈ E,I{ }

2J2αβσ
2
s,αβ t( )τs,βτm

1 + rαβ t( )( )τm + τs.β
+ σ2ext,α

d�sαβ
dt

� τ−1s,β 1 − �sαβ t( ) t( )( ) · rαβ t( ) − �sαβ t( ),
dσ2s,α,β
dt

� τ−1s,β 1 − �sαβ t( )( )2 · ραβ t( )
+ ραβ t( ) − 2τs,β rαβ t( ) + 1( )( ) · σ2s,αβ t( ),
for α, β ∈ E, I{ },

(1)

where �sαβ represents the mean and σ2s,αβ the variance of the fraction
of active synapses. Means and variances are computed across all
neurons within each population. Given μα, the mean membrane
current, its standard deviation σα, and a set of nonlinear transfer
functions Φγ(μα, σα), γ ∈ {τ, V, r}, the mean membrane potentials
�Vα � ΦV(μα, σα) and the population firing rate rα � Φr(μα, σα) can
be calculated from the Fokker-Plank equations as in Richardson
(2007). The time constant τα is input-dependent with
τα � Φτ(μα, σα). The values for �VE, τα, and rα are evaluated at
every time step with precomputed functions such that the
effective input rate from population β to α is determined by the
mean rαβ and the variance ραβ with

rαβ t( ) � cαβ
Jαβ

τs,β Kβ · rβ t − dα( ) + δαβE ·Kgl ∑N
j�0

Cij · rβ t −Dij( )⎛⎝ ⎞⎠
ραβ t( ) � c2αβ

Jαβ
τ2s,β Kβ · rβ t − dα( ) + δαβE ·Kgl ∑N

j�0
C2

ij · rβ t −Dij( )⎛⎝ ⎞⎠,

(2)
where Dij represents the fiber length between nodes i and j divided
by the global signal speed vgl.

The mean adaptation current �IA is given by

d�IA
dt

� τ−1A a �VE t( ) − EA( ) − �IA( ) + b · rE t( ). (3)

All parameters not explained above are given and explained in
Table 1. Values were chosen as in Cakan et al. (2022) with the global
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coupling strength Kgl fixed to one value for all parcellations, see
Table 1. For the determination of units for the parameters, see Cakan
et al. (2022).

2.2.2 The Wilson-Cowan model
The Wilson-Cowan model (Wilson and Cowan, 1972) describes

the dynamics of the proportions of excitatory (rE(t)) and inhibitory
(rI(t)) neurons firing per unit time (Kilpatrick, 2013). Even though
the aLN and Wilson-Cowan models represent neuronal firing

somewhat differently, we denote both dynamical variables with
rk ∈ {E, I} for brevity. The framework in Cakan et al. (2021)
provides an implementation of the original model equations
including a refractory term. Since the refractory time only
rescales the solutions rE(t), and rI(t) but has no qualitative
effect on the dynamics (Pinto et al., 1996), we omitted it for this
study. Furthermore, a spike-frequency adaptation current is
considered. The dynamics in each node is thus determined by
the following equations:

TABLE 1 Parameter values used for the aLN model. Values are taken from Cakan et al. (2022).

Parameter Value Description

μexte [0–4]mV/ms Mean external input to E

μextI [0–4]mV/ms Mean external input to I

σou 0 or 0.37 mV/ms3/2 Noise strength

τou 5 m Noise time constant

Ke 800 Number of excitatory inputs per neuron

Ki 200 Number of inhibitory inputs per neuron

cEE , cEI 0.3 mV/ms Maximum AMPA PSC amplitude

cEI , cII 0.5 mV/ms Maximum GABA PSC amplitude

JEE 2.4 mV/ms Maximum synaptic current from E to E

JIE 2.6 mV/ms Maximum synaptic current from I to E

JEI −3.3 mV/ms Maximum synaptic current from I to E

JII −1.6 mV/ms Maximum synaptic current from I to I

τs,E 2 m Excitatory synaptic time constant

τs,I 5 m Inhibitory synaptic time constant

dE 4 m Synaptic delay to excitatory neurons

dI 2 m Synaptic delay to inhibitory neurons

C 200 pF Membrane capacitance

gL 10 nS Leak conductance

τm C/gL Membrane time constant

EL −65 mV Leak reversal potential

δT 1.5 mV Threshold slope factor

VT −50 mV Threshold voltage

Vs −40 mV Spike voltage threshold

Vr −70 mV Reset voltage

Tref 1.5 m Refractory time

σext 1.5 mV/
���
ms

√
Standard deviation of external input

EA −80 mV Adaptation reversal potential

A 0 nS Subthreshold adaptation conductance

B 0, 20 pA Spike-triggered adaptation incremenent

τA 600 m Adaptation time constant

Kgl 265 Global coupling strength

vgl 20 m/s Global signal speed
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τE
drE,j
dt

� −rE,j t( ) + FE wEErE,j t( ) − wEIrI,j t( ) + μextE + Iextj t( ) − aj t( ) + μouE( )
τI
drI,j
dt

� −rI,j t( ) + FI wIErE,j t( ) − wIIrI,j t( ) + μextI + μouI( )
τa
daj
dt

� −aj t( ) + bFA rE,j t( )( ).
(4)

Iextj (t), the input from other nodes to the excitatory population of
node j, is determined by the connectivity matrix C � {Cjk} and the
delay matrix D � {Djk}, and scaled by a global coupling
strength Kgl ∈ R+

0 :

Iextj t( ) � Kgl ·∑N
k�1

Cjk · rE,k t −Djk( )( ). (5)

To simplify Equation 4, we consider a mean external input μextα for
α ∈ {E, I} to each node, which is constant across nodes. The transfer
functions Fα(·), α ∈ {E, I, A}, are chosen to be sigmoidal:

Fα x( ) � 1
1 + exp −aα x − ]α( )( ).

A description for each parameter can be found in Table 2. These
parameter values were chosen, because they give rise to a dynamical
landscape which is similar to other systems that also reliably produce
SOs (Cakan and Obermayer, 2020; Cakan et al., 2022). The
parameter setting required minor adjustments compared to
previous studies that used the Wilson-Cowan model to simulate

various types of spatiotemporal patterns (Levenstein et al., 2019;
Papadopoulos et al., 2020; Torao-Angosto et al., 2021).

2.2.3 Noise
For the investigation of simulated sleep SOs, noise input to each

population α ∈ {E, I} in both models was considered. Noise is
described by an Ornstein-Uhlenbeck process

dμouα t( )
dt

� −μ
ou
α

τou
+ σouξ t( ),

where ξ(t) is sampled from a normal distribution with zero
mean and unit variance and τou is the time constant set to
5 m for both models. The variance σou, also referred to as
noise strength, is different for each model and given in
Tables 1, 2.

2.2.4 Numerical simulations
We use Euler-integration to conduct the numerical simulations.

To compare computation times, we tracked the duration necessary
to simulate bothmodels at all resolutions on a single core of an AMD
EPYC 7662 64-core processor. The simulation of 10 s (100.000 time
steps, dt = 0.1 m) of activity with the aLN model (Wilson-Cowan
model) takes 8.45 s (3.50 s) for 100, 16.65 s (8.32 s) for 200, and
95.46 s (44.91 s) for 500 nodes.

TABLE 2 Parameter values used for the Wilson-Cowan model.

Parameter Value Description

μexte [0–8] Mean external input to E

μextI [0–8] Mean external input to I

σou 0 or 0.49 Noise strength

τou 5 Time constant of the Ornstein-Uhlenbeck process

τE 2.5 Excitatory membrane time constant

τI 3.75 Inhibitory membrane time constant

wEE 16 Excitatory-excitatory coupling strength

wEI 12 Inhibitory-excitatory coupling strength

wIE 12 Excitatory-inhibitory coupling strength

wII 3 Inhibitory-inhibitory coupling strength

aE 1 Gain factor of the excitatory population

aI 1 Gain factor of the inhibitory population

]E 5 Threshold of the excitatory population

]I 5 Threshold of the inhibitory population

aA 3 Adaptation gain factor

]A 2 Adaptation threshold

B 0, 60 Adaptation strength

τA 4625 Adaptation time constant

Kgl 0.5 Global coupling strength

vgl 80 Global signal speed
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2.3 Analysis

2.3.1 State space analysis
The analysis of the state space was conducted numerically in the

absence of noise. We randomly initialized and simulated the model
for 101 x 101 parameter values (10,201 simulations in total) for the
mean external inputs to the E and I populations for a duration of
30 s. The duration was extended to 1 min for the Wilson-Cowan
model with adaptation, as in some cases rE needed a longer time to
return to baseline after the application of the positive stimulus, see
paragraph below.

For every point in state space, we applied a negative, but
increasing, followed by a positive, but decaying stimulus.
Subsequently, we computed the difference between the
average rE over the last 2 s of simulation and the 2 s prior to
the application of the positive stimulus. As in Cakan et al. (2022),
the point was classified as bistable, if this difference was larger
than 10 Hz for the aLN and larger than 0.1 for the Wilson-
Cowan model for at least one node in the network. These
thresholds were chosen because the bistable states displayed
differences larger than these values across the entire state space
in both models for the chosen parameterizations, detailed
in Section 2.2.

Furthermore, we computed the difference between the
maximum and minimum value of rE over the last 2 s of
simulation. We classified each point as oscillating if this value
was larger than 10 Hz for the aLN and 0.1 for the Wilson-
Cowan model for at least one node in the network.

Supplementary Figure SA1 shows the single-node bifurcation
diagrams for both models with and without adaptation obtained
using the procedures described above.

2.3.2 State classification
To characterize the temporal dynamics of each point in the

oscillatory regions (identified as described in Section 2.3.1), we used
the procedure summarized in Figure 1. For each point in the slice of

state space spanned by the external input currents to the excitatory
and inhibitory populations, μextE and μextI , we simulated network
activity in the absence of noise over a period of 2 min and for
100 random initializations. The first minute of activity was discarded
to account for transient effects. Next, for each initialization, we
computed recurrence plots with entries:

R t, t′( ) � 1, if ‖ �x t( ) − �x t′( )‖≤ ϵ
0, otherwise,

{ (6)

where �x(t), �x(t′) contain the values of rE at time points t and t’
across all nodes. ϵ is the recurrence threshold, and ‖ · ‖ denotes the
Euclidean norm. To account for different amplitudes of rE, which
could lead to different results if a fixed threshold ϵ were to be used
across initializations and parametrizations, we adjusted the
recurrence threshold ϵ until the recurrence rate (defined as the
proportion of non-zero entries in the resulting recurrence plot) of
0.1 (Zbilut et al., 2002) was reached.

For each parametrization, we clustered the resulting recurrence
matrices using the DBSCAN algorithm (Ester et al., 1996).
Additionally, we computed the determinism value DET,

DET � ∑N
l�lmin

lP l( )∑N
l�1lP l( ) , (7)

for each initialization, where P(l) is the fraction of the diagonal lines
with length l in the recurrence plot, and lmin specifies a minimum
diagonal length. DET is a measure which quantifies the
predictability or the regularity of the dynamics of a system. As
described above, recurrence plots indicate when a system revisits a
previous state. Diagonal lines in recurrence plots indicate segments
where the system evolves in a similar way over time, i.e., longer
diagonal lines contribute to higher values of DET (closer to 1) and
showmore deterministic (i.e., predictable) behavior. DET is the ratio
between the recurrence points that belong to diagonal lines of length
≤ lmin and all recurrence points forming any diagonal line (and
excluding the main diagonal, as this identity recurrence is always

FIGURE 1
Summary of the procedure used to classify network states into unistable, multistable, fast metastable, and slowmetastable. (A) For eachmodel (aLN
or Wilson-Cowan) and each parcellation (100, 200, or 500 nodes) we conducted 100 randomly initialized simulations of 2 min duration for each point in
the slice of parameter space spanned by varying the external excitatory (μext

E ) and inhibitory (μext
I ) input currents. (B) We discarded the first minute of

activity to eliminate transient effects and used the last minute of network activity to compute the recurrence plots (C). (D) Based on these, we
computed the maximum determinism value across all 100 seeds, and we clustered the recurrence plots using the DBSCAN algorithm. (E)Combining the
information from these two sources, we classified each point into one of the four states mentioned above.
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present and does not reflect dynamic similarity between distinct
time points). A DET value close to 1 indicates a highly predictable
system, whereas a value close to 0 suggests random or
chaotic behavior.

We used the number of clusters to classify each state in the limit
cycle as either unistable (if the number of clusters was equal to 1),
multistable (if the number of clusters was ≤30), or metastable (if the
number of clusters was > 30). The thresholds were determined
based on the visual inspection of the number of clusters per point in
the oscillatory regimes, as exemplified in Figure 1 (panel in the
fourth column, bottom plot, depicting the number of clusters in the
oscillatory region of state space). This led to a clear boundary
between metastable versus multi- and unistable regions (panel in
the fourth column, bottom plot of Figure 1, dark red versus
multicolored regions). We further distinguished between fast and
slow metastable states by the maximum determinism value across
the 100 initializations. Fast metastable states are characterized by
values ≤0.35, with short state durations, while slowmetastable states
are characterized by values > 0.35, with longer state durations (state
durations were additionally determined based on the inter-
hemispheric cross-correlation described in Section 2.3.4, as in
Roberts et al. (2019)). We opted for the maximum determinism
value as this allowed us to identify the presence of at least one slow
metastable state across the 100 initializations. The value of 0.35 was
chosen as the threshold based on the visual inspection of the
determinism values computed for all state space locations in the
oscillatory region. This showed clusters of regimes with determinism
values > 0.35, across the state space (see example in Figure 1 in the
panel in the fourth column, top plot, showing the maximum
determinism value in the oscillatory region of the state space).
Additionally, the choice was confirmed through the visual
inspection of the interhemispheric cross-correlation (see Section
2.3.4) for several points in the state space. This allowed us to visually
confirm the difference in state duration between slow and fast
metastable states.

2.3.3 Kuramoto order parameter
Using the simulation data described in Section 2.3.1, we

computed the Kuramoto order parameter R(t),

R t( ) �
∣∣∣∣∣∣∣∣ 1N ∑N

n�1
eiθn t( )

∣∣∣∣∣∣∣∣, (8)

where θn(t) denotes the instantaneous phase obtained from the
Hilbert transform of the time series rE for each node n, andN ∈ {100,
200, 500} denotes the total number of nodes in the network.

Subsequently, we summarized the results for each model and
each network resolution using the mean and the standard deviation
of R(t). High values of the mean indicate a synchronous solution,
whereas low values indicate an asynchronous solution. With respect
to the standard deviation, high values are indicative of metastability
and low values correspond to solutions which remain
stable over time.

2.3.4 Interhemispheric cross-correlation
To investigate spatial properties of oscillatory states, we

computed the sliding-window time-lagged cross-correlation as in
Roberts et al. (2019). We calculated the intrahemispheric Kuramoto

order parameter for each hemisphere. Subsequently, the windowed
time-lagged cross-correlation between the two parameters was
determined with a window of length W of 100 m and 90%
overlap between consecutive windows, and with a lag l of 50 m,
as follows:

Ct
RLRR

l( ) � 1
W

∑W−1

i�0
RL t + i( ) − �RL t( )( ) RR t + i + l( ) − �RR t + l( )( )

(9)
where �RL(t) and �RR(t + l) denote the mean values of the left and
right Kuramoto order parameters over their respective windows.

2.3.5 Singular value decomposition
To conduct a singular value decomposition (SVD), we firstly

computed the velocity vector fields (cf. Roberts et al., 2019). For each
node n, we used the instantaneous Hilbert transform of rE to
determine the phase θn, after which we calculated the velocity vn
using its spatial and temporal derivatives:

vn � −
∣∣∣∣∣∣∣∣∂θn∂t

∣∣∣∣∣∣∣∣/‖∇θn‖2( )∇θn. (10)

The spatial derivative was calculated using the constrained natural
element method (Illoul and Lorong, 2011), as described in Roberts
et al. (2019). This method allows for the calculation of the
components of the gradient vector without the need for
interpolation to and from a 3D grid.

The SVD was then performed for the velocity vector fields
v � {vn}Nn�1, according to the method used by Liang et al. (2023)
and introduced in Townsend and Gong (2018). Briefly, for each of
the two models and for every network resolution, we concatenated
the time series v(t) of the velocity vector fields across all four state
types identified in Section 2.3.2 to obtain a matrixW (time steps and
state types in rows and nodes in columns). This matrix was
decomposed using SVD as:

W � UΣVT, (11)
where the columns of U represent the left and the rows of VT

represent the right singular vectors of W. Hence, the rows of VT

represent the spatial modes ofW, the columns of U their time course
and the diagonal elements of Σ the eigenvalues σ in descending order
of magnitude. The variance explained by each mode is given by
σ2k/∑iσ

2
i .

We then projected the spatial modes identified on the
concatenated data onto the individual vector velocity fields of
each parametrization and quantified the proportion of explained
variance by each projected spatial mode m onto the n-th velocity
vector field asM2

m,n/∑iM
2
i,n, whereM denotes the projection matrix.

2.3.6 Structural gradient manipulation
To investigate the effect of the structural gradient on the

propagation of SOs, we used the sleep model parametrization
introduced in Cakan et al. (2022) for the aLN model, with minor
adjustments of the adaptation parameters (see Supplementary Table
SA4). The adjustment was necessary because the parcellations of
higher resolution had stronger pairwise connectivity strengths
compared to the 100 node case, which caused the model to be in
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the up state for prolonged intervals of time due to a shift in state
boundaries. The manual increase of the adaptation parameters
ensured that the model visually displayed SOs (Cakan et al.,
2022). For the Wilson-Cowan model with 100 nodes, we
conducted an evolutionary optimization in neurolib, with
resting-state functional connectivity and functional
connectivity dynamics and with power spectrum of EEG in
sleep stage N3 as optimization objectives (full procedure
described in Cakan et al. (2022)). As the evolutionary
optimization was computationally not feasible for the networks
with 200 and 500 nodes, we manually adjusted the adaptation
parameters obtained for the network with 100 nodes (see
Supplementary Table SA4) in the same manner as described
above for the aLN model. To compare our results with previous
work, compare dynamical landscapes across models and
resolutions, we used the parameters given in Tables 1, and 2.
For the sleep models, we modified a small number of parameters to
place the model in a regime, where realistic SOs are produced.

The antero-posterior structural connectivity gradient defined as
the slope of the linear regression between the node degree and its
coordinate along the antero-posterior axis of the brain (Cakan et al.,
2022) is shown in Supplementary Figure SA18 for the three
parcellations. A more negative slope indicates that more anterior
nodes have lower node degrees compared to more posterior nodes.

To manipulate the antero-posterior gradient, we introduced a
parameter p, which represents the maximum percentage change in
connection strengths applied to the most anterior node. We then
computed N equidistant and increasing values pi, i ∈ 1, . . ., N
(where N denotes the number of nodes in the network) ranging
from -p% to +p%. Each value represents the percentage by which the
connections of a node are adjusted. In the next step, we rank-ordered
all nodes according to their coordinate along the antero-posterior
axis, sorting them from most anterior to most posterior. For each
node i ∈ 1, . . ., N, we scaled each of its connection strengths (i.e., its
row in the connectivity matrix) by the corresponding percentage
value pi, i ∈ 1, . . ., N. This scaling is multiplicative (e.g., a value of
+10% increases each of the weights of a node by 10%). We modified
the connection strengths based on percentages rather than absolute
values to ensure that no negative values were introduced in the
structural connectivity matrix.

To isolate the effect of the gradient from other network
properties, we constructed control models with gradient values
similar to the networks described above (within a small tolerance
limit). In these models, we preserved the total sum of connection
strengths (i.e., the sum of all entries in the structural connectivity
matrix), but destroyed the relationship between the connection
strength and the corresponding fiber length. This was achieved by
randomly permuting the entries of the structural connectivity
matrix and calculating the antero-posterior gradient value as
described above; this was repeated until the gradient was
similar (within a tolerance) to the target value. Since the
corresponding fiber length matrix was kept fixed, any relation
between connection strength and distance was destroyed. Hence
stronger connection strengths no longer corresponded to longer
fibers on average.

To determine the direction of propagation of SO up/down state
transitions along the antero-posterior axis, we first computed the
proportion of regions in the down state as a function of time. The

down states were identified by thresholding the excitatory
rE(t) ≤ θ · max(rE(t)), with θ = 0.01 for the aLN and θ =
0.2 for the Wilson-Cowan model at every time step. Subsequently,
we applied a 0.5–2 Hz bandpass filter to the resulting time series,
computed the Hilbert transform, and identified the transition phase of
a node as the phase of the Hilbert transform at the time point at which
the node transitioned from the up (down) to the down (up) state.
Phases were averaged across all transitions of each node. We then
computed the Pearson correlation coefficient between the average
transition phase and the node coordinate along the antero-posterior
axis. Positive (negative) values of the correlation between the up-to-
down transition phases and the node coordinates indicate a
preferential antero-posterior (postero-anterior) direction of
propagation, and vice versa for the down-to-up transitions. Note,
the Equations 1–3, 5–11 here are provided for completeness of
the methods.

2.4 Manipulation of short- vs. long-range
connection strengths

We collected all pairs (n, ~n),
n, ~n � 1, . . . , N, N ∈ {100, 200, 500}, of indices of nodes
connected by short-range connections in set SN, and of nodes
connected by long-range connections in set LN (see Figure 2,
panel on the top left). A connection was marked as short range,
if the corresponding element Dn~n of the delay matrix D was
smaller than 50 mm.

We identified the subjects with the weakest short- and the
strongest long-range connections

minsubject ∑
n,~n( )∈SN

Csubject

n~n

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

maxsubject ∑
n,~n( )∈LN

Csubject

n~n

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

and retained the corresponding connectivity matrices Cemp
weak−long,

Cemp
strong−long (see Figure 2, panel in the middle of the top row).
To artificially manipulate two matrices beyond the empirically

observed variability (see Figure 2, panel in the top right), we used the
factors α � 0.1 and γ � α |SN|

|LN |, where | · | denotes the cardinality, to
manipulate the connectivity strengths into a biophysically
exaggerated disproportion by

Cart
strong−long � C − αCshort + γClong

Cart
weak−long � C + αCshort − γClong.

Cshort (Clong) denotes the connectivity matrix between nodes
connected by short-range (long-range) connections and with the
strength for nodes connected by long-range (short-range)
connections set to zero. For the non-zero entries, we used the
corresponding elements of the averaged connectivity matrixCn~n, i.e.,

Cshort � Cn~n, for n, ~n( ) ∈ SN

0, otherwise,
{

Clong � Cn~n, for n, ~n( ) ∈ LN

0, otherwise.
{
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Thus we ensured that the total sum of connections strengths
remained constant, i.e., ∑N

n,~n�1Cn~n � ∑N
n,~n�1C

art
n~n
. Figure 2 (plots on the

bottom right) shows the correlations between fiber-length and -strength
for the empirical and for the manipulated connectivity matrices. There
was no qualitative change. We also ensured that there was no qualitative
change in the distribution of node degrees (not shown).

Furthermore, we individually inspected the total sum over the
short- and long-range connections of Cart

strong−long to confirm that
long-range connectiones were strengthened, that short-range
connections were weakened, and that the difference between the

two sums was enhanced (i.e., |∑N
(n,~n)∈SN

Cart
n~n,strong−long−∑N

(n,~n)∈LN
Cart
n~n,strong−long|> |∑N

(n,~n)∈SN
Cemp

n~n,strong−long −∑N
n,~n∈LN

Cemp

n~n,strong−long|, where | · | denotes the absolute value). A similar

construction was conducted for Cart
weak−long.

2.4.1 Correlation coefficient between
spatial modes

We conducted numerical simulations for four locations in the
state space covering unistability, multistability, fast and slow
metastable patterns (see Supplementary Figure SA13).
Simulations were performed for both models with and without
adaptation, for the averaged connectivity matrix C, for the four
connectivity matrices Cemp

strong−long, Cemp
weak−long, Cart

strong−long, and
Cart
weak−long, and for all resolutions. Then, we computed the

velocity vector fields for each resultant activity, concatenated
them per setting, and applied SVD as described in Section 2.3.5.
This resulted in five matrices V,Vemp

strong−long, V
emp
weak−long, V

art
strong−long,

and Vart
weak−long of the spatial modes per setting. To identify the

similarity between spatial modes, we computed the Person
correlation coefficient between each row of VT and each row of
the matrices Vemp

strong−long, V
emp
weak−long, V

art
strong−long, and Vart

weak−long:

Corr V,Vtype
strength( ) for type ∈ emp, art{ },

strength ∈ strong − long, weak − long{ }.
This was done for each selected state, with and without adaptation,
for the aLN and the Wilson-Cowan models, and for all three
parcellations. The resulting correlation coefficient matrices have
values ranging between −1 and 1. Values close to zero indicate little
to no similarity, while values closer to 1, −1 indicate high
similarity.

2.4.2 Coherence values

As in Section 2.3.6, we conducted numerical simulations of SOs
for the aLN (parameters, see Supplementary Table SA4) and the
Wilson-Cowan model (parameters, see Supplementary Table SA5)
using the average connectivity matrix C, as well as the modified
matrices Ctype

strength for type ∈ {emp, art}, strength ∈ {strong −
long,weak − long}.

For each numerical simulation, we computed, analogously to
Liang et al. (2023), the magnitude-squared coherence

cohn~n f( ) � Pn~n f( )2
Pn f( )P~n f( ), with cohn~n f( ) ∈ 0, 1[ ],

where Pn(f) and P~n(f) are the power spectra over temporal
frequencies of the firing rates of the excitatory population for the
nodes n and ~n and Pn~n(f) is the corresponding cross-power
spectrum. A value close to one indicates high correspondence
between nodes (i.e., the nodes are highly correlated) for
frequency f and vice versa for values close to zero.

We separately consider the coherence between nodes connected
with a short range (i.e., all pairs (n, ~n) of nodes from SN) versus
nodes connected with a long range (i.e., all pairs (n, ~n) of nodes from
LN) connection.

FIGURE 2
Summary of the procedure used to manipulate and investigate the effect of weaker versus stronger long-range connection strengths on the
network dynamics. For an explanation, see text.
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3 Results

3.1 State space

Figures 3, 4 show the results of the state space analysis for the
whole-brain aLN and Wilson-Cowan models. In line with previous
results for the aLN model (Cakan et al., 2022), we identify several
dynamical regimes: a down-state, where all network nodes display
no or low activity; an up-state, characterized by constant high
firing rate; an oscillatory region LCEI, where the activity oscillates
between a minimum and a maximum value with frequencies
>10 Hz (see dominant frequencies in Supplementary Figure
SA3 for the aLN; Supplementary Figure SA4 for the Wilson-
Cowan model); a bistable regime between up- and down-states;
and a slow oscillatory region LCEA with frequencies <2 Hz (see
bottom panels in Supplementary Figure SA3 for the aLN;
Supplementary Figure SA4 for the Wilson-Cowan model) in the
case with adaptation. Similar to Cakan et al. (2022), we observe a
very small bistable region for the aLNmodel where an up-state and
the fast LCEI coexist. We also find a small bistable region where an
up-state and the slow LCEA coexist. For both whole-brain models,
these states are “inherited” from the single-node models (shown in
Supplementary Figure SA1), although only very few points

displaying bistability between oscillatory and up states can be
identified here (purple arrow in Supplementary Figure SA1).

Our results show that, for both models, the state space remains
generally robust to changes in network resolution, but there are
some differences between the aLN and the Wilson-Cowan
implementations. For the aLN model, we observe a region of
bistability between the down-state and the LCEI in the case
without adaptation, respectively a heterogeneous oscillation
(different oscillation frequencies either within the same node or
across nodes) in the case with adaptation for the network model
with 100 nodes (see Figure 5 for an example time series of a nested
slow-fast oscillation). Examining the top row in Figure 3 reveals
that the region of bistability between the down state and the LCEI

in the case of no adaptation expands as the number of nodes in the
network increases. Inspecting the average dominant frequency, as
well as the standard deviation of the dominant frequency of each
node (bottom panels in Supplementary Figures SA3, 5) confirms
that, for the case with adaptation, this region corresponds to an
expanding regime of heterogeneous slow-fast oscillations
across nodes.

For the Wilson-Cowan model, we also find a region of
heterogeneous oscillations in the case with adaptation (example
time series in Supplementary Figure SA2), which expands with

FIGURE 3
Slice of state space of the whole-brain aLNmodel without (b = 0 pA; top row) and with (b = 20 pA; bottom row) adaptation for a brain network with
100 (left column), 200 (middle column), and 500 (right column) nodes spanned by the external input currents to the E and I populations. In every panel,
the horizontal axis shows the external input current to the excitatory population (μext

E ) and the vertical axis shows the external input current to the
inhibitory population (μext

I ). The heatmap shows the maximum excitatory firing rate rE (Hz) across all nodes in the network. State transition
boundaries are indicated by solid white lines for the fast (LCEI) and slow (LCEA) oscillatory regions and by solid grey lines for the bistable regimes (bi -
bistability between up and down states; biosc - bistability between LCEI and the down state). The white dashed lines indicate the border between the two
oscillatory regions. Up state (up) and down state (down) regions are also marked. het indicates the areas where we identified heterogeneous slow-fast
oscillations (for b = 20 pA). Model parameters are given in Table 1.
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increasing network resolution (bottom row in Supplementary
Figures SA4, 6). However, in contrast to the aLN model, this
region emerges at the border between the LCEI and LCEA and no
regime of bistability between the down state and the LCEI appears.

3.2 State classification

The analysis methods presented in Section 2.3.2 allowed us to
identify four types of states (unistable, multistable, fast metastable,

FIGURE 4
Slice of state space of the whole-brainWilson-Cowanmodel without (b= 0; top row) andwith (b= 60; bottom row) spike-triggered adaptation for a
brain network with 100 (left column), 200 (middle column), and 500 (right column) nodes spanned by the external input currents to the E and I
populations. In every panel, the horizontal axis shows the external input current to the excitatory population (μext

E ), and the vertical axis shows the external
input current to the inhibitory population (μext

I ). The heatmap shows the maximum value of rE across all nodes in the network. State boundaries are
indicated by solid white lines for the fast (LCEI) and by dotted white lines for the regimes of slow (LCEA) oscillations. Solid grey lines denote the boundary
of the regime of bistability between up and down states (bi). het indicate the areas where we identified heterogeneous slow-fast oscillations. Up state (up)
and down state (down) regions are also marked. All model parameters are given in Table 2.

FIGURE 5
Example time series of the firing rate rE of one randomly chosen node (black line) of thewhole-brain aLN network at several points in the state space:
(A), (C), and (E) illustrate bistability between the down state and the fast oscillatory region LCEI using a decaying stimulus (red) delivered to all nodes in the
network (μext

E = μext
I = 0.0 mV/ms, b = 0 pA for all three parcellations); (B), (D), and (F) illustrate coexisting slow and fast oscillations for the case of

adaptation (b = 20 pA for all three parcellations, μext
E = 0.08 mV/ms for the 100 node resolution, μext

E = 0.04 mV/ms for 200 and 500 nodes, μext
I =

0.0 mV/ms for all three parcellations). All other model parameters are given in Table 1. The light (top) and dark green (bottom) insets display enlarged
intervals of the time series of the firing rate rE (black) and, in case of finite adaptation, the current IA (blue) for the chosen node, and also show the power
spectrum for the brain network with 500 nodes averaged across all nodes.
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and slow metastable) across the LCEI and LCEA regions. Figure 6
shows examples of recurrence plots and interhemispheric cross-
correlograms for a multistable, a fast metastable, and a slow
metastable state. The recurrence plots allow us to identify the
temporal structure of these states, with the multistable state
displaying a clear repetitive pattern over the 20 s of activity
shown here (Figure 6A), the fast metastable state displaying
rapid state switches, as evidenced by the noisy recurrence plot
in Figure 6B, and the slow metastable state showing states which
persist for a longer duration, as demonstrated by the appearance of
more defined clusters (Figure 6C). The cross-correlograms
additionally allow us to highlight the spatiotemporal properties
of these states. As mentioned in Roberts et al. (2019), if short
incoherent waves dominate, we would expect the interhemispheric

coherence to be close to zero across all explored time lags and time
points, whereas waves with longer wavelengths would display
specific signatures composed of alternating high and low
correlation values as a function of the time lag that would
persist for a longer time. In the example highlighted here, the
multistable state shows repeating spatiotemporal patterns for both
initializations. In the fast and slow metastable cases (r.h.s in
Figures 6B, C), we observe signatures of wave patterns which
remain stable for a few hundred miliseconds (in the fast
metastable case) up to a few seconds (in the slow metastable
case), before rapidly desynchronizing for brief periods of time
and transitioning into other wave patterns. To further highlight the
difference in state durations between the fast and the slow
metastable case, we computed the distribution of state durations

FIGURE 6
Examples ofmultistable (A), fastmetastable (B), and slowmetastable (C) states of the aLNmodel with 100 nodes andwithout adaptation (b � 0pA). In
each subplot, the left panel shows the recurrence plots, and the right panel the corresponding cross-correlograms. The interhemispheric cross-
correlations (cc, see Section 2.3.4) range from −1 (blue) to 1 (red). For themultistable example (A), results are shown for two different random initializations
of the network (top and bottom rows). Parameters (positions in state space are shown in the inset on the top left): (A) - (μext

E = 1.3 mV/ms, μext
I =

0.8 mV/ms), (B) - (μext
E = 0.4 mV/ms, μext

I = 0.1 mV/ms), (C) - (μext
E = 0.9 mV/ms, μext

I = 0.0 mV/ms). The simulation time was 20 s. All other parameters are
given in Table 1.
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identified for the fast and slow metastable points shown in Figure 6
(Supplementary Figure SA9), where we observe longer state
durations (up to a few seconds) in the slow compared to the
fast metastable case.

Results of the state classification for the entire slice of state space
are summarized in Figure 7 (aLN model) and Figure 8 (Wilson-
Cowan model). Qualitatively, the results are similar across models
and resolutions, with all four regimes being present in all cases, and
with the fast metastable regime occupying the largest portion of the
LCEI, while being absent from the LCEA region (which is dominated
by unistable patterns). However, some quantitative differences are
apparent. For the aLN model without adaptation, both the
multistable and slow metastable regimes emerge on the right side
of the LCEI region close to the up state. For the Wilson-Cowan
model, however, they appear on the left side of this region close to
the down state.

As metastability is usually identified based on the mean and the
standard deviation (SD) of the Kuramoto order parameter
(metastability corresponds to a high standard deviation of the
Kuramoto order parameter), we report these results for
completeness in Supplementary Figures SA7, 8. The results show
high synchrony (mean Kuramoto ~1) and low metastability (SD of
Kuramoto ≤0.1) in the areas identified above as uni/multistable,
lower synchrony (mean ~0.4–0.7) and higher metastability (SD
~0.1–0.2) for the corresponding slow metastable points, and
lowest values for the corresponding fast metastable points (mean
and SD <0.1). Given that the Kuramoto order parameter is only

sensitive to global states and misses local synchrony and that the fast
metastable dynamics are also more local, these results are not
surprising.

3.3 Spatial modes of activity

Our analysis of the spatial modes of activity reveals that, in
general, the modes which explain a larger proportion of variance of
the activity (percentages given in Supplementary Tables SA1, 2) in
the concatenated data (obtained by concatenating the velocity vector
fields computed for each point in the oscillatory regions, with time
steps in rows and nodes in columns) consist of large-scale waves
traveling mainly along the horizontal and dorso-ventral axes. The
results are summarized in Figures 8A,B for the aLN model and in
Supplementary Figures SA12a, b in the appendix for the Wilson-
Cowan model. For example, modes 1 and 4 in the aLN model
(Figure 8A) and modes 2 and 4 in the Wilson-Cowan model
(Supplementary Figure SA12a) exemplify large-scale waves with
coherent horizontal and dorso-ventral directions of propagation
encompassing approximately three-quarters of the brain. Another
example of a large-scale wave pattern is represented by the
hemispheric-segregated pattern present in the Wilson-Cowan
model (mode 3 in Supplementary Figure SA12a) and in the aLN
model (mode 9 in Figure 9). Interestingly, these modes explain
similar proportions of variance (1.78% in the aLN vs. 1.44% in the
Wilson-Cowan model). In contrast, modes explaining less variance

FIGURE 7
Classification of states inside the oscillatory regions for the aLN whole-brain model in the case without (b = 0 pA; top row) and with (b = 20 pA;
bottom row) adaptation for a parcellation with 100 (left column), 200 (middle column), and 500 (right column) nodes. The slice of state space is spanned
by the external input current to the E and I populations. The white solid contour marks the two oscillatory regions, and the white dashed lines indicate the
approximate border between them.
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within each model and each resolution usually capture more
complex patterns of propagation. For example, in both models,
mode 13 (Figure 9A, Supplementary Figure SA12b) displays smaller
clusters of arrows with the same color and direction (i.e., same
horizontal and dorso-ventral directions), as well as more
neighboring arrows with different colors and directions
compared to the large-scale modes indicated above. While we
identify similar modes in both models (see above), the overall
proportion of variance explained by the 15 first modes differs
(30.28% for the aLN vs. 9.19% for the Wilson-Cowan model with
adaptation). There is also a tendency towards decreased explained
variance per mode with increasing model resolution, as well as
differences in the percentages of variance explained by the dominant
modes between the models with and without adaptation
(Supplementary Tables SA1, 2).

To verify whether the modes obtained from the
decomposition of the concatenated data can be reliably
identified in the individual velocity vector fields computed for
each parametrization in the oscillatory regions LCEI and LCEA,
we projected these modes and investigated the explained
proportion of variance for the state types identified in Section
3.2 (i.e., fast metastable, slow metastable, uni/multistable).
Figure 9C, Supplementary Figure SA12c show that, in general,
the most dominant five modes, representing global propagation
patterns, explain the largest proportion of variance in individual
states regardless of state type. Nevertheless, the largest
proportion of variance is explained in the stable states ( > 25%

explained by the first five modes), followed by the slow (> 10%),
and the fast metastable states (<10%). We also observe that the
first dominant mode identified in the concatenated data does not
necessarily capture the largest proportion of variance in
individual states (Figure 9C in contrast with Supplementary
Figure SA12c), suggesting that while this pattern of activity is
consistently present across states, it may not be dominant in
all of them.

As a further example, we examined the spatial modes of
activity in the LCEA region, obtained from the data
concatenated over all points identified as unistable and with an
average dominant frequency ≤2 Hz, for the aLN and Wilson-
Cowan models with 100 nodes and adaptation. Supplementary
Figures SA10, 11 confirm the presence of large-scale activity
patterns traveling along the horizontal and dorso-ventral
directions similar to the ones described above. For example,
mode 1 in the aLN model and mode 7 in the Wilson-Cowan
model are similar to modes 9, respectively 3, described above,
whereas modes 2, 3, and 4 in both models are similar to modes
1 and 4, respectively 2 and 4, described above. Furthermore, we
also observe that most spatial modes contain a small component
propagating along the antero-posterior direction (for example, the
arrows pointing anteriorly/posteriorly in the first two modes of
both models, which is in agreement with previous reports
regarding the antero-posterior direction of SO propagation
(Cakan et al., 2022; Massimini et al., 2004). In both cases, the
modes obtained from the decomposition of the unistable patterns

FIGURE 8
Classification of states inside the oscillatory regions for the Wilson-Cowan whole-brain model in the case without (b = 0; top row) and with (b = 60;
bottom row) adaptation for a parcellation with 100 (left column), 200 (middle column), and 500 (right column) nodes. The slice of state space is spanned
by the external input current to the E and I populations. The white solid contour marks the two oscillatory regions, and the white dashed lines indicate the
approximate border between them.
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in the LCEA region of slow oscillations explain a significantly
higher proportion of variance compared to those obtained from
the decomposition of the data concatenated over all state types in
both oscillatory regions: 73.52% vs. 30.28% for the aLN and 58.99%
vs. 9.19% for the Wilson-Cowan model, with the first mode
explaining 26.71% of the variance (aLN) and 24.33% (Wilson-
Cowan) vs. 9.31% and 3.72%.

3.4 Similarity of spatial modes of imbalanced
short-versus long-range
connection strengths

To identify the impact of the balance between short- and long-
range connection strength, we compared the 10%-most dominant
spatial modes (i.e., the spatial modes that explain the largest amount
of variance in the spatial organization of activity patterns) of the
activity induced by empirically informed and artificially
manipulated connectivity matrices. We simulated both models
for parameters corresponding to all four types of stability per
resolution (see Supplementary Figure SA13 for the corresponding
locations in state space). We used the average connectivity matrix C
whose resulting spatial modes are collected in the columns of V, and
compared results obtained to the results for the empirical and the
artificially enhanced matrices with weaker vs. stronger long-range
connections: Cemp

weak−long, C
art
weak−long, Cemp

strong−long, C
art
strong−long, whose

resulting spatial modes are collected in Vemp
weak−long, V

art
weak−long,

Vemp
strong−long, V

art
strong−long, respectively. Then we estimated the

distribution of the values of the correlation coefficients
Corr(V,Vtype

strength) for type ∈ {emp, art}, strength ∈ {weak −
long, strong − long} where we normalized each distribution by
its maximum value to ensure the option of visual comparability.
Results are shown in Supplementary Figure SA16 for the aLN, and in
Supplementary Figure SA17 for the Wilson-Cowan model. Means
and standard deviations of the distributions are given in Table 3 for
the aLN and in in Supplementary Table SA3 for the Wilson-Cowan
model. Additionally, we show the resulting correlation coefficient
matrices for all settings without adaptation in Supplementary Figure
SA14 (aLN model) and A15 (Wilson-Cowan model).

All distributions are centered around a value of zero. However,
we notice that the standard deviations (Table 3) for the fast
metastable states are the largest (indicating higher similarity
between spatial modes). Due to the model systems experiencing
a higher amount of metastable attractors, inducing fast switching
between activity states, they are inherently less stable compared to
unistable or slow metastable states. Only for the cases of
unistability with adaptation at resolutions N ∈ {100, 200} they
are not largest. This is because the activity for those settings
converges to a spatially homogeneous unistable state for all
matrices, having a diagonal of Corr(V,Vtype

strength)nn ≈ 1, and
Corr(V,Vtype

strength)n~n ≈ 0, for n ≠ ~n. Overall, the similarity is
comparably low for all settings, but lower on average than for
the aLN model (see averages over standard deviations in Table 3;
Supplementary Table SA3).

FIGURE 9
(A) First 15 modes obtained from the singular value decomposition of the velocity vector fields in the whole-brain aLN model with 100 nodes and
spike-triggered adaptation (b = 20 pA). Modes are ordered in decreasing order of explained variance. (B) Left panels: Modes explaining the largest
proportion of variance for the whole-brain aLNmodel without spike-triggered adaptation (b = 0 pA) with a parcellation of 100, 200 and 500 nodes. Right
panels: Same as before, but with spike-triggered adaptation (b = 20 pA) and with a parcellation of 200 and 500 nodes. The arrows represent the
orientation in the xy plane (left-right and antero-posterior directions) and are color-coded according to the direction along the z-axis (dorso-ventral
direction). (C) Percentage of explained variance (mean ± standard deviation across points in the parameter space) of the first 15modes identified in (A) for
the aLN model with 100 nodes and spike-triggered adaptation (b = 20 pA). The percentage is shown for the different pattern types identified in Section
3.2: uni/multistable (orange), fast metastable (blue), and slow metastable (green).
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Nonetheless, we see a higher similarity of spatial organization
in states of stability that promote more local, complex activity
patterns rather than the global, synchronized patterns that appear
in unistable or multistable states. While the states showing the
broadest widths differ between both models (multistable states for
the Wilson-Cowan model vs. unistable or fast metastable states for
the aLN model), the overall low similarity in the spatial
organization between activity patterns caused by the average
connectivity matrix vs. by the connectivity matrices with weaker
and stronger long-range connections generalizes across all
resolutions, both model types and all settings. Finally, we see
that the results of the comparison between the spatial
organization of activity patterns induced by the different
connectivity matrices are predominantly the same for the
artificial versus empirical connectivity matrices for both models
and all resolutions.

3.5 Effect of the antero-posterior gradient of
structural connectivity strengths on sleep
SO propagation

The results presented above show that for both the aLN and
Wilson-Cowan models dynamical features remain generally robust
to changes in the parcellation. Also, the phenomenological Wilson-
Cowan model is capable of producing qualitatively similarly
complex spatiotemporal dynamics as the biophysically realistic
aLN model. In the current section, we explore whether this
remains to be the case when both models are applied to the
phenomenon of sleep SO propagation (Cakan et al., 2022). In
particular, we examine whether the relation between the antero-
posterior structural connectivity gradient and the propagation of
sleep SOs as waves of silence from anterior to posterior brain areas
remains present in both models and for all parcellations.
Furthermore, we test whether changes in the strength of this
connectivity gradient have a causal effect on the direction of
propagation of SOs.

Figure 10 shows that the relation reported in Cakan et al. (2022)
is present in both the aLN and Wilson-Cowan models for all three
network resolutions. Furthermore, decreasing the gradient strength
along the antero-posterior axis causes a reversal of the direction of
SO propagation, with down states being initiated preferentially in
posterior areas and traveling towards the front of the brain.
Increasing the gradient strength increases this preference to
propagate from anterior to posterior areas. In the Wilson-Cowan
model, however, the relation between node degree and the transition
phase decreases with the increase in resolution, as the magnitude of
the correlation coefficients decreases at higher resolutions. This
could potentially be caused by the fact that in the Wilson-Cowan
model the adaptation strength b and adaptation time constant τA
had to be drastically increased at higher resolutions in order to
observe SOs.

To ensure that the results presented in Figure 10 are not due to
changes in the underlying network topology induced by the specific
gradient manipulation method, we employ a control model in which
we preserve the total sum of connection strengths in the network
and destroy the relation between fiber length and connection
strength (cf. Section 2.3.6). Supplementary Figure SA19 shows
that the relationship described above remains present in the aLN
model at all three network resolutions. In theWilson-Cowan model,
destroying the relation between the distance and connectivity
strength destroys and even reverts the propagation direction of
SOs, suggesting that the model is more sensitive to changes in the
particular structure of the connectome.

3.6 Stronger long-range connections lead to
an increase in coherence as observed
empirically

Motivated by the findings that show that rare long-range
connections play an effective role in the cascade of information
processing (see Deco et al., 2021b) and that stronger long-range
connections correlate with enhanced coherence between cortical

TABLE 3 Average standard deviation (σ) and mean (μ) of the density estimates of Supplementary Figure SA16 for the aLN model, per type of stability, with
and without adaptation, and per resolution. Density estimates of broadest width per resolution are highlighted with and without adaptation in bold.

σ μ

Resolution 100 200 500 100 200 500

Stability

multistable no adaptation 0.016 0.012 0.003 0.009 0.001 −0.002

adaptation 0.011 0.003 0.001 0.006 −0.002 0.001

unistable no adaptation 0.019 0.016 0.005 −0.019 0.005 0

adaptation 0.091 0.036 0.003 0.097 0 −0.001

fast metastable no adaptation 0.061 0.025 0.007 −0.007 0.001 0.001

adaptation 0.069 0.029 0.01 −0.009 0.002 0.001

slow metastable no adaptation 0.028 0.009 0.004 −0.026 0.002 −0.001

adaptation 0.031 0.015 0.007 −0.036 −0.002 −0.004

averages 0.04075 0.018125 0.005
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regions over lower frequency ranges (Liang et al., 2023), we
investigated how changes in the strength of long- versus short-
range connections influence waves of SOs.

Since long-range connections are assumed to play a crucial role in
the propagation of global patterns, we assume that the stronger the
long-range connections, the higher the coherence over lower frequency
values induced by slow oscillations. We therefore compared results
obtained using the matrices Cstrong−long, Cweak−long, and C.

Figure 11; Supplementary Figure SA19 show the average power
spectra and coherence values for the aLN and the Wilson-Cowan
models for three different parcellations. In Figure 11A we see that
for all parcellations the dominant temporal frequencies are <1Hz and
the power spectra of the simulated SOs align with the power spectra of
empirically recorded SOs (see the supplementarymaterial of Cakan et al.
(2022); Supplementary Figure S5b) across all models and resolutions.
Nonetheless, small differences between the power spectra for the
different parcellations caused by the three different connectivity
matrices Cstrong−long, Cweak−long, and C are more pronounced for the
empirical matrices, which is confirmed by values for the dominant
temporal frequency, given in Supplementary Table SA6. Furthermore,

the power for lower frequencies decreases with increasing resolution, in
particular for the stronger long-range connections (blue line), see
Supplementary Table SA6. The decrease in power is less pronounced
in the artificial compared to the empirical case. We argue that this is
caused by thematrixC being an average, hence the connection strengths
are more evenly distributed rather than promoting sparse connectivity
profiles, unlike for the empirical matrices Cemp. According to our
method of manipulation, the connection strengths in the artificially
manipulated matrices are also more evenly distributed than for the
empirical matrices.

In the artificial case, we see that the change of coherence over
frequency for the aLN (see Figure 11B) and for the Wilson-Cowan
model (see Supplementary Figure SA20b) agrees with our expectation.
The coherence over low frequencies is higher for SOs induced by
Cstrong−long (blue lines) than Cweak−long (green lines), both between
nodes connected with short-range (solid lines) and long-range (dotted
lines) connections. This is also observable in the corresponding
coherence values given in Table 4, where we can see that, in the
artificial case, the coherence values are higher at f � 0.5 Hz for the
SOs induced by Cstrong−long compared to Cweak−long. With an increase

FIGURE 10
Correlation coefficient between the mean transition phases of the nodes from the up to the down state (blue) and vice versa (orange) and the node
coordinates along the antero-posterior axis as a function of the percentage by which the connection strengths of the most anterior node were changed.
The left (right) column shows results for the aLN (Wilson-Cowan) models with 100 (top row), 200 (middle row), and 500 nodes (bottom row). 0%
corresponds to the unchanged structural antero-posterior gradient where the value of the y-slope was not changed, −100% indicates that the
gradient was enhanced, whereas +100% indicates that the gradient was reversed. Model parameters are given in Supplementary Tables SA4, 5.
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in resolution, we see an alignment of coherence values over the entire
frequency range between nodes connected with short- and long-range
connections due to an overall decrease of coherence values between
nodes connected but short-range connections (see Figure 11B;
Supplementary Figure SA20b).

The results of the Wilson-Cowan model agree mostly with the
results of the aLN, however, the dominant temporal frequency varies

more strongly depending on the parcellation and the used connectivity
matrix, see Supplementary Table SA7. The coherence values are
consistently larger for waves of SOs induced by Cstrong−long in the
artificial case, see Supplementary Table SA8.

We observe the expected effect in neither model for the
empirical matrices. We argue that this is due to the fitting
process applied to the averaged matrix C whose distribution of

FIGURE 11
Power and coherence as a function of frequency for SO activity generated by the aLNmodel. Results are shown for the average connectivity matrix,
C, (coral), and the connectivity matrices with weaker, Cweak−long , (green) and stronger, Cstrong−long , (blue) long-range connections. Every column
corresponds to one parcellation. (A) Averaged power spectra on a logarithmic scale with standard deviation for each activity induced by the three
connectivity matrices. The top (bottom) row shows the results for the artificially changed (empirically selected) connections. (B) Corresponding
coherence values plotted separately for nodes that are connected through short- (solid lines) or long-range (dashed lines) connections. Model
parameters are given in Supplementary Table SA4. Averages over standard deviation given in bottom row.

TABLE 4 Maximum coherence values for non-zero frequencies for the metastable states of the aLNmodel for all settings shown in Figure 10B. Both for the
artificial and the empirical case, values in bold indicate the highest coherence values per parcellation, per set of nodes connected on a short-range (long-
range). The corresponding frequencies were 0.5 Hz for all settings. Parameters are as for Figure 10.

Property coh(fmax)

Resolution 100 200 500

Distance short long short long short long

artificial C 0.69 0.40 0.44 0.19 0.29 0.33

Cweak−long 0.64 0.26 0.45 0.16 0.24 0.24

Cstrong−long 0.73 0.52 0.49 0.28 0.28 0.31

empirical C 0.69 0.40 0.44 0.19 0.29 0.33

Cweak−long 0.69 0.41 0.43 0.19 0.21 0.22

Cstrong−long 0.68 0.34 0.35 0.13 0.14 0.11
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connection strengths is more similar to the artificially manipulated
connectivity matrices than to the empirical matrices.

Overall, models and resolutions agree with the expected increase
in coherence values over low frequencies for the artificially
manipulated matrices, but do not display the same effect for the
empirically selected matrices.

4 Discussion

In this work, we investigated whether we can employ generalized
whole-brain models for the study of complex brain dynamics or
whether the latter are significantly influenced by the choice details of
the dynamical system and the parcellation. To that end, we compared
a biophysically realistic model (aLN) and a phenomenological model
(Wilson-Cowan) with similar state spaces and bifurcations at three
network resolutions (the Schaefer parcellation scheme with 100, 200,
500 nodes). Overall, we found that the results remain relatively robust
to changes in both model and parcellation, but dynamics at detail
appear sensitive to these changes, indicating the need for careful
model adjustment depending on the application.

We started our analysis with the exploration of the coarse-grained
structure of the dynamical landscape. We found that both the aLN and
the Wilson-Cowan model display a down state of no or low activity, an
up state of constant high activity, a fast limit cycle, where the activity
oscillates between low and high values with frequencies > 10 Hz, a
bistable regime, where the activity remains either in a stable up or a stable
down state depending on the initial condition in the case with and
without adaptation, and a slow limit cycle, where the activity oscillates at
low frequencies (<2 Hz) in the case of finite adaptation. The state
boundaries remained relatively robust to changes in network resolution
and are in agreement with those previously reported in the literature
(Cakan et al., 2022). Nevertheless, we reported the emergence of a region
of bistability between the down state and the LCEI in the case without
adaptation in the aLN model, respectively of heterogeneous oscillations
in the case with adaptation for both models. This is not present for a
single node and it enlarged with increasing network resolution. We
hypothesize that this is due to the fact that in the parcellations with
higher resolutions we observe stronger local connection strengths
(Roberts et al., 2019), which in turn favor the emergence of more
complex dynamics, such as heterogeneous oscillations.

In a second step, we classified the oscillatory network states. We
identified four types of states, namely, unistable, multistable, slow, and
fastmetastable states, in bothmodels and at all resolutions, and observed
quantitative changes with respect to the distribution of each type of state
in the oscillatory regimes both across models and across resolutions
(Figures 7, 8). Our detailed analysis of the types of oscillatory network
states revealed that complex wave dynamics emerge even at low network
resolutions and in relatively simple phenomenological models.
Furthermore, the detailed mapping of the oscillatory regimes
presented here can provide useful information for further studies
aiming to explore induced state transitions, such as, for example,
through the application of electrical stimulation (for example, see
Ladenbauer et al. (2017); Ladenbauer et al. (2023)).

We explored large-scale patterns through the spatial modes
obtained from singular value decomposition. We found that
results are qualitatively similar across models and resolutions, but
that specific patterns emerge depending on either model or

resolution. Given that recent work (Das et al., 2024; Mohan
et al., 2024) investigating the relation between spatiotemporal
wave patterns and cognitive function has shown an association
between specific patterns and specific behavioral processes, future
modeling work in this direction should take into account the
variability introduced by model and parcellation when exploring
such phenomena. In alignment with the variability introduced by
the model components investigated in this study, Roberts et al.
(2019) additionally emphasize the importance of delays for enabling
the emergence of complex wave patterns in whole-brain models. It
is important to note that the conduction velocities used in this
study, while in agreement with the work of Cakan et al. (2022), are
higher compared to those of Petkoski and Jirsa (2022). Given that
axonal delays can play a significant role in the dynamics of
complex oscillatory networks, future work should investigate
the effects of decreasing the conduction velocity on the
emergent wave patterns.

We showed that changes in the balance of connectivity strengths
between short- and long-range connections alter the spatial
organization in states exhibiting global patterns (multi- and
unistable) as well as complex patterns (fast and slow metastable), a
result which stays predominantly consistent across models,
resolutions, parametrizations, and states (see Supplementary
Figures SA16, 17). Artificially manipulating the long- versus short-
range connection strengths beyond empirically observed variability
had no significantly different effect to the loss of similarity between the
spatial organization of activity patterns induced by the artificially
manipulated and the empirical connectivity matrices. Furthermore,
we noticed that the strongest similarity in the spatial modes collected
from the activity patterns caused by the different connectivitymatrices
was observable in the fast and slowmetastable states in which complex
local activity patterns emerge (see Kelso, 2012).

Furthermore, in the specific case of sleep SOs, we have shown that
the aLN model is robust to changes in network resolution and even in
parcellation scheme (aswe used the original parametrization introduced
in Cakan et al. (2022) with only minimal parameter adjustments). In
this case, we were also able to demonstrate that changes in the antero-
posterior structural connectivity gradient have a causal effect on the
propagation of SOs. In contrast, the Wilson-Cowan model required
optimization for the Schaefer parcellation scheme with 100 nodes and
an additional adjustment of its parameters for higher resolutions. Here,
manipulating the antero-posterior gradient of node degrees showed a
robust causal effect only in the case where the model parameters were
explicitly fitted to data rather than adjusted to support SO activity. The
model also displayed high sensitivity to the changes in of the
relationship between connection strength and distance.

For understanding the impact of changes in the strength of
short- vs. long-range connections on SOs, we investigated power
spectra and coherence values (see Figure 11; Supplementary Figure
SA20). For the case of artificially manipulated connectivity matrices
we found the coherence in lower frequency bands (<2 Hz) to be
higher in value for matrices with stronger long-range connections,
than for the averagedCmatrix that was used for the fitting process as
well as for Cart

weak−long. This agrees with the results of Liang et al.
(2023) who also observed an increase in coherence between cortical
regions in mice connected by stronger long-range connections. Our
results are consistent across models and resolutions, highlighting the
robustness of the temporal dynamics against model choice and
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resolution reliably aligning with empirical results under the
manipulation of their structural connectivity.

For the empirical connectivity matricesCemp we found the opposite
effect (see Figure 11B; Supplementary Figure SA20b). This could be due
to the fitting process being conducted with the averagedCmatrix. Since
the artificially manipulated connectivity profiles are based on the
averaged C matrix, they are more similar in the distribution of the
connection strengths, unlike the empirical connectivitymatrices that are
characterised by rather sparse connectivity profiles. Additionally, it is
important to highlight the fact that probabilistic tractography tends to
underestimate long-range connections due to distance-dependent
reductions in streamline likelihood (Chang et al., 2023), which
might further influence the richness of spatiotemporal dynamics
produced by whole-brain models. Nevertheless, this is an inherent
limitation of themethod, and the effect of potential mitigation strategies
remains beyond the scope of the current work.

We thus conclude that the deployment of whole-brain models for
the investigation of the coarse-grained dynamics provides results
which are fairly independent of model type and resolution. All
model variants enable the same dynamical landscape with
qualitatively similar changes in dynamical features with resolution
and with the manipulation of the connectivity profiles. In the specific
application to sleep SOs, both the phenomenological and the
biophysically realistic model show similar changes in the temporal
dynamics. While the antero-posterior directionality of simulated SOs
by the aLN corresponds to the expected changes induced by the
manipulation of the underlying antero-posterior structural
connectivity gradient, the phenomenological Wilson-Cowan model
requires a muchmore careful handling to demonstrate the empirically
observed directionality. In total, this indicates that both model types
are fairly robust to the simulation of empirically realistic temporal
features, but not so for propagation dynamics. While computational
costs increase (see Section 3.5) with resolution, the investigation of the
fine-grained dynamics of wave propagations benefits from the higher
resolution, for example, the higher resolved parcellations showed
more robustness to the manipulation of connectivity profiles (see
Section 3.4), and to the manipulation of structural gradients (see
Section 3.5). In addition, if wave propagation across cortical space
becomes the subject of investigation, a high resolution is mandatory.
Nonetheless, for the investigation of quantitative features, detailed
dynamics or specific application cases, the phenomenologicalWilson-
Cowan model requires a much more careful handling and finer
tuning, while the biophysically realistic aLN model allows the
investigation of specific features in a more reliable way.
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