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Collective dynamics of networks of excitable neurons can be considered as the
emergence of ordering from microscopic self-organization at the macroscopic
scale. Sustained oscillation can emerge on networks of neurons even if a single
neuron is dynamical excitable and non-oscillatory. Fundamental ingredients of
networks such as loops, trees, and hubs, play distinct roles in supporting,
propagating and impeding sustained oscillations. In this paper, we explore the
mechanism of collective self-sustained oscillations on neuron networks by
analyzing the functions of different topologies in shaping the oscillatory
patterns on excitable neuron networks. The Winfree loops are revealed to be
responsible for generating collective oscillations as the oscillation core, and other
neurons act as the propagating paths. The existence of large numbers of loops in
a network indicates potential competitions of the formation of collective
oscillatory dynamics. The roles of loop-loop competition in homogeneous
networks and loop-hub competition in heterogeneous networks are
extensively discussed.

KEYWORDS

self-sustained oscillation, excitable neuron network, winfree loop, loop-loop
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1 Introduction

Human brain consists of billions of neurons and may exhibit diverse ongoing and
stimulus-evoked electro-physiological activity patterns covering broad spatial and temporal
scales (Bullmore and Sporns, 2009). It is significant to understand the origins and dynamical
mechanisms underlying the complexity across various scales (Fries, 2005), which is crucial
to unveil brain functions and behaviors (Singer, 1999). Practically, these efforts are
beneficial to developing therapies for brain diseases, and designing brain-inspired
intelligent systems (Mcintosh, 2000; Seth and Bayne, 2022).

Oscillation is a very ubiquitous and common phenomenon in nature (Winfree, 1967;
Pikovsky et al., 2001), which occurs in physics, chemistry, and biology, such as human
metabolism, signal propagation, and spatiotemporal pattern dynamics (Strogatz, 1994;
Rodrigues et al., 2016). Various complex oscillatory activities in neuronal networks can be
observed at different levels (Park and Friston, 2013). Microscopically, an individual neuron
remains at its resting state in the absence of external pacings. In some cases, regular firing of
neurons has also been observed, for example, in central patterns generators that produce
rhythmic motor patterns such as breathing, walking and swimming are oscillators (Marder
and Bucher, 2001; Marder et al., 2005). Clustered and partially synchronous spikes of
neurons can be found at the mesoscopic level. At the macroscopic neural-network level,
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collective population activity manifests as oscillations with nested
and broad-spectrum distributed frequencies (Rabinovich et al., 2006;
Izhikevich, 2006).

Self-sustained oscillation in excitable media systems, especially
neuron networks, is a rather ubiquitous dynamical phenomenon,
and they are closely related to issues such as synchronization
(Pikovsky et al., 2001; Zheng, 2019), nonlinear wave propagation
(Zheng, 2004), pattern dynamics (Cross and Hohenberg, 1993;
Cross and Greenside, 2009), and the dynamics of biological
networks (Newman, 2003; Barabasi and Oltvai, 2004; Arenas
et al., 2008), where network topology plays an important role.
The basic mechanisms of oscillatory activity (in different
frequency bands) in the brain such as the interplay between
excitation and inhibition have been extensively explored (Buzsaki
and Draguhn, 2004; Tiesinga and Sejnowski, 2009; Wang, 2010).

Studies of self-sustained oscillatory dynamics are also beneficial
to spatiotemporal pattern formations. In the 1950s, Turing
discovered that activators and inhibitors with different diffusion
coefficients can spontaneously transform reaction-diffusion systems
into spatially periodic oscillatory non-uniform states (Turing, 1952).
In the 1970s (Othmer and Scriven, 1971; 1974), found that Turing
instability also plays an important role in systems with network
structures (Cross and Greenside, 2009).

Feedback is an important mechanism responsible for the
emergence of oscillatory behaviors on networks of non-oscillatory
nodes. This mechanism was originated from extensive studies of
biochemical oscillations discovered since 1960s, such as glycolysis
reactions and horseradish peroxidase reactions (Steele et al., 2006).
The mechanism of these behaviors have been unveiled by exploring
the building blocks of self-organized oscillations in gene regulatory
networks (Zhang et al, 2012; Zhang et al, 2014b; Zhang
et al., 2014a).

Neural network is composed of a large number of neurons with
synaptic connections. A single neuron is usually excitable while non-
oscillatory, which means a neuron stays in its resting state in the
absence of external stimuli. However, the emergence of self-
sustained oscillations in coupled networks composed of non-
oscillatory neurons is clearly a non-trivial collective behavior. For
an autonomous network, a topological feedback mechanism is
required for the emergence of the collective sustained oscillation.
Since each neuron in the system does not exhibit oscillatory behavior
on its own, the feedback mechanism for self-sustained oscillations
should be due to the interactions between neurons. Winfree loop is a
recurrent network topology that plays
(Winfree, 1991).

The self-sustained oscillations on neural networks can be traced
back to the 1970s, when Wilson and Cowan studied the structure of
neural networks and the impact of memory patterns (Wilson and

such a key role

Cowan, 1972). Hopfield investigated the storage and retrieval of
memory from the perspective of attractor dynamics (Hopfield, 1982;
1984). Gutkin et al. studied the switching phenomena of self-
sustained oscillations in brain memory (Gutkin et al, 2001).
With the rise of complex networks, an increasing number of
researchers have begun to study the self-sustained oscillations in
neural networks from the perspective of network dynamics,
attracting widespread attention. Roxin et al. studied self-sustained
oscillations based on small-world networks (Roxin et al., 2004).
Tinsley et al. found that typical target wave patterns can emerge in
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small-world networks composed of excitable nodes (Tinsley
et al., 2005).

The role of Winfree loops has not been well unveiled until the
proposition of the dominant phase advanced driving approach
(Qian et al.,, 2010). By using this methos, it was found that very
complex spatiotemporal patterns, such as spiral wave patterns,
target wave patterns, and patterns coexisting with spiral and
target waves, can be obtained in small-world networks. Liao et al.
(2011) found that in complex networks with random connections,
the typical target wave pattern is a disordered self-sustained
oscillatory pattern. It was further discovered that Winfree loops
extensively exist in complex networks, which can maintain self-
sustained oscillations (Qian et al., 2010; Zheng and Qian, 2018; Qian
et al,, 2019). We recently revealed that the minimum Winfree loop
determines the self-sustained oscillation on excitable Erdos-Renyi
random networks (Qian et al., 2017).

Since Winfree loop plays important roles in governing
oscillatory behaviors on neuron networks, it is valuable to make
clear some key issues of Winfree-loop dynamics. First, there exist
numerous cycles on a network, all these cycles are potential
candidates of Winfree loops. Therefore the understanding of the
stability and the competition among different oscillatory modes
becomes significant. Second, nodes on networks may exhibit highly
heterogeneous feature, the influence of this property on the stability
of Winfree loop needs to be extensively investigated. These issues
will be our focus in this paper. We will extensively investigate the
sustained oscillations on networks of excitable neurons by
concentrating on the mechanism of the emergence of self-
sustained oscillation on excitable neuron networks in the absence
of external forcing.

In this paper, we explore the topological feedback mechanism of
collective self-sustained oscillations on neuron networks by
analyzing the functions of different topologies in shaping the
oscillatory patterns on excitable neuron networks. The Winfree
loops are revealed to be responsible for generating collective
oscillations as the oscillation core, and other neurons act as the
propagating paths. It is revealed that fundamental ingredients of
networks, e.g., loops, trees, and hubs, play distinct roles in
supporting, propagating and impeding sustained oscillations. The
stability of sustained oscillation on different Winfree loops is studied
by analyzing the impact of its neighboring loops and hub nodes. The
existence of large numbers of loops in a network indicates potential
competitions of the formation of collective oscillatory dynamics.
Loop-hub competition implies that Winfree loops with low-degree
nodes are more stable on heterogeneous networks. These
fundamental results provide valuable knowledge on the working
mechanism of possible rhythmic behaviors and the corresponding
functions such as memory on neural networks.

2 Loop sustained oscillation
2.1 Loops on networks

As the emergent consequence, the topological structure of a
network may significantly influence the collective dynamics. It is

important to understand the basic building blocks of networks such
as nodes and edges in dominating the self-organization process.
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Identifying key nodes and edges provides new mechanisms to
understand the both the structural and dynamical behaviors of
a network.

Although a lot of effort has been focused on the ingredients of
networks, such as nodes and links, the most important building
blocks that support collective dynamics are essentially communities,
loops, or hubs, which provide dynamical feedback or dominance in
governing global dynamics in networks (Newman, 2003). An L-loop
is topologically defined as a closed self-avoiding path along L distinct
vertices, where L is the loop length. There exist a large number of
loops with different lengths L. Counting the number of loops is a
challenging combinatorial problem despite of its topological
simplicity (Noh, 2007; Marinari et al., 2007; Jiang et al., 2023).

Counting the number of loops and its statistics have been
computed in various real networks. Let M (L,N) denote the
number of L-loops in a network with N vertices. Bianconi and
Capocci (2003) found that the BA scale-free network exhibits a
logarithmic scaling M (L,N) ~ (InN)L. Marinari et al. (2007)
studied the loop statistics in k-homogeneous (namely, all vertices
have the same degree k) random networks and found that
M(L,N) = (k- 1)!/(2L) (Kim and Kim, 2005).

Meanwhile, loop structure promotes network function in many
ways. Node centrality defined by the cycle structure performs well in
spreading and control processes (Fan et al., 2020). Cycles are the
dominant contributors to information storage capability. Networks
with cycle structure have optimal synchronizability (Zheng, 2019).

We are concerned with the role of loops in manipulating
sustained oscillations as an emergent behavior on complex
networks and its stability by considering the competitions among
loops and other ingredients.

2.2 The Bar-Eiswirth model

We adopt the Bar-Eiswirth excitable model (Bar and Eiswirth,
1993) as the local neuronal dynamics. The evolution of the excitable
network can be written by

dy, 1 vi+b\ D
@ ;ui(l —ui)<l4i T >+k_1 ;Aid(”i _”i)> (1)

i _

el ACO R )

Here f(u) is a piecewise function and follows

1
0 u<=,
3
- 1
P =9 6750 -1y susl,
1 u>1.

The nodes are labeled by subscripts i, j=1,2,...,N. Physically
the excitable variables u and v are respectively the membrane
potential and the recovery current in the case of imitating neural
The

dimensionless parameters a, b and ¢, among which parameters a

dynamics. local excitable dynamics is governed by
and b determine the excitation threshold and ¢ regulates the time
scale between u and v variables. An excitable node is non-oscillatory

and in its rest state. Oscillation occurs if and only if an excitable node
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is persistently paced by an external stimulus that exceeds the
excitation threshold.

The interactions between the nodes on the network are realized
by the diffusion coupling term %Z;\;Ai, i (uj —u;), where A is the
adjacency matrix and defined as A;; = A;; = 1 if there is an edge
connecting nodes i and j, and A;; = Aj; =0 otherwise. The
coupling strength D determines the interaction strength between
a pair of connected nodes. k; symbolizes the degree of the i-th node.

Throughout this paper, we are concerned with the significance
of topology of networks on collective sustained oscillations. It has
been found that main conclusions obtained in the following
discussions do not depend on detailed excitable node dynamics,
e.g., the FitzHugh-Nagumo model, the Izhikevich model, or
parameters for a specific model (Qian et al., 2017). One performs
numerical simulations by integrating Equations 1, 2. Parameters of
node dynamics are fixed as a =0.84, b =0.07, ¢ = 0.04, which
correspond to excitable feature of a neuron. Variations of these
parameters do not qualitatively affect the following results. The
coupling strength is fixed as D = 1.5 for most cases of the following
discussions. Initial states of excitable nodes on the network
{ui(t=0),v;(t=0)} (i=1,2,...,N) are randomly chosen in
the range [0,1].

2.3 Sustained oscillations on a loop

Let us first study the dynamics of a single-loop network. It
should be emphasized that multiple dynamics can occur even on a
simple loop network. Here we discuss the simplest case of single
pulse on the loop.

To accomplish a sustained oscillatory wave on the loop, for
example, on the L = 10 loop shown in Figure 1a, we first cut the loop
into a chain by removing one edge, e.g., the edge e; ;9. One excites
node i = 1 by a large stimulation exceeding its threshold, where a
spiking pulse occurs at node i =1, ie., u;(t) exhibits a peak
behavior. This peak then arouses its neighbor node i =2 to the
spiking state. This excitation propagates sequentially along the
chain. Before the spike moves to node i = 10, one recovers the
edge e119 to form again a loop. This leads to the recurrence of
excitation of i = 1 by i = 10, and henceforth a persistent oscillatory
spiking wave runs along the loop.

Figure 1b presents the temporal behavior in one cycle of spike
propagation on the loop by plotting the spiking behavior of nodes
i =5,6,7. It can be clearly found that these pulses occur with equal
delay time interval 7, which depends on parameters a,b and
coupling strength D. The period of the above sustained
oscillation is determined by the length of the loop, ie., T =Lt
(Zheng and Cross, 2003). For convenience, we call the oscillation
produced by the loop L as the L-mode oscillation.

3 Multiple oscillatory patterns

3.1 Dominant phase-advanced driving
(DPAD) method

To unveil the building blocks of the oscillation embedded on
general neuron networks, a recently promising approach is called
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FIGURE 1
(a) A single loop network. (b) Sustained oscillation of nodes in the loop.
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FIGURE 2
A schematic plot of the DPAD approach. The reference

oscillatory time series is labeled as black solid line, the phase-lagged,
PAD, and DPAD lines are labeled as green dashed, red dot-dashed, and
blue dotted lines, respectively.

the dominant phase-advanced driving (DPAD) method (Qian et al.,
20105 Liao et al., 2011; Zheng and Qian, 2018), which intends to find
the strongest cross driving of the target node when a system is in an
oscillatory state from the viewpoint of loop feedback. The basic idea
of DPAD is a comparison and ordering of the significance of nodes
in a network with sustained oscillations based on their
phase dynamics.

The identification of DPAD is schematically shown in Figure 2.
The oscillatory behavior of an individually non-oscillatory node is
apparently driven by signals from one or more interactions with
advanced phases, called as the phase-advanced driving (see blue and
red lines in Figure 2, also see the green phase-lagged line as a

Frontiers in Network Physiology

comparison.). Among all phase-advanced interactions, the
interaction making the most significant contribution to the given
node is defined as the dominant phase-advanced driving (DPAD)
(see the blue line). By applying this reduction approach, the original
oscillatory high-dimensional complex network of N nodes with M
vertices/interactions can be simplified to a one-dimensional directed
network of size N with M’ < M directed dominant phase-advanced

interactions.

3.2 Multiple oscillation patterns

Let us first explore various possible oscillatory patterns by
starting from different initial states. We study this by using the
homogeneous random network with N = 20 Bar-Eiswirth neurons
and degree k =3, as shown in Figure 3a. Two typical distinct
spatiotemporal patterns are given in the left panels of Figures
3b,c. Obviously these two patterns possess different spatial
ordering and different temporal rhythms.

It is pertinent to identify the principal modes embedded in these
different patterns. This can be accomplished by performing the
DPAD approach. In right panels of Figures 3b,c, the reduced
directed networks corresponding to the oscillatory dynamics by
using the DPAD method are obtained. For the dynamics shown in
left panel of Figure 3b, the DPAD network is composed of two types
of topologies. L=6 Winfree
(1-13—-20—-4—6—3—1) plays the role of oscillation

First, a single loop Lg =
source, with cells in the loop exciting sequentially to maintain
the self-sustained oscillation. Secondly, other neurons act as
propagators of the sustained oscillation, namely, spike waves
propagate downstream along several trees rooted at different
neurons in the loop. This indicates that the DPAD structure well

illustrates the wave propagation paths.
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FIGURE 3

Miscellaneous oscillation patterns on a homogeneous random network starting from different initial conditions. (@) The homogeneous network with

N =20 neurons and degree k = 3. (b) Spatiotemporal dynamics of the network by recording the membrane voltage u; (t) (left) and the DPAD graph of
sustained oscillations composed of a L = 5 loop shown by yellow nodes (right). (c) Spatiotemporal dynamics of u; (t) (left) and the DPAD graph witha L = 9
loop (right)

The dynamics presented in the left panel of Figure 3cis destructed  a longer-period oscillatory mode, and other neurons build multiple
by plotting the corresponding DPAD topology, as shown in the right ~ propagating paths with different lengths.
panel of Figure 3c. A a longer (L=9) Winfree loop Lg = The above discussions indicate the distinctive significance of
2->8—-14—-16—>18—>9 —>7— 12— 5—2) may support some units in the oscillation. Because the Winfree loop works as the
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(a)

(b)

(c)

(d)

FIGURE 4

Atest of the loop oscillation by starting from different nodes. (a): The loop L5 = (2 -5—18—9—15-2) labeled as yellow nodes and red arrows on the
network. (b-f): The DPAD graphs of the network when the spike propagates to node i = 2 (b), 5, (c), 18 (d), 9 (e), and 15 (f) respectively on the loop L5.

oscillation source, units in the loop should be more important in the
contributions of the oscillation.

4 Loop-loop competition

The above studies unveil that different oscillation patterns
starting from different initial states are dominated by different
source loops. The DPAD approach provides a powerful tool in
excavating the dominant loop that governs the global oscillation on
the network. On the other hand, there exists a large number of loops
on a network as potential candidates of oscillation sources.

Frontiers in Network Physiology

Obviously the persistent oscillation from a loop depends on its
dynamical stability. It is important to examine the stability of the
oscillation generated by a given loop. The stability of a given loop
oscillation depends on the competition with its neighbor loops.

4.1 Stability of short-loop oscillation

We first focus on the stability of oscillation generated by an L =
5 loop in a homogeneous random network presented in Figure 4a,
which is labeled by vyellow nodes and red links
(Ls=(2—>5—>518 59 — 15 — 2)). It has been revealed that
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(a) (b)

(© (d)

(2) (h)

FIGURE 5
Test of the loop-oscillation stability for a loop with length L = 8. (a): The same network with a loop L8 = (2—5—-12—7—-3—6—10—-8—2) labeled as
yellow nodes and red arrows on the network. (b-h): The DPAD graphs of the network when the spike propagates to node i = 2 (b), 5, (c), 12 (d), 7 (e), 3 (f), 6

(9), 10 and 8 (h), respectively on the loop L8.
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Qian et al. (2019) the minimum size of the Winfree loop for
supporting stable oscillation is Ly, = 4. Therefore the L = 5 loop
is a short size.

We assume initially there exists a sustained oscillation on this
loop. Moreover, we initially disconnect this loop with other neurons,
which are set to be in the resting state. By connecting the oscillatory
loop to the whole network at different instants, we monitor the
consequent evolution of the whole network and check the long-time
oscillation mode in terms of the DPAD method.

We first observe the long-term oscillatory pattern of the entire
network by reconnecting other nodes when the pulse propagates
from neuron i = 1 toi = 2, which is presented in Figure 4b. It can be
clearly found that the original loop Ls is still the oscillation source,
and other neurons play the role of propagators.

Similar behavior can be observed in Figures 4c,f, when the loop
connects to other nodes as the pulse on the loop propagates to
neurons i = 5 and i = 15 respectively. The oscillation source Ls still
keeps stable in these two cases. The difference between Figures 4b,c,f
is the distribution of propagating paths.

In Figure 4d, we plot the long-term DPAD network pattern for the
case when the pulse on the loop propagates to neuron i = 18 and
meanwhile the loop connects to other nodes. It can be found that a new
loop with the same size L=5Li = (18 59 -7 — 12 > 5 — 18)
acts as the oscillation source by replacing the original loop. Two new
neurons i = 7,12 labeled in red join in the oscillation source, and
neurons i = 2 and i = 15 become the propagators. This implies for this
case the oscillation sustained by the original loop Ls becomes unstable.
Interestingly, as can be observed in Figure 4e when the pulse on the
loop propagates to neuron i = 9 and meanwhile the loop connects to
other nodes, the original loop L5 can coexist with the loop L4 by sharing
three common neurons i = 5,18, 9. This forms an interesting double
sources with two equal size Winfree loops. Moreover, it can be inferred
that the source loop Ls is neutrally stable due to the existence of a
“mirror” loop.

The above numerical experiments indicate that the oscillation
pattern sustained by a short loop is stable.

4.2 Stability of long-loop oscillation

Let us further examine the stability of oscillation supported by a
longer loop. To do this, we choose a longer loop with L = 8 neurons
Lg =
support a

shown in Figure 5a, where the
2-55-12-57-53-56—>10—>8—>2)
longer-period oscillation. Similar to the above procedure, one first

loop
may

produces a sustained oscillation on this loop by disconnecting to other
neurons. Then the loop is reconnected to other neurons according to
the topology of Figure 5a at different instants.

In Figures 5b-h, the DPAD oscillation patterns of the network
Figure 5a are presented by reconnecting the loop Lg with other
neurons as the spike propagates sequentially to i = 2,5,12,7, 3,6, 10
and 8. One clearly finds that the sustained oscillation generated by a
long loop Lg is always unstable and replaced by oscillation sources
with shorter loops. For example, loops with length L = 5 will replace
the Lg loop and emerge as new oscillation sources in Figures 5¢,d
(two coexisting Ls loops), and Figure 5e. One can also detect Lg
loops replace the long Lg loop and perform as new oscillation
sources in Figures 5b,f-h.
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Therefore, one can conclude that a longer loop is more unstable
and is easier to be replaced by shorter loops. As shown in Figures
5b-h, all new source loops share common neuron nodes with the
unstable long loop. This indicates that these new shorter loops are
neighbor loops of the long loop.

4.3 Loops on loop: Stability analysis

Oscillatory dynamics discussed above implies strong evidence of
the competition among loops in the network. Obviously, the above
results reveal that the stability of the oscillation mode on a given loop
depends on its neighbor loops. A neighbor loop is excited only if the
spike propagate through their common nodes or edges, the neighbor
loop will also generate an oscillation mode and then compete with
the original loop oscillation.

In Figure 6, we schematically plot all possible neighbor loops of a
given L-loop. The first level of neighbor loops contains those loops
sharing one common node with L-loop, as shown in Figure 6a by
{Li, i=1,2,...,L}. Thesecond level of neighbor loops includes all
those loops sharing one common edge e;;;; with two common
nodes, e.g., Ly in Figure 6b. Higher levels of neighbor loops sharing a
common path ;. = €j11€i41,i42 - - - €ivm-1,0m With m + 1 nodes,
e.g., loops L; and L; in Figure 6b, can also be taken into account.

Usually the oscillation mode of a shorter loop has the advantage
over that of a longer neighbor loop and dominate the oscillation on a
network. For two non-neighboring loops, oscillation mode from the
longer loop still persist if initially all neurons on the shorter loop are
in resting states. This has been verified in Figure 4. Therefore, loops
on loop determine the stability of the oscillation mode L. This means
that an oscillation mode L is stable only if all its neighbor loops are
longer than the L-loop, namely, Li > L, where k denotes all possible
neighbor loops sharing common nodes, edges, and paths.

If there exists some k that Ly < L, then the oscillation mode L
becomes unstable as a spike passes these nodes, edges, or paths
because this spike will excite neighboring shorter loops. In this
case the oscillation mode L is partially stable (PS). This happens as
long as the L loop is connected to the whole network when the spike
propagates at those nodes or edges with shorter neighboring loops, for
example, at one of nodes on the L-loop in Figure 6a, or at an edge or a
path in 6(b). For these situations, the L oscillation mode will persist
and dominate the oscillation and propagation on the whole network.

This stability analysis well explains the loop competitions
observed in Figures 4, 5. The Ls loop proposed in Figure 5 is so
short that almost all its neighbor loops are longer than it,
i.e, Ly>L =5. Therefore one may observe its high stability in
dominating the global oscillation. Nevertheless, for the longer
loop L =8 proposed in Figure 5, the oscillation mode becomes
unstable for almost all cases, which is replaced by the oscillation
modes L=5or L = 6.

5 Loop-hub competition and oscillation
suppression

Topologically, loops describe the homogeneity property on a
network, while hubs, i.e., nodes with large degrees, represent the
heterogeneity. The above studies emphasize the role of loops and the
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FIGURE 6

A schematic plot of the neighbor loops of a given loop on a network. (a) all the neighbor loops sharing one common node of a given loop. (b) Some
neighbor loops sharing one common edge (two common nodes) or one common path (multiple common nodes).
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(a) A schematic plot of a loop with a heterogeneous hub node. In this example, a hub i = 0 on a L = 10 loop owns some leaves except for its two
neighbors i = 1,9 on the loop. (b) The sustained oscillation range of the coupling strength K for varying with the degree of the hub.

impact of loop-loop competitions. It is also natural to explore the
role of hubs in affecting the sustained oscillation generated by loops.

To do this, the simplest way is to design a hub on the loop. This
idea is shown in Figure 7a, where one node, say, node i = 0, becomes
a hub on the L loop by adding more leaves i = L,L +1,L +2,....
This results in the broken topological heterogeneity on a
homogeneous loop network. We are concerned with the stability
of oscillation propagation on the loop by modulating the degree of
hub heterogeneity (the number of leaf nodes). We first generate a
sustained oscillation as the propagation of spikes along the loop
while node i = 0 has no leaf nodes, namely, all nodes possess the
same degree k = 2. Then one adds leaf nodes to check whether the
oscillation keeps to be sustained.

In Figure 7b, the range of the coupling strength D for the
sustained oscillation is plotted. It can be clearly found that the
oscillation range shrinks rapidly with increasing the degree of the
hub ky. The most drastic change occurs at kg = 4, namely, two more
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leaf nodes are added to one of the nodes on the loop. When kj = 8, it
is hard to find a finite coupling interval in supporting oscillation on
the loop. This tendency indicates that sustained oscillation is
parametrically suppressed by increasing the degree of hub
heterogeneity.

It is significant to unveil the physical mechanism of oscillation
suppression of hub nodes. This is explored in Figure 8 by tracking
the evolution of the hub node and its neighbor nodes, including
neighbors on the loop and leaf nodes for the coupling strength
K =1.0. In Figure 8a, the spiking process of node i = 0, its two
neighbors i = 1,9 and its three leaves i =10,11,12 are plotted,
where leaf nodes are linked at t = 50.0. One can find that spikes
ofi =1,0,9 follow the normal phase-advanced order, and the other
three leaves are excited simultaneously.

The spiking process for the case of the hub i = 0 with degree
ko = 6 is presented in Figure 8b. As a comparison, as soon as the leaf
nodes are switched on, the hub experiences a secondary spike closely
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Evolution of u; (t) for different degrees of the hub node. Only the hub node (black line) ug (t), its neighbor nodes u1 g (t), and its leaf nodes vz (t) are

plotted. (a) ko = 5; (b) ko = 6; (c) ko = 7; (d) ko = 8.

followed by the first spike around t = 60. This secondary excitation
is a reflective spike induced by the spikes at leaf nodes, forming an
echo wave propagating back to the hub. The sustained oscillation on
the loop disappears due to the emergence of this echo wave. Similar
story occurs for the case of kg = 7 shown in Figure 8c. When ko
becomes larger, as shown in Figure 8d for ky = 8, the spike becomes
damped and the oscillatory wave fails to propagate.

The process and the consequence of the generation of reflective
spike are shown in Figure 9. Figure 9a shows the situation when a
spike labeled as the blue arrow propagates clockwise along the
loop. When the spike passes over the hub node i = 0, as shown
in Figure 9b, leaf nodes i = 10,11, 12, 13 are simultaneously excited
and experience spikes. These spikes will conversely excite the hub
shortly even though the hub does not relax back to the resting state,
generating an anti-wave that propagates anti-clockwise along the
loop, see the red arrow in Figure 9c. The anti-wave propagates
reversely because the node i = 9 is almost in resting state and easier
to be excited as compared with the right-side node i = 1. This anti-
wave propagates reversely and collides with the spiking wave
propagating along the forward direction, as shown in Figure 9d.
This collision results in the annihilation of the oscillation on the
loop, as can be seen in Figure 8b.

The above analysis emphasize the important role of leaf nodes as
a reflection wall, and the spike propagated to this “wall” will be
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bounced back and propagate in the reversed direction of the original
spike wave. It can also be found that a critical number of leaves . are
necessary to exceed the spiking threshold of the hub. This wall also
forms an obstacle that hinders the propagation of spiking wave on
the loop. This is just the case observed in Figure 8d, where the spike
is damped as the spike passes through the hub node. In this case, the
sustained oscillation will be suppressed when the hub possesses
more neighbors.

The above discussions is focused the effect of a single hub on a
loop. The degree of the hub is shown to play a primary role in
affecting and hindering the propagation on the loop. In fact, the
scenario of hub effect can be naturally extended to networks with
multiple hubs. Generally, the loop oscillation cannot be sustained on
loops containing hubs. Therefore one has two consequences. First,
sustained oscillation modes cannot be supported on a highly dense
network, where most of the nodes possess very high degrees. In this
case, sustained oscillation fails to occur on a homogeneous dense
network with high average degree. Second, Winfree loops sustaining
oscillations on networks are usually composed of those low-degree
nodes. Suppose a heterogeneous network with distinct distributions
of degrees, an effective Winfree that supports stable oscillation
should avoid those nodes with large degrees. A representative
example is the interesting long-period oscillation on scale-free
networks, where long loops composed of low-degree nodes (Mi
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FIGURE 9

(a -d): The process and the consequence of the generation of reflective spike labeled by red arrow for the large degree of the hub, e.g., kg = 6. Nodes

in green are leaves connected to the hub i = 0. Blue arrow corresponds to a forward propagating spike wave front. The blue front propagates to the hub i =
0 (a), and move forward along the loop and to the leaf nodes i = 10,11,12,13 (b). The pulse is kicked back from leaf nodes and leads to a back-propagating
wave along the loop (labeled as a red arrow) (c), which collides with the forward wave (blue arrow) and annihilate (d).

etal,, 2013). This long-period oscillation mode is shown to be related
to the long-term memory in the brain.

6 Concluding remarks

To summarize, in this paper, we extensively explored the
competition dynamics of sustained oscillations on neuronal
networks. Loops are identified as the basic building blocks of
sustained oscillation. There exist a huge number of loops on a
realistic network as potential candidates of the source in
supporting the sustained oscillation, hence it is beneficial to
explore competitive dynamics of these different oscillatory
modes and determine the dominant loop governing the
fundamental rhythm on the network.

As the first step, we briefly discussed multiple coexisting
oscillatory patterns of networks of neurons with the same
topologies and parameters. These different modes are dynamical
attractors with different while complicated basins of attractions (Mi
et al,, 2011). These different patterns can be decomposed into the
oscillation emerged from the source loop and the propagating
spiking wave along different paths in terms of the DPAD approach.

The stability of the potential oscillation mode supported by a
given loop can be checked by embedding it to the large network. It
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was found that a shorter loop possesses higher stability, i.e., it is
difficult to compete a short-loop oscillatory mode by other potential
long-loop modes. We further presented the loops-on-loop criteria in
judging the global and partial stability of a given loop oscillation.
The stability of the loop oscillation depends on the competition
between the given loop and its surrounding neighbor loops.
Heterogeneity on networks may strongly affect the loop-
supported oscillation. For simplicity, we focus on the case of a
loop with one hub node linked with different leaf nodes. It is
revealed that with increasing number of leaf nodes, the hub
hinders the propagation of spiking wave, which highlights the
important role of leaf nodes as a reflection wall, where the
spiking wave is bounced back to form the anti-wave on the
loop. A critical number of leaves n. is necessary to exceed the
spiking threshold of the hub. In this case, the sustained oscillation
will be suppressed when the hub possesses more neighbors. This
implies stable oscillation loops with low-degree nodes are preferred.
Based on both loop-loop and loop-hub competitions, it can be
inferred that an optimal stable loop that is capable of sustaining
stable oscillation on complex networks should be short in length and
low in node degree. This happens ubiquitously on homogeneous
networks, where a large number of loops with various lengths can be
found. For heterogeneous networks such as scale-free networks,
sustainable loops should avoid those hub nodes, and hence some
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long loops get the opportunity in supporting sustained oscillations
on networks.

There still are a number of challenges remained to be further
studied. An important topic is the effect of transmission delay
among neurons on the formation of Winfree loop and the
propagation process in neuron networks.

Loop-sustained oscillations can be ubiquitously found in neuron
networks, which implies a topology dominated emergence of
functioning. Because they are related with various important
oscillatory rhythms that are responsible for functions, we believe
our results should be valuable in exploring the possible rhythmic
behaviors and the corresponding functions such as memory in
physiology of neural networks.

We contribute the present work to the memory of professor
Hermann Haken for his contributions. Sustained oscillation on
a typical

behavior. There exist a large number of loops with distinct

neuron networks is dynamical  self-organization
oscillatory modes. The competition among these modes and the
emergence of dominant mode is the consequence of slaving

principle proposed by Haken (Haken, 1983).
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