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Introduction: Periodic brain stimulation (PBS) techniques, either intracranial or
non-invasive, electrical or magnetic, represent promising neuromodulatory tools
for the treatment of neurological and neuropsychiatric disorders. Through the
modulation of endogenous oscillations, PBS may engage synaptic plasticity,
hopefully leading to persistent lasting effects. However, stabilizing such effects
represents an important challenge: the interaction between induced
electromagnetic fields and neural circuits may yield highly variable responses
due to heterogeneous neuronal and synaptic biophysical properties, limiting PBS
clinical potential.

Methods: In this study, we explored the conditions on which transcranial
alternating current stimulation (tACS) as a common type of non-invasive PBS
leads to amplified post-stimulation oscillatory power, persisting once stimulation
has been turned off. We specifically examined the effects of heterogeneity in
neuron time scales on post-stimulation dynamics in a population of balanced
Leaky-Integrate and Fire (LIF) neurons that exhibit synchronous-irregular
spiking activity.

Results: Our analysis reveals that such heterogeneity enables tACS to engage
synaptic plasticity, amplifying post-stimulation power. Our results show that such
post-stimulation aftereffects result from selective frequency- and cell-type-
specific synaptic modifications. We evaluated the relative importance of
stimulation-induced plasticity amongst and between excitatory and inhibitory
populations.

Discussion: Our results indicate that heterogeneity in neurons’ time scales and
synaptic plasticity are both essential for stimulation to support post-stimulation
aftereffects, notably to amplify the power of endogenous rhythms.
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Introduction

Brain stimulation has attracted significant interest in the last
decades (Takeuchi and Berényi, 2020; Gschwind and Seeck, 2016;
Bronstein et al., 2011). Various simulation techniques have shown
promising results, and more are coming. Researchers, experimentally
and theoretically, have addressed numerous challenges related to the
effects of these interventions on behaviour (Miniussi and Vallar, 2011;
Bestmann et al., 2015), brain function (Polanía et al., 2018), as well as
pathologies such as epilepsy (Takeuchi and Berényi, 2020; San-Juan
et al., 2022), Parkinson’s (Benninger et al., 2010; Madadi Asl et al.,
2023), major depressive disorder (MDD) (Riddle et al., 2020; Haller
et al., 2020) and stroke (Schlaug et al., 2008; Monti et al., 2013).
Despite these promising results, it is still unclear how brain
stimulation interventions shape endogenous brain dynamics (Ali
et al., 2013; Helfrich et al., 2014; Alagapan et al., 2016; Reato et al.,
2010) and the neural circuits that support them (Zaehle et al., 2010;
Pariz et al., 2023). Indeed, brain stimulation outcomes remain
variable: induced changes in neuron excitability vary remarkably
between stimulation sites, repeated trials, and subjects, oftentimes
vanishing after stimulation offset (Vogeti et al., 2022; Maeda et al.,
2000; Eldaief et al., 2011; López-Alonso et al., 2014; Temperli et al.,
2003). Uncovering the source of this variability can help to optimize
existing brain stimulation paradigms and stabilize their effect on brain
dynamics and plasticity.

Periodic brain stimulation (PBS) techniques, such as transcranial
alternating current stimulation (tACS), repetitive transcranial
magnetic stimulation (rTMS), and deep brain stimulation (DBS)
have repeatedly been shown to be capable of altering neurons’
dynamics to interfere with cortical rhythms (Helfrich et al., 2014;
Alagapan et al., 2016; Kasten et al., 2022; Kasten et al., 2016; Vossen
et al., 2015; Negahbani et al., 2018; Herrmann et al., 2016; Krause et al.,
2019; Nowotny et al., 2003; Lubenov and Siapas, 2008), thereby
engaging synaptic plasticity by altering the neurons’ dynamics,
firing rates and spike-timing (Sjöström et al., 2001) by modulating
phase- and/or mode-locking beahviour of neurons (Pariz et al., 2023;
Farokhniaee and Large, 2017) to alter network connectivity (Madadi
Asl et al., 2023; Kromer and Tass, 2022; Kromer and Tass, 2024).
However, the effects of these various types of stimulation may
generate widely variable responses, notably due to physiological
differences among neurons, while engaging different forms of
brain plasticity (Shen et al., 2003). In fact, neural plasticity has
been shown to depend on the stimulation frequency (Lea-Carnall
et al., 2017; Yamawaki et al., 2012), highlighting the importance of
tuning stimulation parameters to elevate its effects.

tACS is thought to work by engaging endogenous oscillations
through time-varying electromagnetic waveforms and altering
mode-locking behavior via continuous currents (Farokhniaee and
Large, 2017; Elyamany et al., 2021), thereby inducing structural and
functional changes in targeted regions (Madadi Asl et al., 2023;
Herrmann et al., 2016; Hutt et al., 2018) potentially through diverse
plasticity mechanisms (Shen et al., 2003; Pfister and Gerstner, 2006).
This stimulation paradigm can entrain oscillations and elicit
persistent after-effects lasting beyond the stimulation duration
(Alagapan et al., 2016; Reato et al., 2010; Krause et al., 2022).
Additionally, the efficacy of the entrainment and subsequent
post-stimulation effects are state-dependent (Alagapan et al.,
2016; Lefebvre et al., 2017), notably because of the competing

influences of endogenous oscillations and tACS-induced forcing
(Krause et al., 2022; Lefebvre et al., 2017). Multiple hypotheses for
such persistent effects have been proposed, ranging from feedback
reverberation (Alagapan et al., 2016; Park et al., 2018) to synaptic
plasticity (Madadi Asl et al., 2023; Vogeti et al., 2022; Kromer and
Tass, 2022; Schwab et al., 2021; Pfister and Tass, 2010). Yet,
mechanisms remain poorly understood and outcomes are highly
variable (Huang et al., 2017; Goldsworthy et al., 2016; Ridding and
Ziemann, 2010).

Understanding the mechanisms underlying post-stimulation
effects–critical for the clinical efficacy of tACS–remains challenging
due to cellular heterogeneity. Numerous seminal studies show that
neural responses to tACS, are influenced by biophysical properties like
the membrane time constant (MTC) (Pariz et al., 2023), which shapes
neuronal frequency selectivity and varies across cortical regions (Cheng
and Lu, 2021; Moradi Chameh et al., 2021; Institute A. Dataset: Allen
Institute for Brain Science, 2015). The MTC is a quantity that reflects
the agility of neurons in response to time-varying stimuli (Cheng and
Lu, 2021), and dictates their varied frequency selectivity (Pariz et al.,
2023). The MTC varies significantly across cortical layers, and brain
areas, ranging from a few to tens ofmilliseconds (Moradi Chameh et al.,
2021; Institute A. Dataset: Allen Institute for Brain Science, 2015). Such
variability has been shown to mediate selective, direction-specific
synaptic plasticity under tACS (Pariz et al., 2023) and hence
represents a promising candidate in supporting persistent post-
stimulation effects. Indeed, stimulation-induced and MTC-
dependent changes in neuronal spike timing, further modulated by
endogenous oscillations, may solicit Hebbian spike timing dependent
plasticity (STDP) to support changes in synaptic weights (Zaehle et al.,
2010; Pariz et al., 2023). In this study, we investigated how low-
amplitude sinusoidal stimulation (tACS) affects synaptic plasticity
across neurons with heterogeneous MTCs and induce transient
post-stimulation aftereffects. We explored two network states: a
weak-coupling regime dominated by stimulation and a strong-
coupling regime dominated by recurrent activity. Please note that in
the Results section, we mainly focused on the weak coupling regime,
and the strong coupling regime is presented and discussed in the
Supplementary Material in details. We found that plasticity
outcomes–and resulting changes in oscillatory power–were specific
to stimulation amplitude and frequency, with excitatory–excitatory
and inhibitory–excitatory connections playing key roles in
generating persistent effects (Zaehle et al., 2010; Pariz et al., 2023;
Kasten et al., 2016; Vossen et al., 2015). These findings emphasize the
importance of accounting for biophysical diversity when designing
stimulation protocols (Madadi Asl et al., 2023; Kromer and Tass, 2022;
Kromer and Tass, 2024; Pfister and Tass, 2010).

Results

Besides entrainment, which naturally occurs through the
oscillatory modulation of targeted regions (Herrmann et al.,
2016), one purpose of tACS is to yield persistent effects that
outlast stimulation duration. Intuitively, this objective can not be
fulfilled unless tACS changes some physiological characteristics of
the area under intervention. While sufficiently large amplitude
stimulation is capable of altering neuronal spiking activity (Pariz
et al., 2023), the nature of the responses will also depend on the
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neurons’ heterogeneous biophysical attributes. Such a key attribute
is the membrane time constant (MTC). The membrane time
constant is a key parameter representing the agility of neurons in
response to time-varying stimuli (Pariz et al., 2023; Cheng and Lu,
2021; Brette, 2015). Such wide heterogeneity in time scales translates
into significant variability in neurons’ response to periodic
stimulation: neuron spiking phase (in respect to the stimulation
phase in which the neuron spikes) depends on the interplay between
stimulation frequency and the neurons’ MTCs (Pariz et al., 2023).
For instance, in the Leaky-Integrate and Fire (LIF) neuron model
used in this study (see Materials and methods), differences in the
spiking phase (i.e, Δϕ(τm), where τm is the neuron MTC) resulting
from a stimulation frequency ωs between neurons with distinct
MTCs can be translated into a difference in spike timing
i.e., ΔT � Δϕ(τm)/ωs. Such a difference in spike timing (Bi and
Mm, 2001) has important implications for synaptic plasticity,
stimulation-induced changes in synaptic weights, and their joint
influence on endogenous oscillatory activity. Here we will explore
the results of this interplay on neuronal population dynamics.

Network properties and dynamic influenced
by tACS

We built a network of 10,000 leaky integrate-and-fire (LIF)
neurons, consisting of 8,000 excitatory (E) and 2,000 inhibitory (I)

units, with a 10% connection probability and plastic synapses, to
represent a cortical network (see Materials and methods and
Table 1). Under these parameters, the network exhibits a
Synchronous-Irregular (SI) balanced state (Brunel, 2000),
characterized by a power spectrum peaked in the upper β band,
with an endogenous frequency f ~ 30Hz. We use f to denote the
endogenous frequency, i.e., the frequency observed in the network in
the absence of stimulation, and ωs to refer to the exogenous
frequency, i.e., the stimulation frequency.

To promote entrainment and improve the signal-to-noise ratio
(i.e., contrast between endogenous oscillations and tACS), we set the
system in a weak-coupling regime. In this configuration, the ratio of
synaptic input to stimulation amplitude remains comparable,
especially during the early stages of the simulation, before
plasticity significantly alters connectivity. Although individual
synaptic weights are small in this regime (see Table 1), the net
synaptic current amplitude is comparable to stimulation-induced
fluctuations: the average maximum synaptic current during
population synchronous spiking is approximately 0.5mV, with a
standard deviation of ~0.1mV (see Supplementary Material for
more details). In contrast, the strong-coupling regime emerges
after ~600 s of spontaneous network activity in the absence of
stimulation. During this period, synaptic plasticity modifies the
connectivity such that synaptic input dominates over stimulation
amplitude. This regime avoids competition between recurrent
synaptic inputs and stimulation-induced fluctuations (Krause

TABLE 1 Parameters of the neuronal populations.

Parameters Values Description

NE 8,000 Number of excitatory (E) neurons

NI 2,000 Number of inhibitory (I) neurons

Pxy 10%, x, y ∈ [E, I] Connectivity probability amongst neurons

τm μτm � 10, στm � 3ms Neuron membrane time constant (MTC)

Vrest −60 ± 0.2 (mV) Resting membrane potential

g0 1 × 10−3 (a.u.) Initial Synaptic weight

gE→E
0 g0, σg � 0.1g0 Initial Synaptic weight amongst E to E neurons

gE→I
0 g0, σg � 0.1g0 Initial Synaptic weight amongst E to I neurons

gI→E
0 5g0, σg � 0.1g0 Initial Synaptic weight amongst I to E neurons

gI→I
0 4g0, σg � 0.1g0 Initial Synaptic weight amongst I to I neurons

gmax 2 × g0 Maximum value of synaptic weight

Esyn E � 0 (mV), I � −85 (mV) Reversal potential

td 0.5–1 ms Axonal delay

τr 0.5 ms (AMPA), 0.5 ms (GABAa) Synaptic rise time constant

τd 3 ms (AMPA), 5 ms (GABAa) Synaptic decay time constant

vthr −54 (mV) Threshold value

τref 2 ms Refractory time

Iζ μ � 5.5 (mV) and σ � 1 (mV) Mean input current and noise SD.

As 1 (mV) Stimulation amplitude
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et al., 2022; Lefebvre et al., 2017). We explored this condition in the
Supplementary Material and found qualitatively similar results. In
the rest of this study, we focus on results obtained under the weak-
coupling regime.

We subjected this network to periodic stimulation of various
amplitudes (As) (Schwab et al., 2019), and frequencies (ωs), for a
period of 15 seconds (simulation time, from t � 5s to t � 20s). We
then compared changes between the dynamics observed before
stimulation (i.e., pre-stimulation) and after stimulation (i.e., post-
stimulation) over epochs of 4 seconds. Specifically, we calculated the
power spectrum over the pre-stimulation epoch (i.e., t � [1 5]s), the
stimulation epoch (i.e., t � [10 14]s), as well as the post-stimulation
epoch (i.e., t � [20.5 24.5]s). The time intervals corresponding to
each of those epochs have been selected to avoid any transient
effects. To investigate the relationship between MTC heterogeneity
and the persistence of stimulation-induced aftereffects, we plotted
representative dynamics of the network in pre- and post-stimulation
epochs in Figure 1 (See Supplementary Material for strong-coupling
regime). We randomly selected 60 excitatory neurons and compared
both network connectivity and the relative magnitude of synaptic
weights between pre- and post-stimulation epochs in Figures

1A1,B1, respectively. Comparing these panels, one can readily
notice stimulation-induced changes in synaptic weights and/or
connectivity persisting well after stimulation offset. This effect
was found to be mediated by variability in MTC. Corresponding
synaptic weight matrices are plotted in Figures 1A2,B2, respectively.
As shown in Figures 1A3,B3, the endogenous synchronous irregular
activity present in the pre-stimulation period has been amplified in
the post-stimulation epoch, accompanying a persistent increase in
neuronal firing rates (Note that firing rates are lower than the
network endogenous frequency as expected from irregular
synchronous dynamics (Vogels and Abbott, 2005), i.e., the
median of excitatory neurons firing rate is ~0.5Hz for pre-
stimulation and ~1.5Hz for post-stimulation. See Figures
1A4,B4). The underlying population’s local field potential (LFP)
(see Equation 5 inMaterials and methods) also exhibits a significant
increase in spectral power, especially salient at the endogenous
(i.e., resonant) oscillation frequency and outlasting stimulation
duration (see Figures 1A5,B5, also Figures 1A6,B6). We
generalized these results in Supplementary Figures S2, S3, by
choosing different distances to the threshold (by increasing the
distance between resting and threshold potential) for each cell in the

FIGURE 1
Comparison of neuronal network connectivity and dynamics before and after stimulation. (A1,B1) depict the pre- and post-stimulation population
connectivity diagram, highlighting the changes in synaptic weights resulting from tACS. Here we plotted the connectivity amongst 60 randomly selected
excitatory neurons during pre- (t<5 s) and post-stimulation (t> 20 s) epochs, respectively. The neurons are sorted based on their MTC in a clockwise
manner. The radius and colour of nodes indicated the change in the neuron’s MTC as the colorbar in (A1) The arrows indicate the connection from
pre-to postsynaptic neurons. Synaptic weights are subjected to a Hebbian pair-based STDP (see 4). The arrows’ thickness and colour indicate the
connection’s strength as colour-coded in (A2,B2) the corresponding synaptic weightmatrices which are another representation of connectivity changes.
The colorbar shows the strength of synaptic weights amongst pre- and postsynaptic neurons. (A3,B3) show the spiking activity of excitatory (E) and
inhibitory (I) neurons in pre- and post-stimulation epochs, respectively. Note that the neurons’ spikes are plotted based on their MTC for each E (red dots)
and I (blue dots) neuron, i.e., neurons with smaller MTCs have higher firing rates. (A4,B4) indicate neurons’ firing rates ρ in the pre- and post-stimulation
epoch, respectively. The population shows synchronous irregular (SI) activity. Note that individual neuronal firing rates are smaller than the network’s
endogenous oscillatory frequency. (A5,B5) show the LFP (see Equation 5) for pre- and post-stimulation epochs, respectively. (A6,B6) show the resultant
power spectrum of population activity in pre- and post-stimulation epochs, respectively. Here, ωs � 25Hz, and As � 1 (mV). To plot the connectivity
diagram (A1,B1) we used freely available software Gephi (Bastian et al., 2009).
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network, and by introducing heterogeneity in the threshold values.
Note that this parameter change, even though it increased the
amplitude of the oscillation, did not qualitatively change these
results. The underlying mechanism behind this phenomenon
may involve neurons being activated at different phases of
stimulation, which induces selective synaptic weight modification
and leads to amplified oscillatory activity. Further research is needed
to explore the reasons behind this response, which are beyond the
scope of this study.

Post-stimulation aftereffects depend on
stimulation parameters

Having identified post-stimulation amplification in endogenous
oscillations, we next evaluated how this phenomenon depends on
stimulation parameters. In Figures 2A,B, we plot the peak LFP
power spectrum for various stimulation frequencies, both during
and after stimulation offset. Stimulating at frequencies ranging from
ωs � 1Hz to ωs � 40Hz (As � 1 (mV)) invariably increases LFP

power during entrainment, especially for stimulation frequencies
near the resonant endogenous frequency. The effect carried over to
the post-stimulation epoch: as can be seen in Figure 2B, peak power
remained high around the population endogenous frequency despite
no stimulation being present, indicative of stimulation-induced
engagement of synaptic plasticity. Optimal post-stimulation peak
power was observed at a stimulation frequency ofωs ~ 23Hz, which
we note is different from the network endogenous oscillation
observed before stimulation onset (f ~ 28Hz). This indicates
that stimulation-induced changes in synaptic coupling might be
higher at non-resonant frequencies, which possibly reflects the
interaction of the neurons’ MTCs with the stimulation frequency.

Stimulation amplitude is also crucial to elicit - and possibly
maintain - persistent entrainment and associated changes in
synaptic coupling. We plotted in Figures 2C,D the peak LFP
power as a function of stimulation amplitude (i.e., As) both
during and after stimulation offset. Two stimulation frequencies
(i.e., ωs � 25, and 30Hz) were considered as they both reside within
the range of frequencies for which the effect of post-stimulation LFP
power is significant (see Figure 2B). While peak LFP power increases

FIGURE 2
Interaction between stimulation frequency and amplitude in driving synaptic plasticity and post-stimulation aftereffects (A,B) show the maximum
value of the LFP power spectrum at different stimulation frequencies during entrainment and post-stimulation epochs, respectively. Note that the
maximum peak power may occur at different frequency other than the endogenous frequency, but fluctuates around the endogenous frequency
f ~ 28Hz. (C,D) show the maximum value of the LFP power spectrum while the amplitude of stimulation changes as the x-axis for entrainment and
post-stimulation epochs, respectively, for ωs � 25, and 30Hz. (E–G) display the power spectrum of LFP at different time points and situations. In (E) the
stimulation is OFF, ωs � 0Hz, As � 0 (mV), and the figure shows the power spectrum of population oscillation within 2 min (simulation time) of free
evolution. (F) Power spectra obtained after shuffling synaptic weights (within each cell-type) and re-sampling synaptic weights from the same
distribution, (within each cell-type). The synaptic weight matrix after turning off periodic stimulation suppresses spectral amplitude. Sham control
condition refers to the case where there is no stimulation. The term sampled refers to the case where the neuronal population is built by randomly
sampling synaptic weights from the same distribution. The power spectrum was computed at the end of the stimulation epoch (see Materials and
Methods). (G) Illustrates the post-stimulation power changes observed at different time points. The colours, as the legend in (E) indicate the time intervals
used to calculate the LFP power spectrum. In (E–G) the stimulationwasONover t ∈ [520)swith As � 1 (mV) andωs � 25Hz. The error bar, represented by
the shaded area (A–D) denotes the standard deviation (SD) range around the trial-averaged values.
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linearly with stimulation amplitude during stimulation epochs (see
Figure 2C), a thresholding effect can be observed in the post-
stimulation period. Indeed, a minimum stimulation amplitude
appears to be required to cause post-stimulation LFP power
amplification (Figure 2D). These results indicate that a high
stimulation amplitude is required to modulate the neurons’
membrane potential and spiking response, to cause changes in
connectivity significant enough to yield observed post-stimulation
effects. The difference in LFP spectral power between the two
selected stimulation frequencies (i.e., ωs � 25 and 30Hz)
indicates that, despite expected stimulation-induced resonance
(here at ωs � f � 30Hz, see Figure 2D), amplification may occur
at different, non-resonant stimulation frequencies. We however,
emphasize that stimulation-induced change in synaptic coupling
may trigger shifts in endogenous oscillatory activity, causing the
peak power to fluctuate around a frequency of
f ~ 28Hz (± 1Hz std.).

We further investigated whether and how MTC heterogeneity is
involved in generating those results. Is the LFP power amplification
observed post-stimulation due to a global, non-specific increase in
synaptic coupling, or is it instead due to selective, MTC-mediated
synaptic plasticity? To answer this question, we first explored the
effects of STDP on post-stimulation power amplification. As shown
in Figure 2E, in the absence of stimulation (i.e., sham; As � 0) while
the network remains exposed to STDP due to its own endogenous
activity, no significant shift in LFP power can be observed.

Stimulation-induced amplification in post-stimulation power
was found to rely heavily on selective synaptic modifications,
i.e., synapse-specific directional changes resulting from periodic
entrainment of neurons possessing distinct MTCs (Pariz et al.,
2023). To expose the role of such selectivity, we randomly
shuffled synaptic weights amongst neurons of the same cell-type
while preserving their overall statistics (see Materials and methods).
Figure 2F compares the spectral power obtained without stimulation
(sham control; As � 0 (mV)) and post-stimulation (stim. Control;
ωs � 25Hz, As � 1 (mV)) conditions with those obtained by
shuffling and/or sampling synaptic weights randomly while
preserving their respective distributions, within and between cell
types. To do this, we first calculated the synaptic weight distribution
amongst all synaptic types (i.e., E → E, E → I, and I → E; Note that
I → I remained unchanged). We next randomly shuffled synaptic
weights in the network and examined whether post-stimulation
oscillatory amplification could be observed over epochs of 4 s (no
stimulation was applied during that period). As shown in Figure 2F,
no post-stimulation increase in power could be observed, indicating
that while displaying the same overall statistics (i.e., being shuffled,
there are no changes in synaptic weights value and the distribution
remains unchanged within each cell-type; See Materials and
methods), selective plasticity between neurons with distinct MTCs
is essential in generating amplified oscillation. We pushed the
analysis further and sampled synaptic weights independently,
only using the cell-type specific distributions calculated above
(i.e., agnostic of the actual values of those weights). With this,
the same result could be observed: in the absence of selectivity,
post-stimulation oscillatory amplification vanishes.

Our results indicate that despite the significance of oscillatory
amplification and its manifest reliance on MTC heterogeneity, all
reported post-stimulation after-effects were found to be transient, as

reported in several studies (Zaehle et al., 2010; Kasten et al., 2016;
Vossen et al., 2015) and dissipate over time after stimulation is
turned off. Upon stimulation offset, prevailing endogenous
synchronous irregular activity engages STDP to bring synaptic
connectivity back to baseline (see Figure 2G).

Synaptic weights evolution depends on
stimulation parameters and neurons’
properties

We examined the evolution of synaptic weights between all types
of synapses in Figure 3 with respect to differences in MTCs,
i.e., Δτm � τprem − τpostm . In Figure 3, we plot synaptic weights
evolution for different stimulation frequencies i.e., ωs � 15Hz
(Figures 3A1–A4), 25Hz (Figures 3B1–B4), and 35Hz (Figures
3C1–C4). These frequencies were selected to help the comparison
between the dynamics and resulting plasticity at stimulation
frequencies that either amplify the post-stimulation power
(i.e., ωs � 25Hz) and frequencies that do not (ωs � 15, 35Hz;
see Figure 2B). Although synaptic changes are noticeable in all of
these cases, their relative magnitude was found to be highly
frequency-specific. For instance, synaptic weights between
excitatory and inhibitory neurons (i.e., E → I
(Figure 3A2,B2,C2), display a broader range of synaptic
modifications at ωs � 25Hz (Figure 3B2) compared to other
frequencies (Figure 3A2,C2). This indicates that the stimulation
frequency(~25Hz), solicits MTC heterogeneity more strongly,
leading to selective synaptic changes spanning a greater range of
Δτm and stronger power amplification (see Figure 3A4,B4,C4). This
is in contrast to Figure 3A2,C2 where synaptic weight changes were
more selective for negative Δτm. The same effect could be observed
for synapses between different cell types: selective modification
observed amongst E → E and I → E synapses displayed a similar
trend. Synaptic weight changes observed scaled withMTCmismatch
as previously reported (Pariz et al., 2023), and further persisted over
time after stimulation offset. In the last column, (A4), (B4), and
(C4), for comparison purposes, we plotted the pre- and post-
stimulation power resulting from each stimulation frequency
used (ωs � 15, 35Hz).

Influence of cell-type heterogeneity and
synaptic plasticity on post-
stimulation effects

Heterogeneity amongst and between different cell types, either
excitatory or inhibitory, has different consequences on the post-
stimulation power. To quantify this, we explored in Figure 4 the
effects of cell-type MTC heterogeneity on post-stimulation LFP
power. As shown in Figure 4A, MTC heterogeneity among
excitatory neurons (i.e., στEm , along the horizontal axis) enhances
post-stimulation power (i.e., Smax), whereas increasing MTC
heterogeneity among inhibitory neurons (i.e., στIm , along the
vertical axis) abolishes the effects (See Figure 4A). The greater
diversity observed among cortical inhibitory interneurons
compared to excitatory neurons (Soltesz, 2006), may hinder
stimulation effects and possibly prevent power amplification.
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However, it should be noted that the frequency of stimulation is
another factor that determines the stimulation effects. We measured
this in Figure 4B, where we varied the level of MTC heterogeneity of
E and I neurons (i.e., both E and I neurons were assumed to express
the same variation in MTC heterogeneity στm) and the frequency of
stimulation. A similar increase inMTC variability of E and I neurons
contributes to the induction of post-stimulation effects over a wider
stimulation frequency range, i.e., [20 30]Hz. Having the same
heterogeneity among inhibitory and excitatory neurons amplifies
response power and therefore creates the necessary conditions for
optimal synaptic weight changes, which ultimately leads to the
amplification of oscillation power.

These results highlight the importance of considering
plasticity among and between neuron subtypes. To investigate
which synapses are more significantly involved in mediating the
post-stimulation aftereffects, we applied periodic electrical
stimulation on the same population at different degrees of
MTC heterogeneity while selectively turning ON and OFF
STDP amongst different cell types. This enabled the
identification of synapses whose plasticity is more significantly
solicited during stimulation. In Figures 4C1–C4, we show that
plasticity between excitatory to excitatory neurons (that is,
E → E) and between inhibitory to excitatory neurons (that is,
I → E) is more involved in the amplification of the LFP power.
The effect was also found to scale with the level of MTC

heterogeneity across cell types (excitatory and inhibitory
neurons) as of Figures 4C1–C4 where the post-stimulation
power amplified as we increased the σE, Iτm

. Introducing
plasticity among inhibitory neurons, under the same
conditions as previously considered, is found to suppress the
amplitude of post-stimulation aftereffects (see and compare
Supplementary Figures S1A, 2AB). These results suggest that
blocking synaptic plasticity, whenever applicable, among
synaptic subtypes may lead to a significant increase in post-
stimulation power. Further investigations are required to
determine the implications of MTC and cell-type specific
synaptic blocking on tACS-induced aftereffects.

Materials and methods

Spiking neuron model

We modelled a population of excitatory and inhibitory Leaky-
Integrate and Fire (LIF) neurons (Brette, 2015; Tuckwell, 2006). The
differential equation for the evolution of the subthreshold
membrane potential of each neuron is

τm
dv

dt
� Vrest − v( ) + Iζ + Isyn + Is, (1)

FIGURE 3
Frequency- and cell-type–specific effects of MTC heterogeneity on synaptic and spectral dynamics. Figure groups A (i.e., A1-A4), B (i.e., B1-B4), and
C (i.e, C1-C4) are related to the stimulation frequencies ωs � 15, 25, and 35Hz, respectively. The heat-map plots show the dynamics of synaptic weights
over time (x-axis) between synapses which we sorted according to their MTC difference (y-axis), Δτm � τprem − τpostm . Figures in each of the columns (first,
second, and third column), from left to right, depict the evolution of the synaptic weights between E → E, E → I, and I → E, respectively, for the 30s
(simulation time). Vertical lines in each panel divided the simulation into three epochs: the pre-stimulation (t � [1 5)s), stimulation (t � [5 20)s), and post-
stimulation (t � [2030)s) epochs. In themost right column, (A4,B4,C4) the power spectrum of neuronal population rhythm for pre- and post-stimulation
epochs are plotted. For better comparison, we preserved the same y-axis range for all panels. The error bar, represented by the shaded area, denotes the
standard deviation (SD) range around the trial-averaged values.
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where τm is the MTC, v is the membrane potential, Vrest is the
resting membrane potential, and Iζ represents an external current
modelled here as white noise with a mean value of μ and a standard
deviation σ. The term Isyn represents the synaptic current, while Is
is the stimulation-induced current, which is here assumed to be a
sinusoidal input (representing transcranial alternating current
stimulation (tACS), (Krause et al., 2019; Krause et al., 2022;
Schwab et al., 2021)), i.e., Is � As sin(2πωst), where As and ωs

are the amplitude of the periodic signal, and the angular frequency
respectively. When a neuron crosses the threshold value
vthr � −54 (mV), it spikes and its membrane potential resets to
resting value Vrest � −60 (mV) and remains there for τref � 2ms
representing the neuronal refractory period. Although having
larger refractory periods alters the neurons’ firing, the results
remain consistent (not shown). The parameters are in the
physiological range (Gerstner et al., 2014) and summarized in
Table 1. The total simulation time, unless otherwise stated, is 30 s,
including pre-stimulation (sham epoch): t ∈ [0 5)s, stimulation
epoch: t ∈ [5 20)s, and post-stimulation epoch: t ∈ [20 30]s
(Extended stimulation periods did not show any significant
difference. Data is not shown). The total synaptic current for
neuron i is given by

Iisyn � ∑NE

j�1
gE
ijSij t( ) vi − Ej

syn( ) +∑NI

j�1
gI
ijSij t( ) vi − Ej

syn( )
where gE,I

ij are synaptic weights matrices associated with
connections between either excitatory (E) and inhibitory (I)
presynaptic neurons towards a postsynaptic neuron i. The sum is
taken over NE excitatory and NI inhibitory presynaptic neurons
over two nearest spike times. The reversal potential, Esyn, for E and I
neurons are 0 (mV) and −80 (mV), respectively. The synaptic
response function Sij(t) for connections from neuron j to
neuron i is modeled as

Sij t( ) � Λ exp −t − tjsp − tijd
τr

( ) − exp −t − tjsp − tijd
τd

( )
Λ � 1/

τr
τd

( )
τr

τd−τr − τr
τd

( )
τd

τd−τr⎛⎝ ⎞⎠
where tjsp is the spiking time of jth neuron, and tijd is the axonal delay
between presynaptic neuron, j, and postsynaptic neuron, i. The τr
and τd, are rise and decay synaptic time constants, respectively,
associated with GABAa and AMPA receptors (see Table 1);
(Gerstner et al., 2014).

FIGURE 4
MTC heterogeneity amongst cell types modulates post-stimulation oscillation power. (A) Shows the peak spectral power in the post-stimulation
epoch as the level of MTC heterogeneity of E (i.e., στEm ) and I (i.e., στIm ) cells is varied independently. TheMTCdistributions were drawn here from aGaussian
distribution, and στE,Im

refers to the standard deviation. (B) Shows the peak spectral power in the post-stimulation epoch as a function of stimulation
frequency (ωs) and when the standard deviation (στm) of MTC’s distribution of both E and I cells is varied. (C1–C4) show the changes in the peak
spectral power in the post-stimulation epoch, while STDP is active only between the indicated groups of neurons along the horizontal axis, and for
different values of στE, Im

, respectively. In these plots ωs � 25Hz and As � 1 (mV).
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Individual synaptic weights are randomly chosen from a normal
distribution with mean and standard deviation as given in Table 1
(sham control). In shuffled (see Figure 2F), first we let the simulation
run for 20s, and instantaneously shuffled the synaptic weights at the
beginning of the post-stimulation epoch. We shuffled synaptic
weights within each synapse category (i.e., the synaptic weights
among E and I neurons). In the sampled case (see Figure 2F), we took
the following procedure: We let the population in stim. Control
evolve for 20s (5s pre-stimulation, and 15s stimulation epochs). We
then calculated the distribution of the synaptic weights at the end of
the stimulation epoch. Then we used these distributions to randomly
sample synaptic weights within each synapse category (E → E,
E → I, and I → E) using this fitted distribution. To fit the
distribution, we used cftool package in MATLAB. We seek any
function that fits the data with R − squre> 0.95%. A representation
of this distribution is being shown in S4. These tests demonstrate
that while the overall distribution of synaptic weight may remain
intact through shuffling or sampling, selective modification is
essential for inducing post-stimulation aftereffects.

Spike timing dependent plasticity (STDP)

Plasticity in our population amongst connected neurons is
modelled using Hebbian pair-based spike-timing dependent
plasticity (Choe et al., 2013; Gütig et al., 2003; Sjöström et al.,
2010). To avoid biased synaptic changes (i.e., preferential LTP/
LTD.) we chose a symmetric STDP Hebbian learning rule (Bi and
Mm, 2001; Gütig et al., 2003; Sjöström et al., 2010). The synaptic
weight dynamics in our model follows the below equations:

Δg � A+ 1 − g/gmax( )exp −ΔT/γ+( ), if ΔT≥ 0.
−A− g/g0( )exp ΔT/γ−( ), if ΔT< 0.{

g � g + Δg
(2)

The γ+ and γ− are STDP decay time constants. ΔT � tpostsp −
tpresp − td is the time difference between the spiking time of post- and
presynaptic neurons, and td is delay between presynaptic and
postsynaptic neurons. Whenever ΔT is positive (negative), the
synaptic weight between presynaptic to postsynaptic neurons gets
potentiated (depressed). The constant gmax denotes the maximum
achievable synaptic weight, while g0 denotes the initial synaptic
weight, taken from a narrow Gaussian distribution across all
synaptic connections before learning (see Table 1).

Baseline synaptic coupling and threshold were selected to set the
network in a weak-coupling regime, sub-threshold regime, in which
an isolated presynaptic spike does not guarantee postsynaptic firing.
This regime achieved by choosing the synaptic weight from a narrow
distribution (see Table. 1) and at the early stage of simulation.
Despite weak synaptic coupling, the afferent synchronous synaptic
input each neuron receives from the rest of the network is
comparable to the stimulation amplitude, i.e., the average of
maximum synaptic input (at the onset of every synchronous
spiking activity) and its standard deviation is ~0.5 (mV) and
~0.1 (mV), respectively. In the strong-coupling regime, which the
network reaches after 600 s of simulation time (in the absence of
stimulation), the average maximum synaptic input and its standard
deviation reach approximately ~1.5 (mV) and ~0.45 (mV),

respectively. Throughout this report, we used Equation 2 for
synaptic modification, and our choice of STDP parameters are
A+ � 2A− � 4 × 10−4, gmax � 2g0 and γ± � 10ms.

Network model

We modelled a randomly connected sparse network of 10,000,
LIF neurons (see Equation 1) with a 4:1 ratio of E (8000) and I (2000)
neurons with a fixed connection probability of 0.1 (Vogels and
Abbott, 2005; Bryson et al., 2021; Campagnola et al., 2022). To
balance physiological relevance and computational tractability for
the network sizes we used the LIF neurons model (Burkitt, 2006).
The synaptic weights and other neurons’ parameters have been
selected within the reported physiological range (Campagnola et al.,
2022) to be in line with previous studies on LIF cortical network
models (see (Burkitt, 2006; Kobay and ashi, 2009; Brunel andWang,
2003) and references therein), and are further summarized in
Table 1. To study the effect of MTC heterogeneity, we randomly
sampled neuronal MTCs (τm) from Gaussian distribution with
μτm � 10ms, and στm � 3ms unless otherwise specified. The
resulting population exhibits a synchronous irregular activity (SI)
(i.e., see Figure 1A3).

Power spectral analysis

To perform spectral analysis of the network’s mean activity, we
first calculated the local field potential (LFP), �V as the weighted
ensemble average of the membrane potential i.e., (Herrmann et al.,
2016; Hutt et al., 2018; Lefebvre et al., 2017; Mazzoni et al., 2015;
Bazhenov et al., 2001),

�V � 0.8
NE

∑NE

i�1
Vi

E +
0.2
NI

∑NI

i�1
Vi

I, (3)

where the relative proportion of excitatory (0.8) versus inhibitory
interneurons (0.2) cells is taken into consideration. The power
spectral density of �V was averaged over 10 independent trials in
which the same stimulation protocol is applied, but using different
baseline connectivity, synaptic weights, and noise realizations. For
the purpose of Figures 1, 2, 4, we further took the average of the
power spectral density with a moving average window (with
MATLAB smooth function) with σ � 1.5Hz, that provided us
with a smoothed power-frequency curves (for instance,
see Figure 2B6).

Discussion

To better understand the mechanism underlying post-
stimulation amplification in oscillatory activity observed in
experiments (Alagapan et al., 2016; Clancy et al., 2022), we
extended the framework of selective STDP (Pariz et al., 2023) in
a synchronous, sparsely connected neuronal network of
heterogeneous spiking neurons. We computationally showed that
in the presence of endogenous synchronous activity, near-resonant
periodic stimulation may amplify post-stimulation power through
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selective synaptic changes, whose magnitude and direction rely on
intrinsic differences in MTC. Stimulation at the near-resonant
frequency was found to engage STDP so that the population
expresses higher endogenous oscillatory power (see Figure 2B),
resulting in transient yet prolonged overlasting effects. We
confirmed that selective, directional changes in synaptic coupling
- both within and between cell types - are responsible for such
amplification, while any shuffled, randomly assigned synaptic
weights, or intrinsic synaptic weight changes in the absence of
stimulation, are insufficient for generating aftereffects on their
own (see Figures 2E–G). The level of heterogeneity in neuronal
MTC was found to determine the efficacy of stimulation on post-
stimulation power magnitude and duration (see Figure 4A). Indeed,
in a homogeneous network (i.e., where the MTCs are identical),
neurons respond similarly to a given stimulus. Because of the
symmetric nature of our STDP rule, such homogeneity might
prevent stimulation-induced synaptic plasticity, even in the
presence of noise. This means that a minimum level of
heterogeneity is essential for pushing STDP in one direction or
another, especially while interacting with time-varying inputs.
Taken together, these results echo previous studies (Madadi Asl
et al., 2023; Kromer and Tass, 2022; Pfister and Tass, 2010) by
revealing one potential mechanism behind the effectiveness of tACS
for therapeutic purposes, specifically the stabilization of stimulation
effects on neural dynamics and connectivity. We argue that
heterogeneity in neuronal time scales represents a dominant
contributor mediating tACS efficacy, affirming the
neurophysiological bases of persistent entrainment towards the
development and/or optimization of clinical interventions. The
results were qualitatively similar in both early stage of simulation
and in the late stage where the synaptic weights modification, in the
absence of stimulation, reaches a steady state. Further results for the
latter case can be found in the Supplementary Material section. In
short, we showed that even in the steady state, where the synaptic
input currents are larger with respect to stimulation amplitude (up
to three times the stimulation amplitude; i.e., strong-coupling
regime), the post-stimulation aftereffects still depend on
stimulation frequency and amplitude, as well as the MTC
heterogeneity level (See. S6 and S9).

It should be noted that the results we report here extend to a
broad range of endogenous frequencies. For instance, networks
expressing oscillations within the alpha range may need different
stimulation frequencies to solicit selectivity in synaptic plasticity
(Lefebvre et al., 2017). This has important implications given the
broad variety of frequencies characterizing oscillopathies
(Takeuchi and Berényi, 2020; Hammond et al., 2007; Uhlhaas
and Singer, 2013), where tACS hold promise to perturb
pathological rhythms to unveil the mechanisms and
potentially treat neurological and/or neuropsychiatric
disorders. Interestingly, while stimulating at resonant/
endogenous frequency expectedly yields higher entrainment
(Lefebvre et al., 2017) (see Figure 2A), this does not always
accompany significant post-stimulation aftereffects (see
Figure 2B). We point out that our simulations also support a
state-dependent dependence on stimulation efficacy. Indeed,
weak background synaptic activity resulted in a high signal-to-
noise ratio i.e., stimulation-induced modulation in neuronal
membrane potential was significant enough to trigger

depolarization and hence recruit STDP. In the presence of
strong synaptic activity, however, the effects may fade away
(Krause et al., 2022; Lefebvre et al., 2017). We also emphasize
that to engage populations expressing a wide range of MTC,
stimulation amplitude must scale accordingly, potentially
influencing neuronal firing rates (Pariz et al., 2023). The
precise relationship between stimulation frequency, synaptic
plasticity, and persistent entrainment remains to be
fully explored.

Nonetheless, our model suffers from limitations. First, we
considered a neuronal network with random local (i.e., close
spatial proximity where axonal conduction delays are
considered small) connectivity, among cell types (E → E,
E → I, I → E, and I → I). The more realistic network as
observed experimentally (Rubinov et al., 2011) has a different
connectivity distribution which should be considered in later
investigations. Note that changes in connectivity could lead to
different axonal delay distributions among neurons which then
may influence the synaptic plasticity dynamics (Madadi Asl et al.,
2018). Second, the Hebbian pair-based STDP rule, and our
assumption that all synapses obey the same rule, are limiting
the generality of our results. Future investigations need to
consider the large variety of synaptic plasticity mechanisms
between cell types (Abbott and Nelson, 2000; Caporale and
Dan, 2008) and the possible heterogeneity in STDP parameters.
Note that introducing both Hebbian and anti-Hebbian plasticity
for efferent inhibitory synapses (i.e., I → I and I → E) (Abbott
and Nelson, 2000; Caporale and Dan, 2008; Dan and Poo, 2004;
D’amour and Froemke, 2015) yields qualitatively similar results
(strong entrainment is observed around ωs � 30Hz and the peak
power can be observed for frequencies between ωs ~ 20 − 30Hz.
See Figures 2A,B), yet the amplitude is changed (see
Supplementary Figure S1A). These results showcase the
importance of synaptic dynamics on the emergence of
oscillatory activity in recurrent neural networks and warrant
further investigation.

Synaptic plasticity selectivity is not limited to heterogeneity in
MTC: other sources of heterogeneity, such as the resting membrane
potential, rheobase, and/or spiking threshold, may promote cell-to-
cell differences in spike timing. Lastly, we have mapped neurons’
MTC using a normal distribution, whose variance στm(i.e., scaling
with the degree of heterogeneity) alters the number of synapses that
can be effectively modified by stimulation. However, similar to
natural phenomena, the MTC distribution may be better fitted
using a gamma or lognormal distribution (Pariz et al., 2023;
Limpert et al., 2001; Buzsáki and Mizuseki, 2014).

Another limitation arises from our choice of using the same
MTC distribution for both excitatory and inhibitory neurons.
This choice was motivated by the need to balance physiological
relevance and computational tractability - as well as limiting the
dimensionality of the analysis. While the introduction of cell-
type specific MTC distributions would certainly influence our
results, we note that by construction, excitatory and inhibitory
cells in our network already display differences in firing rates
(e.g., see Figure 1). Further investigations are warranted to
thoroughly examine such additional sources of heterogeneity.
We however, hypothesize that as long as the overall activity of the
neuronal population remains within an oscillatory synchronous
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irregular state, characterized by a low level of coherency, similar
results would be observed.

Conclusion

Brain stimulation techniques offer invasive and non-invasive
treatments for brain-related disorders. The promising results in the
application of these techniques attracted a wide range of
interdisciplinary researchers to investigate the response of brain
cells to these interventions and devise more effective and reliable
methods. Towards this goal, our study expanded the knowledge of
how periodic stimulation may enhance and stabilize post-
stimulation effects. Our results emphasize the importance of
neural timescale variability in the interaction between synaptic
plasticity and tACS. Overall, our results elucidate one potential
mechanism by which tACS affects neural population connectivity,
and conditions under which such intervention can lead to amplified,
overlasting effects.
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