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Introduction: Major depressive disorder (MDD) and MDD with suicidal ideation
(MDDSI) present with heterogeneous symptoms, complicating diagnosis and
treatment. Precision psychiatry addresses this challenge by applying
computational methods and digital biomarkers to objectively distinguish
psychiatric states. While psychiatric research has traditionally focused on
neural activity, increasing evidence highlights the value of autonomic indices,
particularly heart rate variability (HRV), in capturing clinically relevant
dysregulation. Cardio-respiratory coupling (CRC), which reflects bidirectional
interactions between cardiovascular and respiratory systems, represents a
physiologically grounded extension of this approach. Although less frequently
applied in psychiatry compared to HRV, CRC offers a sensitive window into
autonomic network dynamics and holds promise for differentiating between
MDD and MDDSI.
Methods: A total of 74 participants were assigned to Control (n = 35), MDD (n =
21), or MDDSI (n = 18) groups. ECG, PPG, and respiratory signals were recorded at
rest and segmented into 2-min intervals. Swarm Decomposition (SwD) was
applied to extract four oscillatory components (OC1–OC4) from each signal
that go from low to high frequency, respectively. Fractal dimension (Higuchi,
Katz) and Shannon entropy quantified coupling complexity. Bidirectional (λbi) and
unidirectional (λ) coupling measures and phase angles were computed between
respiratory signals and cardiovascular markers: pulse wave amplitude (PWA),
pulse transit time (PTT), and pulse rate (PR). Group differences were evaluated
using Kruskal–Wallis and post hoc tests (p < 0.05).
Results: Bidirectional PR coupling in OC3 showed significant group differences
(p < 0.01). Higuchi fractal dimension of PTT in OC3 was reduced in MDDSI
compared to MDD and controls (p = 0.018), suggesting diminished complexity.
For PWA in OC4, high-frequency power significantly differed between controls
and MDDSI (p = 0.004). Directional coupling entropy also distinguished MDD
from MDDSI (p = 0.039).
Conclusion: This study reveals that frequency-specific disruptions in
bidirectional cardiorespiratory coupling, along with reduced signal complexity
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and entropy, are characteristic of MDDSI. These features may reflect impaired
autonomic adaptability and emotional regulation. Phase-based coupling metrics
and SwD show promise as physiological biomarkers for early identification of high-
risk depressive states in digital psychiatry.
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Introduction

Physiological data, such as EEG, provides an objective
perspective into conditions like major depressive disorder (MDD)
and suicidality, and is an important biomarker for psychiatrists to
identify mental health disorders (Badrakalimuthu et al., 2011;
Lebiecka et al., 2018; Liu et al., 2022). MDD affects more than
180 million people worldwide and is a leading cause of disability,
with suicide representing one of its most devastating outcomes
(Marx et al., 2023). Discriminating between MDD with and
without suicidal tendencies, as well as distinguishing both from
healthy states, is therefore critical for timely intervention and
prevention strategies. Recent methods in biosignal analysis have
significantly improved the identification and understanding of
psychiatric diseases by including advanced techniques such as
multimodal signal decomposition, directional coupling analysis,
and fractal and entropy measures (Salankar et al., 2021;
Marzbanrad et al., 2020; Jiang et al., 2024; Bartsch et al., 2012;
Platiša et al., 2020). These methods provide a detailed perspective of
physiological interactions, which are important for understanding
the autonomic dysregulation associated with psychiatric conditions.

Network physiology emphasizes the complex, directional, and
multiscale interactions between physiological subsystems, offering a
system-level lens to understand how distributed organ networks
coordinate to maintain homeostasis (Salankar et al., 2021; Chen B.
et al., 2022; Borovkova et al., 2022; Khalaf et al., 2015; Bartsch and
Ivanov, 2014; Krohova et al., 2019). A disruption in these dynamic
interactions reflects a loss of physiological complexity and
adaptability, which can serve as an early marker of systemic
dysfunction and disease (Ivanov, 2021; Ivanov and Bartsch, 2014;
Bashan et al., 2012). Approaches grounded in complexity science
(Morandotti et al., 2025), particularly measures of information flow
such as transfer entropy, provide a powerful framework for
quantifying these network interactions and detecting early
deviations from healthy dynamics. In psychiatry, this perspective
has gained importance through the rise of digital psychiatry, which
leverages physiological signals to complement symptom-based
assessments and provide objective insights into mental states
(Torous et al., 2021; Vignapiano et al., 2023; Zhao et al., 2019).
Within this framework, cardio-respiratory coupling (CRC) has
emerged as a paradigmatic example of network physiology, as it
reflects the continuous exchange of information between cardiac
and respiratory systems mediated by vagal pathways to the sinoatrial
node and its modulation of heart rate dynamics (Zhao et al., 2019;
Kontaxis et al., 2021). Transfer entropy and related complexity
metrics allow the directional information flow within CRC to be
quantified, thereby capturing the degree of coordination and
adaptability in autonomic regulation. Reduced vagal modulation,
commonly indexed by diminished heart rate variability (HRV) and

impaired respiratory sinus arrhythmia (RSA), has been repeatedly
associated with MDD (Koch et al., 2019; Kemp et al., 2010) and, in
some studies, suicidality (Sheridan et al., 2021; Adolph et al., 2018).
These findings support the view that impaired autonomic regulation
represents a core feature of psychiatric morbidity, while also
contributing to the elevated cardiovascular risk observed in MDD
populations.

Synchronization between physical subsystems has been widely
investigated in physics (Sobiech et al., 2017), and, while early
applications to biology, neuroscience, and psychopathology
lagged behind (Rosenblum et al., 2002), this has changed
considerably over the past 2 decades. Numerous studies have
since demonstrated synchronization of physiological rhythms,
including heart rate, respiration (particularly during slow
breathing), blood pressure, cerebral vascular flow, sympathetic
muscle activity, brain oscillations, and pupil dilation, often using
phase-locking approaches and synchrograms to characterize
coupling (Folschweiller and Sauer, 2021; Andrews et al., 2025;
Melnychuk et al., 2021). Coupling of multimodal systems refers
to the interaction of two or more oscillatory processes that influence
one another through the exchange of information or energy, thereby
shaping each other’s dynamics. Coupling can take different forms,
strong or weak, unidirectional or bidirectional, linear or nonlinear
(Dick et al., 2014). Synchronization, by contrast, describes the
temporal alignment of oscillations across systems, such as phase
locking, frequency locking, antiphase relations, or synchronization
with a delay. Both coupling and synchronization are central features
of complex network physiology, including heart-to-brain interaction
(HBI), which has been investigated using several correlation and
causality algorithms such as Granger causality (GC), transfer
entropy (TE), and controlled time delay stability (Marzbanrad
et al., 2020; Valenza et al., 2018a; Faes et al., 2013; Porta et al.,
2013; Ivanov et al., 2016).

Coupling of biosignals first became popular with the use of
Granger causality to characterize functional circuits associated with
cognition and behavior in health and disease (Pichot et al., 2024).
GC identifies directed functional interactions by implementing a
statistical, predictive notion of causality (Seth et al., 2015). Porta and
colleagues discussed GC as part of the autonomic network linking
heart rate with respiration (Porta et al., 2013). Temporal causality
features have also been extended to frequency-based measures,
including cross-spectral and information-theoretic approaches,
showing cardiorespiratory information coupling (Faes et al.,
2021). Other nonlinear approaches have also been applied to
cardiorespiratory coupling. For example, cross-sample entropy
and multiscale entropy analyses have revealed statistically
significant coupling between respiration and interbeat interval
variability (Ahmed and Mandic, 2011). By contrast, one recent
study employing higher-order detrended moving-average cross-
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correlation analysis (DMCA) in a small sample (n = 8) failed to
detect significant long-range correlations between breathing
patterns and interbeat interval variability (Nakata et al., 2021),
underscoring the need for larger studies and methodological
triangulation.

Transfer entropy (TE) then extended the time and frequency-
based unidirectional coupling and improved on the limitations of
Granger causality. TE quantifies the direction and strength of
coupling between two signals (Bossomaier et al., 2016). It can be
applied to non-stationary and nonlinear systems such as the
cardiorespiratory system and quantifies the information transferred
from a past signal process (e.g., respiration) to a current target signal
(e.g., heart rate), independent of the past information obtained from
the target signal (heart rate) (Valenza et al., 2018a; Stokes and Purdon,
2017). In contrast, Granger causality (GC) is inherently limited by its
reliance on linear autoregressive models and the assumption of
Gaussian-distributed noise, making it less effective in detecting
nonlinear interactions and dynamics commonly observed in
physiological systems (Chen et al., 2023).

Although TE was developed to address several limitations of GC,
including sensitivity to bias or high variance, difficulties in
interpretation, and inability to capture nonlinear interactions, such
issues in GC arise particularly when the underlying data exhibits strong
nonlinear correlations, a scenario in whichGC tends to perform poorly
(ChenY. et al., 2022).Moreover, TE is computed using an information-
theoretic framework based on Shannon entropy and conditional
entropy. To address potential bias due to self-matching, surrogate
TE was introduced by shuffling the driver time series and subtracting
this value from the original TE estimate, thereby ensuring robustness.
Alternative bias-reduction strategies, such as corrected conditional
entropy (Porta et al., 2001) or permutation-based TE, have been
proposed in the literature, and cross-sample entropy remains a
valuable complementary method for avoiding self-matching
altogether. TE, by contrast, can account for nonlinear and
directional dependencies, but it requires substantially larger datasets,
is computationally intensive, and its results may be challenging to
interpret (Stokes and Purdon, 2017). Thus, while RSA and HRV
measures have proven sensitive to depressive phenotypes, traditional
coupling metrics such as GC and TE remain limited by assumptions of
stationarity, the need for long recordings, or difficulties in
disambiguating directionality in nonlinear systems (Pichot et al.,
2024; Vicente et al., 2011). To overcome these challenges, we
introduce an extended phase-based bidirectional coupling algorithm
based on the Niizeki–Saitoh model, which estimates both the strength
and direction of influence with lower computational demands (Niizeki
and Saitoh, 2018; Niizeki and Saitoh, 2016).

Cardiovascular and respiratory systems exhibit multiscale
oscillatory behavior driven by autonomic nervous system
dynamics, including low-frequency oscillations associated with
sympathetic activity, baroreflex control, and central neural
pacemaking drive from the pons (Pfurtscheller et al., 2017;
Pfurtscheller et al., 2020), high-frequency components reflecting
parasympathetic modulation during respiration, and intermediate
bands indicating dynamic interactions between cortical and
subcortical regulatory centers (Wang et al., 2025). Swarm
Decomposition (SwD) is a novel approach in non-stationary signal
decomposition that utilizes swarm intelligence algorithms inspired by
biological swarm behaviors, such as predator-prey dynamics, to

extract intrinsic frequency bands from physiological time series.
This method adaptively separates signals into constituent
oscillatory components (OC) based on amplitude, frequency
content, and local structural features, which provides better
spectral specificity, reduced mode mixing, and better preservation
of signal integrity across time (Apostolidis and Hadjileontiadis, 2017;
Baltatzis et al., 2017; Ganiti-Roumeliotou et al., 2023). In psychiatric
populations, particularly those with MDD and MDD with suicidal
ideation (MDDSI), alterations in autonomic regulation oftenmanifest
as blunted or chaotic oscillatory patterns (Lehrer and Eddie, 2013). By
isolating the OCs, SwD enables frequency-specific coupling analysis,
which can identify small disruptions in physiological regulation that
standard time-domain HRV metrics may miss and may provide
clinicians with information on the link between specific frequency
disruptions to functional domains and enable personalized
physiological profiling and targeted interventions such as vagal
nerve stimulation or paced breathing therapies.

Fractal time series analysis provides a framework for quantifying
the complexity and self-similarity of physiological signals across
multiple time scales (Yamamoto and Hughson, 1993; Porcaro et al.,
2024). In the context of autonomic regulation, it enables the
detection of long-range correlations and dynamic fluctuations
that are often obscured in conventional linear analyses (Peng
et al., 1992; Stanley et al., 1999; Ivanov et al., 1999; Valenza
et al., 2018b). Techniques such as entropy analysis, Higuchi and
Katz fractal dimension analysis capture the geometric intricacy and
temporal irregularity of signals like electrocardiography (ECG) and
photoplethysmogram (PPG), that describe the adaptability or
rigidity of the underlying network physiology (Cysarz et al., 2000;
Raghavendra and Narayana Dutt, 2009; Higuchi, 1988). In MDD,
reduced fractal complexity has been associated with diminished
autonomic flexibility and impaired emotional regulation (Zitouni
et al., 2022; Mandarano et al., 2022). By applying fractal metrics to
oscillatory components derived from the Swarm Decomposition,
nonlinear dynamical analysis is integrated with network physiology
to investigate changes in cardio-respiratory coupling that
distinguish MDD from suicidal ideation (Khandoker et al., 2017a).

Organ networks display bi-directional coherency including
between heart rate and respiration (Figure 1). The proposed
study extends the phase coherency algorithm discussed by
Niizeki and Saito to a bi-directional coupling algorithm that
provides phase and directionality to gain a better understanding
of the cardio-respiratory coherency in MDD with and without
suicidal ideation. To further delineate the biosignal characteristics
associated with disease progression, the time series were
decomposed into oscillatory components and analyzed using
fractal geometry-based methodology.

Methods

Demographic and physiological information

Nine demographic variables were recorded for all patients,
including age, gender, waist circumference (WC), body mass
index (BMI), mean arterial pressure (MAP), Beck Depression
Inventory (BDI), general anxiety disorder (GAD-7), and the
patient health questionnaire (PHQ-9).
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Dataset and patient enrollment

A total of 74 unmedicated patients were divided into three
groups: no major depressive disorder (n = 35; Control), major
depressive disorder (n = 21; MDD), and MDD plus suicidal
ideation (n = 18; MDDSI). All patients provided informed
consent and attended the Abu Dhabi American Centre for
Psychiatry and Neurology in the United Arab Emirates (UAE)
during the morning hours. The Al Ain District Ethics Committee
approved the study. Patient psychiatric history, health
questionnaire (PHQ-9), and general anxiety disorder (GAD-7)
results were collected. Diagnosis of depression and suicidal
ideation was made by the consultant psychiatrist using a
structured interview, the mini-international neuropsychiatric
interview (M.I.N.I.), and the Hamilton Depression Rating Scale
(HAM-D). Patients with significant cognitive impairment,
ischemic heart disease, diabetes, psychiatric complications, and
any inflammatory illness within the preceding 2 years were
excluded from the study. All participants were asked to refrain
from drinking coffee and smoking cigarettes before the
experiment. However, food intake and physical activities were
not restricted to avoid causing anxiety and stress to patients.

Physiological biosignals acquisition

Physiological signals from each patient were recorded for 10 min
in the afternoon, including supine-resting ECG, finger

photoplethysmogram (PPG), and respiration. ECG signals were
recorded using a lead II configuration (Powerlab, AdInstruments,
Australia) with a sampling frequency of 1 kHz. Respiratory and PPG
signals were captured using Powerlab and processed on Labchart
7.1 with a sampling frequency of 1 kHz. ECG and PPG signals were
filtered with bandpass filters with a frequency range of 0.5–150 Hz
and 0.5–15 Hz, respectively.

Only the last 2-min segments from each (10-min) recording were
used in this study for further analysis to reduce the occurrence of
nonstationarities, ectopic beats, and general noise such as muscle
movement. While longer recordings are generally recommended for
reliable characterization of nonlinear complexity in physiological
signals, shorter segments have practical and methodological value
(Shaffer et al., 2020). They are commonly used in clinical practice to
assess vital functions and can provide robust discrimination between
physiological states, even if they underestimate nonlinear dynamics
(Volpes et al., 2022). Moreover, shorter recordings are less demanding
for participants and reduce the likelihood of contamination from
nonstationarities. In this context, the ability to discriminate between
MDD subtypes and healthy controls based on complex analysis of short
signals represents an important and practical achievement.

Decomposing biosignals into oscillatory
components

The signals used in this study (ECG, PPG, and respiration) were
decomposed into their oscillatory components (OCs) using the

FIGURE 1
Bi-directional coupling between heart rate and respiration. (a) Simplified schematic of neural pathways linking brainstem, heart, and lungs. (b)
Cardiorespiratory coupling illustrates how respiratory rhythm, baroreflex control, and vagal modulation interact to generate respiratory sinus arrhythmia
(RSA). RSA reflects the parasympathetic component of heart rate variability and varies with tidal volume and respiratory frequency. Its contribution to HRV
is reduced under sympathetic predominance, as observed in major depressive disorder and suicidality.

Frontiers in Network Physiology frontiersin.org04

Jelinek et al. 10.3389/fnetp.2025.1620862

mailto:Image of FNETP_fnetp-2025-1620862_wc_f1|tif
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2025.1620862


recent Swarm decomposition (SwD) algorithm (Alkhodari et al.,
2010). SwD is a filtering mechanism with pre-defined parameters
that follows a method based on a swarm-prey hunting approach to
obtain different components within different frequency ranges. SwD
showed a high potential in dividing the ECG and HRV data into
multiple components related to the actual known frequency ranges
in multiple studies.

In this work, ECG and PPG signals were decomposed into four
main OCs that correspond to low, mid-low, mid-high, and high
frequency ranges. The filtering parameters were set to 0.03, 0.01, 0.1,
and 0.25 for the minimum peak measure, standard deviation of

components, Welch window percentage, and clustering factor,
respectively. The minimum peak measure affects the total
number of components to be extracted, where the lower the
value, the higher the number of components. In addition, the
Welch window percentage determines how fine or coarse the
spectrum will be when included in the algorithm. The clustering
factor determines the strength of assigning frequency components
into major ones. Finally, each original signal was decomposed into
OC1, OC2, OC3, and OC4, which have a range from low to high
frequency, respectively. For the respiration signal, the algorithm was
used as a denoising method to remove all high-frequency

TABLE 1 List of features extracting from the coupling information.

Coupling information Definition Clinical translation

Angle (degree of coupling) Quantifies synchronization strength Linked to vagal activity and emotional regulation

Directional coupling (λ) Strength and direction of information transfer Reduced λ may indicate impaired autonomic control
seen in depression

Bi-directional coupling (λbi) Total bidirectional synchronization low λbi may reflect breakdown in adaptive
communication in depression

Feature Definition Clinical Translation

Mean Average of the coupling values across the recording Reflects the overall level of synchronization; elevated
mean coupling may indicate persistent entrainment,
which in pathology could suggest reduced flexibility of
regulatory systems

Standard deviation Measure of dispersion of coupling values around the
mean

Captures variability of synchronization; lower SD may
reflect reduced adaptability and rigidity in physiological
regulation, while higher SD may indicate greater
dynamical range of coupling responses

Root mean square of successive differences (RMSSD) Square root of the mean squared differences between
successive coupling values

Short-term variations in Vagal activity

Minkowski–Bouligand box-counting fractal dimension
(MBFD)

Estimation of complexity via how coupling data fills
space across scales

Lower MBFD indicates rigidity, nonadaptive coupling in
pathology

Fractal Abundance (FA) Quantification of how frequently fractal patterns appear
in the coupling signal

Lower FA may suggest loss of dynamical complexity,
relevant in depression

Higuchi fractal dimension (HFD) Estimation of signal complexity Lower HFD correlates with autonomic dysfunction

Katz fractal dimension (KFD) Fractal dimension estimate based on ratio of perimeter to
maximum distance in the coupling signal

Reduced KFD may reflect diminished adaptability and
resilience in physiological control

Shannon entropy Measure of uncertainty or disorder in coupling strength
distribution

Lower entropy signals more predictable, less adaptable
systems in pathology

High frequency (HF) norm Normalized power of high-frequency oscillations Reduced HF norm indicates parasympathetic
withdrawal, often observed in MDD.

High frequency (HF) peak Dominant peak frequency within the high-frequency
band

Shift or reduction in HF peak associated with disrupted
vagal modulation

High frequency (HF) power Total spectral power within the high-frequency band Reduced HF power reflects lowered vagal input

Low frequency (LF) norm Normalized power of low-frequency oscillations (mixed
sympathetic-parasympathetic influence)

Altered LF norm indicates changes in autonomic
balance

Low frequency (LF) peak Dominant peak frequency within the low-frequency
band

Shift in LF peak frequency may signal autonomic
dysfunction

Low frequency (LF) power Total spectral power within the low-frequency band Changes reflect sympathetic modulation and baroreflex
sensitivity

LF to HF ratio Ratio of low-frequency to high-frequency power Increased LF/HF ratio indicates sympathetic
dominance; decreased ratio suggests parasympathetic
dominance
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components (OC2, OC3, and OC4) and only select the lowest
frequency component (OC1) that represents the respiratory rhythm.

Extraction of physiological features

Physiological features, including the pulse wave amplitude
(PWA), pulse transit time (PTT), and pulse rate (PR) were
extracted from ECG and PPG signals. PWA was measured from
PPG as sequential values of the amplitudes of peaks in the signal,
whereas PTT was calculated as sequential distances between each
R-peak and PPG peak in the ECG and PPG signals. PR values were
calculated as per the following equation:

PR � 60
Pw

where Pw corresponds to the width of each peak in the PPG signal. It
was measured as the distance between peak points (left and right)
where the signal intercepts a reference line that equals half of the
peak prominence.

Coupling information was extracted between each physiological
feature (PWA, PTT, and PR) and the respiratory component,
including the angle (degree of coupling), directional coupling (λ),
and bi-directional coupling (λbi). The extraction of coupling

information was performed for each OC as well as for the
original component of each signal.

Coupling information was extracted between pulse rate and the
respiratory component including the angle (degree of coupling) and
bi-directional coupling (Bi λ). Bi-directional phase coherency was
introduced as an extension to the conventional uni-directional phase
analysis (Jelinek and Khandoker, 2020) as follows:

λ tk( )�| 1
N

∑k+
N
2

k−N
2

e[ϕPR tk( )−ϕresp tk( )]mod 2π|2

where k denotes the time step in N over all lengths of the selected
signals and φ_PR (tk) and φ_Resp (tk) are the instantaneous phases
of the PR and respiratory signals obtained using Hilbert transform.
To transform λ(tk) into Bi λ(tk), we additionally calculated the phase
coupling degree of synchronization (Jelinek and Khandoker, 2020)
as follows:

Bi λ tk( ) � λ tk( ) × tan−1 cos λ tk( )( )
sin λ tk( )( )( )

Bi λ can be formed ranging from −1 to 1. In this specific scenario,
negative coupling indicates (−1 to 0) heart-led interaction, while
positive coupling (0–1) indicates respiratory-led interaction (Jelinek
and Khandoker, 2020).

FIGURE 2
Decomposition of physiological signals using the SWD algorithm. (A) PPG signal, (B) ECG signal, (C) respiratory signal. Original signals (top) are
divided into four oscillatory components (OCs) with low, mid-low, mid-high, and high frequencies (top to bottom). For respiration, only the low-
frequency OC1 was analyzed further showing two examples of respiratory signals OC1 (left) with their corresponding frequency range (right).
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A total of 15 features were extracted from the coupling
information (Table 1), i.e., the angle (degree of coupling),
directional coupling (λ), and bi-directional coupling (λbi)

determined from the mean, standard deviation, root mean square
of successive differences (RMSSD), Minkowski–Bouligand box-
counting fractal dimension (FD), fractal abundance (FA),

FIGURE 3
An example of the extraction of coupling information, including the angle (degree of coupling), directional coupling (λ), and bi-directional coupling
(λbi) between pulse wave amplitude (PWA) and respiratory signals. (A) original signal, (B) low frequency oscillatory component (OC1), (C) mid-low
frequency OC2, (D) mid-high frequency OC3 and (E) high frequency OC4.

TABLE 2 Overall information of all subjects included in the study.

Variable Control (n = 35) MDD (n = 21) MDDSI (n = 18) p-value

Demographic information

Age, yrs 28 (24.2–37.1) 34 (29.6–41.0) 32 (27.5–43.1) 0.119

Male, n 17 (47.2) 6 (27.3) 3 (15.8) 0.014

Anthropometric/physiological indices

WC, cm 73.5 (70.0–83.2) 89.5 (78.1–101.0) 87.0 (77.8–99.0) 0.001*o

BMI, kg/m2 23.4 (21.4–26.0) 27.0 (16.5–47.1) 26.4 (23.2–31.5) 0.065

MAP, mmHg 83.3 (80.8–89.5) 86.7 (79.9–92.1) 83.3 (80.3–91.6) 0.894

Psychometric/clinical questionnaire scores

Suicidal score - 0 (0–3.1) 17 (13.8–22.9) <0.001+

BDI - 27.5 (23.6–39.6) 42.0 (30.2–45.8) 0.089

GAD-7 - 15.5 (11.3–17.6) 17.0 (12.0–25.1) 0.084

PHQ9 - 16.5 (14.0–20.7) 22.0 (15.5–30.2) 0.041+

Values are represented as either median (inter-quartile range) and for Male as n (%). Bold p-value: Significant difference (p < 0.050). *: Significant difference between control and MDD. o:

Significant difference between control and MDDSI. +: Significant difference between MDD, and MDDS. MDD: Major depressive disorder. MDDSI: MDD, plus suicidal ideation. WC: Waist

circumference. BMI: Body mass index. MAP: Mean arterial pressure. BDI: Beck depression inventory. GAD-7: General anxiety disorder. PHQ9: patients health questionnaire.
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Higuchi FD, Katz FD, Shannon entropy, high frequency (HF) norm,
HF peak, HF power, low frequency (LF) norm, LF peak, LF power,
and LF to HF ratio. In addition to the decomposition into four
oscillatory components (OC1–OC4), we extracted these standard
frequency spectral indices from the coupling information. The goal
of this procedure was to enhance discriminatory potential between
groups, rather than to interpret each spectral index physiologically
in isolation. Power spectral density was estimated using Welch’s
method (Shaffer and Ginsberg, 2017; Malik et al., 1996), from which
low-frequency (LF: 0.04–0.15 Hz) and high-frequency (HF:
0.15–0.40 Hz) bands were quantified. The LF and HF absolute
power, normalized units (LF norm, HF norm), and peak frequencies
(LF peak, HF peak) were calculated, along with the LF/HF ratio as a
measure of sympathovagal balance.

Statistical analysis of coupling

Prior to group comparisons, data normality was tested, and the
majority of features did not follow a normal distribution, thus, a

non-parametric approach was applied. Specifically, differences
among the three main categories (Control, MDD, and MDDS)
were evaluated using the Kruskal–Wallis test. Statistical
significance was set at p ≤ 0.05. For post hoc pairwise
comparisons, the Mann–Whitney U test was employed, and
p-values were adjusted for multiple testing using the
Holm–Bonferroni correction (Chalmers et al., 2022; Morehouse
et al., 2025).

Results

Signal decomposition and
coupling framework

Swarm Decomposition (SwD) was applied to extract four
oscillatory components (OCs) from ECG, PPG, and respiratory
signals, spanning low to high frequencies and characterize
frequency-specific bidirectional interactions between cardiac and
respiratory signals. Figure 2 illustrates this decomposition, showing

FIGURE 4
Statistical analysis of features extracted from the angle (degree of coupling) between pulse wave amplitude (PWA, left column), pulse transit time
(PTT, middle column), and pulse rate (PR, right column) and respiration. (A) original signal, (B) low frequency oscillatory component (OC1), (C) mid-low
frequency OC2, (D)mid-high frequency OC3, and (E) high frequency OC4. STD: standard deviation, RMSSD: root mean square of successive differences,
MBFD: Minkowski–Bouligand box-counting fractal dimension, MBFA: Minkowski–Bouligand box-counting fractal abundance, HFD: Higuchi fractal
dimension, KFD: Katz fractal dimension, SE: Shannon entropy, HFN: high frequency norm, HFP: high frequency peak, HFPO: high frequency power, LFN:
low frequency norm, LFP: low frequency peak, LFPO: low frequency power, LFHF: low frequency to high frequency ratio.
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the raw signals (top) and their respective OCs (bottom) for ECG,
PPG, and respiration. SwD preserves physiological structure across
scales, with respiration limited to its lowest frequency component
(OC1) to maintain the reference driver signal. Because the
decomposition is data-driven, the precise frequency ranges of
OC1–OC4 vary across subjects; however, in our dataset
OC1 typically contained frequencies below ~1 Hz, OC2 in the
~1–3 Hz range, OC3 in the ~3–10 Hz range, and OC4 above
~10 Hz (Figure 2 for representative spectra). These ranges should
be interpreted as approximate, reflecting the relative ordering of the
components rather than fixed frequency bands.

Coupling was computed between the respiratory signal and the
three derived cardiovascular features—pulse wave amplitude
(PWA), pulse transit time (PTT), and pulse rate (PR), and the
three-coupling metrics: angle (phase degree), unidirectional
coupling (λ), and bidirectional coupling (λbi). A representative
example of the coupling features across all OCs, displaying the
time series, phase trajectories, and extracted coupling values (angle
and λbi) is shown in Figure 3 below. The Figure indicates the distinct

dynamic patterns and directional dependencies at different
frequency bands, which were then quantified for statistical
comparison across groups.

Group demographical information

Subjects in the control, MDD, and MDDSI groups had average
ages of 28, 34, and 32 years (Table 2). No significant difference in age
was observed between the three groups. Most participants were
female (66%), with male representation at 47.2%, 27.3%, and 15.8%
for the control, MDD, and MDDSI groups, respectively. A
significant difference was observed for gender (p = 0.014).

Significant differences were observed for waist circumference
(WC) (p-value = 0.001), suicidal score (p-value <0.001), and PHQ-9
(p-value = 0.041). For WC, the significant difference was between
control and MDD and between control and MDDSI, whereas the
suicidal score and PHQ- 9 showed a significant difference between
MDD and MDDSI.

FIGURE 5
Statistical analysis of features extracted from the directional coupling (λ) between pulse wave amplitude (PWA, left column), pulse transit time (PTT,
middle column), and pulse rate (PR, right column) and respiration. (A) original signal, (B) low frequency oscillatory component (OC1), (C) mid-low
frequency OC2, (D)mid-high frequency OC3 and (E) high frequency OC4. STD: standard deviation, RMSSD: root mean square of successive differences,
MBFD: Minkowski–Bouligand box-counting fractal dimension, MBFA: Minkowski–Bouligand box-counting fractal abundance, HFD: Higuchi fractal
dimension, KFD: Katz fractal dimension, SE: Shannon entropy, HFN: high frequency norm, HFP: high frequency peak, HFPO: high frequency power, LFN:
low frequency norm, LFP: low frequency peak, LFPO: low frequency power, LFHF: low frequency to high frequency ratio.
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Unidirectional and bidirectional coupling

Three coupling variables were analyzed: the degree or magnitude
of coupling (angle), unidirectional coupling (λ), and bidirectional
coupling (λbi). The Kruskal–Wallis analysis of the angle for PWA,
PTT, and PR uses original signals and their decomposed oscillatory
components (OCs), which are shown in Figure 4. Significant
differences were observed for the time-domain metrics (SDNN
and RMSSD) and fractal dimension (FD) features
(Minkowski–Bouligand box-counting FD and FA, and Katz FD)
in the original PWA signals, between the control and MDD groups.

When analyzing higher frequency components (OC2 and OC4),
significant differences were observed in LF peak for OC2 between
MDD and MDDSI, and in HF power for OC4 between control and
MDDSI. PTT also showed significant differences in HF norm in
OC2 between control and MDD (p = 0.025). These findings suggest
that frequency-specific alterations in signal complexity and
autonomic tone are characteristic changes associated with
different depressive states, and especially pronounced in suicidal
ideation, associated with higher oscillatory levels.

For directional coupling (Figure 5), significant differences
emerged between MDD and MDDSI in SDNN, Shannon
entropy, and frequency-domain features from the original PWA
signal. As frequencies increased, more pronounced differences
appeared between the control and MDD groups. The highest
frequency component (OC4) revealed significant differences in
PWA and PTT, particularly in low frequency norm and Higuchi
FD. These alterations in OC4 imply impaired high-frequency vagal
modulation and disrupted parasympathetic regulation in suicidal
ideation. The entropy reduction further reflects constrained
dynamical responsiveness in MDDSI subjects.

Bidirectional coupling

Bidirectional coupling analysis (Figure 6) revealed more
significant differences for PR than for angle or unidirectional
coupling. These differences were more widely distributed across
all OCs and spanned multiple physiological features. Specifically, PR
in OC3 showed strong discriminatory power between the groups in

FIGURE 6
Statistical analysis of features extracted from the bi-directional coupling (λbi) between pulse wave amplitude (PWA, left column), pulse transit time
(PTT, middle column), and pulse rate (PR, right column) and respiration. (A) original signal, (B) low frequency oscillatory component (OC1), (C) mid-low
frequency OC2, (D)mid-high frequency OC3 and (E) high frequency OC4. STD: standard deviation, RMSSD: root mean square of successive differences,
MBFD: Minkowski–Bouligand box-counting fractal dimension, MBFA: Minkowski–Bouligand box-counting fractal abundance, HFD: Higuchi fractal
dimension, KFD: Katz fractal dimension, SE: Shannon entropy, HFN: high frequency norm, HFP: high frequency peak, HFPO: high frequency power, LFN:
low frequency norm, LFP: low frequency peak, LFPO: low frequency power, LFHF: low frequency to high frequency ratio.
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both fractal and frequency domains. Shannon entropy and LF norm
were significantly altered in MDDSI, highlighting the potential of
mid-high frequency bidirectional coupling as a sensitive marker for
suicidal ideation. Additionally, PTT in OC3 distinguished MDD
from MDDSI via significant changes in Higuchi and Katz fractal
dimensions, indicating increased signal irregularity and reduced
complexity in more severe depressive states. These findings
underscore the diagnostic value of OC3 in network physiology.

Distribution of significant differences

The heatmaps in Figures 7–10 illustrate the distribution of
significant p-values across all features and OCs. Figure 7
highlights that the most consistent differences were observed
across all coupling modes in OC3 and OC4 for both PR and
PTT, confirming their importance in differentiating MDD and
MDDSI from controls. Figure 7 further shows that MDDSI is
marked by widespread disruptions in bi-directional coupling
(λbi), particularly in high-frequency features and entropy
measures of PR and PTT, not evident in MDD alone.

The heat maps revealed that significant group differences were
consistently localized in the mid-high (OC3) and high-frequency
(OC4) components, particularly for pulse rate (PR) and pulse transit
time (PTT) under bi-directional coupling (λbi). Features such as
Shannon entropy, Higuchi fractal dimension, and high-frequency
power showed strong discriminatory capacity between MDD and
MDDSI. These patterns highlight frequency-specific disruptions in

physiological complexity and coupling directionality associated with
increasing psychiatric severity.

Discussion

The present study provides novel insights into physiological
network changes associated with major depressive disorder (MDD)
and suicidal ideation (MDDSI), with a focus on frequency-specific
bidirectional cardio-respiratory coupling and providing a
framework for psychiatric network physiology. Our findings were
consistent with ongoing evidence in literature that there is robust
cardiorespiratory coupling in adults, underscoring the relevance of
physiological synchronization, even in non-pathological
populations (Sobiech et al., 2017). The integration of Swarm
Decomposition (SwD) with phase-based coupling metrics, fractal
geometry, and entropy analysis enabled a detailed, scale-sensitive
characterization of autonomic dysfunction of depressive
phenotypes. Moreover, although transfer entropy is an
established information-theoretic approach for quantifying
directed interactions, it was not directly employed as a feature in
this study. Instead, we extracted measures characterizing fractal
properties, entropy, and frequency-domain parameters, in addition
to basic statistical descriptors. This choice reflects our focus on
fractal and oscillatory properties of phase coupling, while
acknowledging that transfer entropy represents a complementary
approach for future analyses. In addition to these nonlinear
descriptors, we also calculated linear parameters (mean and

FIGURE 7
Heatmaps of the statistical p-value obtained using the time-domain, fractal dimension (FD), and frequency-domain features between the three
categories (control, MDD, and MDDSI). (A) Pulse wave amplitude (PWA), (B) pulse transit time (PTT), and (C) pulse rate (PR). The left column shows the
angle (degree of coupling), the middle column is the directional coupling (λ), and the right column is the bi-directional coupling (λbi).
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standard deviation) for each oscillatory component (OC1–OC4).
This allowed us to evaluate both linear and nonlinear properties of
the coupling dynamics when comparing groups.

Previous research has reported reduced heart rate variability
(HRV) and impaired respiratory sinus arrhythmia (RSA) as
hallmarks of MDD (Brunoni et al., 2013; Wainsztein et al., 2020).
However, unlike traditional HRV or RSA indices, which are limited
to global measures and unidirectional influences, this study
demonstrates that mid- and high-frequency oscillatory
components (OC3 and OC4) in cardio-respiratory
signals—particularly pulse rate (PR) and pulse transit time (PTT)
that carry discriminative value in differentiating MDD from
MDDSI. Specifically, the bidirectional coupling strength (λbi) of
PR in OC3 yielded significant group differences, while the reduced
Higuchi fractal dimension associated with PTT inMDDSI suggests a
collapse in physiological complexity. These results extend previous
findings of diminished fractal scaling in subthreshold or overt
depressive states (Mandarano et al., 2022; Valenza et al., 2015;
Bartsch et al., 2014). The directional entropy differences observed
between MDD and MDDSI agree with prior entropy-based studies
on affective states, where reduced entropy reflected diminished
variability between both groups and increased physiological
rigidity (Sheridan et al., 2021; Čukić et al., 2023). This is
particularly relevant when considering the role of entropy in
predicting suicidal ideation linked to altered
photoplethysmographic entropy dynamics (Khandoker et al.,
2017a; Khandoker et al., 2017b). The introduction of both
oscillatory components and spectral indices provided a

multifaceted view of coupling dynamics. Although this finer
stratification makes direct physiological interpretation more
complex, it also offers exploratory value by uncovering patterns
that may support state discrimination. Such an approach
complements established methodologies and may open avenues
for refining feature selection in future studies. Moreover, λ(tk)
and Biλ(tk) are nonlinear indices of cardiorespiratory coupling75.
The additional features extracted, e.g., fractal dimensions, entropy,
and spectral indices, were therefore considered as descriptors of the
variability and structural properties of the λ(tk) time series. This
approach was adopted to maximize discriminatory potential
between groups and provide a summary of these time series in
the form of extracted features.

While earlier approaches like Granger causality and transfer
entropy have been instrumental in identifying directionality in
physiological networks, they often suffer from high
computational demands and limited applicability to
nonstationary data (Abdul Razak and Jensen, 2014). The current
study addresses these issues by extending the Niizeki-Saitoh phase
coherency algorithm into a bidirectional coupling framework that is
both computationally efficient and physiologically interpretable
(Niizeki and Saitoh, 2012). The suggested λbi, further improves
inconclusive or weak cardiorespiratory interactions using traditional
long-range correlation techniques (Valenza et al., 2018a; Faes et al.,
2013). Furthermore, the use of SwD provided an advantage over
conventional decomposition methods such as empirical mode
decomposition or variational mode decomposition, which may
introduce mode mixing or fail to adapt to signal-specific

FIGURE 8
Heatmaps of the statistical p-valuewere obtained using the time-domain, fractal dimension (FD), and frequency-domain features of the control and
MDD. (A) Pulse wave amplitude (PWA), (B) pulse transit time (PTT) and (C) pulse rate (PR). The left column shows the angle (degree of coupling), themiddle
column is the directional coupling (λ), and the right column is the bi-directional coupling (λbi).

Frontiers in Network Physiology frontiersin.org12

Jelinek et al. 10.3389/fnetp.2025.1620862

mailto:Image of FNETP_fnetp-2025-1620862_wc_f8|tif
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2025.1620862


frequency characteristics (Saleem et al., 2022). SwD preserved signal
integrity and allowed for more accurate identification of functionally
relevant oscillatory components.

The adaptive decomposition used by SwD was essential in
isolating frequency bands that correspond to autonomic nervous
system components, and integrative cortical-subcortical dynamics,
which reflect hierarchical models of autonomic regulation in
psychiatric illness (Lahey et al., 2021). The current results suggest
that MDDSI is characterized not only by a further degradation of
vagal regulation and signal complexity compared to MDD, but also
by a specific pattern of disrupted bidirectional interaction across
oscillatory bands. This reinforces the hypothesis that suicidality
represents a physiologically distinct phenotype within depressive
disorders, with implications for diagnostic stratification and targeted
intervention.

Limitations

This study provides novel insights into frequency-specific
bidirectional cardio-respiratory coupling in depression and
suicidal ideation. However, several limitations need to be
mentioned. However, there are limitations. The sample size was
relatively small, particularly in the MDDSI group, potentially
limiting statistical power and generalizability. Additionally, the
use of only resting-state data and the available two-minute signal
segments influence the detection of longer-range dynamics. Despite
these constraints, the findings indicate the clinical potential of

Swarm Decomposition and bidirectional coupling metrics,
specifically λbi in OC3 and OC4, as physiological biomarkers for
stratifying depressive phenotypes for clinical decision making and
treatment options. Use of multimodal and bidirectional coupling has
shown their importance in differentiating MDD from MDDSI
through entropy and fractal features and incorporating multiscale
network physiology into digital psychiatry. Moreover, we did not
examine spectral measures of GC, which extend GC into the
frequency domain and may provide additional insights into
oscillatory interactions between physiological systems (Faes et al.,
2022; Chicharro, 2011; Bilgin et al., 2009). Future work is aimed at
replicating these results in larger, longitudinal cohorts, integrating
multimodal data (e.g., EEG, behavioral indices), and exploring how
these metrics respond to therapeutic interventions.

Conclusion

In this study, we examined coupling dynamics across multiple
oscillatory components to differentiate between MDD subtypes and
healthy controls. This study shows that frequency-specific
disruptions in bidirectional cardiorespiratory coupling, together
with reductions in signal complexity and entropy, distinguish
MDDSI from other groups. These findings suggest impaired
autonomic adaptability and emotional regulation in this high-risk
depressive state. By combining phase-based coupling metrics with
SwD analysis, our work highlights promising physiological markers
that may support early identification and stratification of depressive

FIGURE 9
Heatmaps of the statistical p-valuewere obtained using the time-domain, fractal dimension (FD), and frequency-domain features of the control and
MDDSI. (A) Pulse wave amplitude (PWA), (B) pulse transit time (PTT) and (C) pulse rate (PR). The left column shows the angle (degree of coupling), the
middle column is the directional coupling (λ), and the right column is the bi-directional coupling (λbi).
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subtypes in digital psychiatry. Future research should aim to validate
these markers in larger cohorts and refine their clinical applicability.
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