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chaotic desynchronization of
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In this paper, we calculate magnitude-constrained optimal stimuli for
desynchronizing a population of neurons by maximizing the Lyapunov
exponent for the phase difference between pairs of neurons while
simultaneously minimizing the energy which is used. This theoretical result
informs the way optimal inputs can be designed for deep brain stimulation in
cases where there is a biological or electronic constraint on the amount of
current that can be applied. By exploring a range of parameter values, we
characterize how the constraint magnitude affects the Lyapunov exponent
and energy usage. Finally, we demonstrate the efficacy of this approach by
considering a computational model for a population of neurons with repeated
event-triggered optimal inputs.
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1 Introduction

As deep brain stimulation (DBS) emerges as an effective therapy for a wide range of
neurological disorders, theoretical perspectives are growing to help inform effective
stimulation protocols. DBS technology involves surgically implanting electrodes to
deliver electrical stimuli over time to specific brain regions with wires connecting the
implanted electrodes to an implantable pulse generator, which can be programmed to set
DBS parameters (Lozano and Lipsman, 2013; Sandoval-Pistorius et al., 2023; Frey et al.,
2022). Novel technologies enable the optimization of DBS stimulation parameters including
the input pulse’s shape, amplitude, frequency, and interstimulus interval (Najera et al., 2023;
Krauss et al., 2021). Computational analysis of the interaction between an applied electrical
stimulus and the spiking dynamics of neural populations can inform the effective design of
DBS parameters to enhance clinical outcomes while respecting device engineering
constraints.

Among other conditions, deep brain stimulation has become an effective treatment for
Parkinson’s disease, where pathological synchronization of the basal ganglia-cortical loop is
associated with dopaminergic denervation of the striatum, which over time leads to motor
impairment including tremors, bradykinesia, and akinesia (Hammond et al, 2007;
Neumann et al., 2007). In particular, the parkinsonian low-dopamine state is observed
to be related to excessive synchronization in the beta frequency band (15-30 Hz) in the
subthalamic nucleus (STN) of the basal ganglia (Rubchinsky et al., 2012; Asl et al., 2022). Tt
has been proposed that the symptoms of parkinsonian resting tremors are caused by
excessive synchronization in populations of neurons firing at a similar frequency to that of
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the tremor (Tass, 2006). Deep brain stimulation works as a
therapeutic intervention by modulating such synchronization
patterns, often ameliorating motor impairment for patients living
with Parkinson’s disease. DBS is also used in the treatment of
essential tremor (ET), epilepsy, Tourette’s syndrome, obsessive
compulsive disorder, and treatment-resistant depression.

The most commonly offered protocol for DBS therapy is
continuous high-frequency stimulation (Lozano and Lipsman,
2013; Sandoval-Pistorius et al., 2023). Despite its clinical success,
conventional high-frequency DBS faces several limitations including
diminishing efficacy over time, stimulation-induced side effects, and
high energy consumption necessitating battery replacements.
Furthermore, as open-loop stimulation, where the device
continuously applies electrical inputs as long as it is on, its static
parameters do not adapt to the dynamic nature of disease symptoms,
limiting its long-term effectiveness. In recent years, there has been
growing interest in developing alternative stimulation paradigms
that can effectively disrupt pathological synchrony while

effects.

desynchronization methods have been proposed and tested on

minimizing energy consumption and side Several
patients, including coordinated reset stimulation (Tass, 2003;
Manos et al, 2021), adaptive deep brain stimulation (aDBS)
(Sandoval-Pistorius et al, 2023), and phase-specific stimulation
approaches (Cagnan et al., 2017). Such techniques often leverage
theoretical frameworks from nonlinear dynamics and control theory
to design stimuli that can efficiently desynchronize neural
populations.

In particular, coordinated reset uses multiple electrode implants
which deliver identical impulses separated by a time delay between
implants (Tass, 2003; Lysyansky et al., 2011; Liicken et al., 2013;
Popovych and Tass, 2014; Kubota and Rubin, 2018; Khaledi-Nasab
et al, 2022). This leads to clustering behavior for the neural
populations, in which each cluster fires at different times, giving
(partial) desynchronization of the dynamics. This approach has
achieved preliminary clinical success (Adamchic et al., 2014; Manos
etal, 2021). In adaptive deep brain stimulation (aDBS), closed-loop
systems monitor biomarkers in real time and can initiate changes in
stimulation parameters (Sandoval-Pistorius et al., 2023; Oehrn et al.,
2024). The goal of aDBS is to improve clinical outcomes by
designing control signals based on neural data to deliver
stimulation only when needed. For instance, in Parkinson’s
the amplitude of the
pathological beta rhythms, with stimulation becoming active if

disease, a potential biomarker is
this exceeds some prescribed threshold. On demand stimulation
through aDBS can prolong device battery life, thereby extending
device lifetimes and prolonging the interval between surgeries in
clinical treatment protocols. Finally, for phase-specific stimulation
the inputs occur at a particular dynamical phase in order to disrupt
synchrony (Cagnan et al, 2017; Cagnan et al., 2019; cf. Holt
et al.,, 2016).

In parallel, there have been a number of computational
studies exploring the mechanisms by which DBS might be
working (e.g., Santaniello et al., 2015; Spiliotis et al., 2022).
There have also been theoretical and computational studies
exploring different strategies for desynchronizing neural
populations (Wilson and Moehlis, 2022), with approaches
including delayed feedback control (Rosenblum and Pikovsky,

2004a; Rosenblum and Pikovsky, 2004b; Popovych et al., 2006;

Frontiers in Network Physiology

10.3389/fnetp.2025.1646391

Popovych et al., 2017), phase randomization through optimal
phase resetting (Danzl et al., 2009; Nabi et al., 2013; Rajabi et al.,
2025), phase distribution control (Monga et al., 2018; Monga and
Moehlis, 2019), cluster control (Wilson and Moehlis, 2015a;
Matchen and Moehlis, 2018; Wilson, 2020; Qin et al., 2023),
machine learning and data-driven approaches (Matchen and
Moehlis, 2021; Vu et al., 2024), and chaotic desynchronization
(Wilson et al., 2011; Wilson and Moehlis, 2014b; Wilson and
Moehlis, 2014a). Each of these approaches has advantages and
disadvantages based on the control objective and what is known
about and what can be measured for the neural dynamics (Wilson
and Moehlis, 2022).

In this paper, we focus on chaotic desynchronization, for
which an energy-optimal  stimulus  exponentially
desynchronizes a population of neurons. This approach relies
on phase reduction methods, which have proven particularly
valuable in analyzing and controlling neural oscillators (Monga
etal., 2019; Wilson and Moehlis, 2022). These methods allow for
the simplification of complex neuronal dynamics into phase
models, where the behavior of an oscillating neuron can be
characterized by its phase and response to perturbations,
captured by the phase response curve (PRC). Unlike previous
studies of chaotic desynchronization, here we include a
constraint on stimulus magnitude. Such constraints are
important engineering considerations for the practical
applications of DBS, as there can exist both biological
limitations on the maximum electrical stimulation that can
be safely applied to brain tissue as well as electronic
limitations on the current that stimulation devices can
reliably store and deliver over time.

Specifically, in this paper we calculate magnitude-constrained
optimal stimuli that maximize the Lyapunov exponent for the
phase difference between pairs of neurons while simultaneously
minimizing energy consumption. The Lyapunov exponent
quantifies the exponential divergence rate of initially close
trajectories, measure  of

making it an  appropriate

desynchronization efficiency. By systematically exploring
different constraint magnitudes, we characterize the tradeoff
between maximum allowable stimulus amplitude,
desynchronization efficacy, and energy usage. We set up the
optimal control problem in Section 2.1. In Section 2.2 we
describe several canonical phase response curves representing
different types of neuronal dynamics: Sinusoidal, SNIPER,
Hodgkin-Huxley, and Reduced Hodgkin-Huxley models. In
Section 3.1, we investigate our approach for each PRC,
computing the optimal stimulus under various magnitude
constraints and evaluating its performance in desynchronizing
initially synchronized neurons. In Section 3.2, we validate our
approach using computational simulations of neural populations
with coupling and noise, demonstrating that our magnitude-
constrained optimal stimuli can effectively desynchronize neural
populations. Finally, a discussion of our results is given in Section
4. Overall, this work provides a theoretical foundation for
designing energy-efficient DBS protocols that respect hardware
and biological constraints while effectively disrupting pathological
neural synchronization. We respectfully present this study as a
tribute to the pioneering work of Hermann Haken on the control

of complex systems.
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2 Methods
2.1 Optimal control problem

We present a procedure for finding an energy-optimal stimulus
which maximizes the Lyapunov exponent associated with the phase
difference between a pair of neurons, while accounting for a
constraint on the stimulus magnitude. This approach is based on
the phase reduction of neural oscillators in the presence of an input
(see, for example, Monga et al., 2019), and only requires knowledge
of a neuron’s phase response curve (PRC). We note that the PRC can
in principle be measured experimentally (Netoff et al., 2012), or can
be calculated numerically if the model is known (Ermentrout, 2002;
Monga et al.,, 2019). In particular, we consider the following set
of equations:

do;

—=w+Z(0)u(t),

i=1,2, 1
¥ i (1)

where 6; € [0, 27) is the phase of the i'" neuron; w = 271/T, where T
is the period of the neuron in the absence of stimulus; and u (t) is the
control stimulus. Note that here we are assuming that the neurons
are identical (having the same w and Z(-)), and for simplicity we
assume that the neurons are the same distance from the electrode so
they receive the same stimulus u(#). Neuron i fires an action
potential when 6; crosses through 0.

Following Wilson and Moehlis (2014b), we suppose that the
neurons are nearly synchronized (6; = 6,). Defining ¢ = 0, — 0,
we obtain

B 2 Ouwp+ 04). @

Linearizing about ¢ =0, the solution to Equation 2 is

¢ ~ eM, where

A(r) = 1°g(f(f)) _Jo Z/0)u(s)ds o

T

Here A can be viewed as the finite time Lyapunov exponent
2009), which
exponential growth or decay of the phase difference ¢. A positive

(Abouzeid and Ermentrout, characterizes the
Lyapunov exponent will correspond to the divergence of nearby
trajectories, and hence desynchronization. We note that this
Lyapunov exponent corresponds to phase difference direction, so
it is not directly related to the non-trivial Floquet multipliers which
describe transverse stability of the periodic orbits for the neurons
(Guckenheimer and Holmes, 1983). We formulate the control
problem in terms of the cost function

Glu(t)] = j {u(0)? - BZ' By (1)}, (4)

where the goal is to maximize the Lyapunov exponent while
minimizing the energy used, where the energy is the integral of
the square of the control stimulus u. Here ¢, is the time that we
choose for the duration of the stimulus, $>0 is a parameter that
scales the importance of the Lyapunov exponent term relative to the
energy term. Generalizing the formulation in Wilson and Moehlis
(2014b), here we consider a magnitude constraint on the control
stimulus given by Equation 5:
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[t (£)] < thynas- (5)

In order to account for this constraint, we use a Hamiltonian
formulation for the optimal control problem (Kirk, 1998), with the
Hamiltonian given in Equation 6:

HO,\u) =1® - BZ' (O)u(t) + A(w + Z (O)u(t)), (6)

where A is the Lagrange multiplier or co-state for the system. From
Hamilton’s equations,

. O0H
Gzﬁ:w+Z(6)u(t), (7)
A= _%_ZI = [BZ"(0) - AZ' (0)]u(t). ®)

This defines a two-point boundary value problem which must be
solved subject to the boundary conditions 6(0) = 0 and 6(¢;) = wt;.
The latter boundary condition ensures that the phase at time ¢, is the
same as what it would’ve been in the absence of stimulus. The
function u (t) in these equations will be found using Pontryagin’s
minimum principle (Kirk, 1998), which states that u should be
chosen as the extremum of the Hamiltonian, subject to the
constraints. If there is no constraint on the magnitude of u(t),
the optimal control stimulus is the solution to dH/du = 0, giving
Equation 9:

2u—-BZ' (0) +AZ(6) = 0 )
_BZ'®) -2 (®)

= u(t) 3

= u(t), (10)
where 7 (t) is the optimal unconstrained input. With constraints,
Pontryagin’s minimum principle gives the following expression for

the optimal magnitude-constrained input u* (¢):

Upmax if u (t) 2 Upax>
wit)=qu(t) i =t <U) <Upars (11)
~Umax lf i’i (t) < - Umax-

In particular, the optimal u*(f) might or might not be the
solution to 0H/du = 0, because the extremum may be reached at a
constraint boundary. To summarize, we solve the two-point
boundary value problem Equations 7, 8 using Equation 11. This
is done numerically using a shooting method, and the optimal
stimulus is given by Equation 11.

2.2 Example phase response curves

The PRC quantifies the effect of an external stimulus on the
phase of a periodic orbit. In this paper, we consider four example
PRCs: SNIPER, Hodgkin-Huxley, and Reduced
Hodgkin-Huxley, as shown in Figure 1.

The Sinusoidal PRC

Sinusoidal,

Z(6) = Z;sin 6, (12)

shown in Figure 1A with Z; = 0.5, is a special case of the PRC which
is found for periodic orbits close to a supercritical Hopf bifurcation.
(Recall that when a parameter is on one side of a supercritical Hopf
bifurcation there is a stable fixed point and no periodic orbit, and
when the parameter is on the other side of the supercritical Hopf

frontiersin.org
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FIGURE 1

Phase Response Curves for the neuron models considered in the paper. (A) Sinusoidal with Zy = 0.5, (B) SNIPER with Z; = 0.5, (C) Hodgkin-Huxley,

and (D) Reduced Hodgkin-Huxley.

bifurcation there is an unstable fixed point and a stable periodic
orbit). More generally, the PRC for a periodic orbit close to a
supercritical Hopf bifurcation is a phase-shifted form of the PRC
(Equation 12); see Brown et al. (2004). This is an example of a Type
IT PRC (Hansel et al., 1995), in which the PRC takes both positive
and negative values.

Periodic orbits can also arise from a SNIPER bifurcation,
which stands for Saddle-Node Infinite Period bifurcation; this is
also often called a SNIC bifurcation, which stands for Saddle-
Node Invariant Circle bifurcation. Here, for a parameter on one
side of the bifurcation there is a stable fixed point and a saddle
fixed point that lie on an invariant circle. As the parameter is
saddle-node
bifurcation, and when the parameter is on the other side of

varied, these fixed points annihilate in a
the bifurcation there is a stable periodic orbit whose period
approaches infinity as the bifurcation is approached. For a
periodic orbit near a SNIPER bifurcation, the PRC is
approximately given by Equation 13 (Ermentrout, 1996;

Brown et al., 2004):

Z(0)=Z4(1 - cosb), (13)

shown in Figure 1B with Z; = 0.5. This is an example of a Type I
PRC (Hansel et al., 1995; Ermentrout, 1996), in which the PRC takes
only non-negative values.
The Hodgkin-Huxley
conductance-based model for

well-studied
and were

equations are a

activity,
developed to describe the dynamics for a squid giant axon
(Hodgkin and Huxley, 1952). Mathematically, they are a four-
dimensional set of coupled ordinary differential equations for the

neural

voltage across the neural membrane and three gating variables
associated with the flow of ions across the membrane. The full
equations are given in the Supplementary Appendix. We chose a
baseline current value I, =10 so that the Hodgkin-Huxley
equations have a stable periodic orbit, and then found the PRC
for this periodic orbit using XPP (Ermentrout, 2002). For
computational convenience, we approximate this as a Fourier
series with the first ten sin(-) and cos(-) terms to give the PRC
shown in Figure 1C.

Frontiers in Network Physiology

Finally, the Reduced Hodgkin-Huxley equations are an
approximation to the full Hodgkin-Huxley equations (Keener
and Sneyd, 1998; Moehlis 2006). Mathematically, they are two-
dimensional set of coupled ordinary differential equations for the
voltage across the neural membrane and one gating variable. The
equations are given in the Supplementary Appendix. We chose a
baseline current value I;, = 10 so that the Reduced Hodgkin-Huxley
equations have a stable periodic orbit, and then found the PRC for
orbit using XPP 2002). For
computational convenience, we approximate this as a Fourier

this periodic (Ermentrout,
series with the first two hundred sin(-) and cos(-) terms to give
the PRC shown in Figure 1D. The PRCs for the Hodgkin-Huxley
and Reduced Hodgkin-Huxley models are
Type II PRCs.

examples  of

3 Results
3.1 Results for pairs of neurons

In this section, we consider the dynamics of a pair of neurons
satisfying Equation 1, where u*(f) is chosen to be the optimal
control stimulus for different values of the constraint ,,,,. For
simplicity, we will take t; = T, so that the duration of the control
stimulus is equal to the period of the neuron in the absence of
stimulus. By design, we expect that application of one cycle of the
optimal stimulus will cause the phase difference ¢ to increase, at least
when the initial value for ¢ is small. We will consider an event-based
approach for which multiple cycles of the optimal control stimulus
are applied, where a new cycle of the control stimulus is triggered
when 6, = 0, that is, when Neuron 1 fires an action potential. We
will see that this leads to growing phase difference ¢.

Figure 2 shows results for the Sinusoidal PRC with Z; = 0.5,
B =2and w = 1, corresponding to T' = 2. In particular, Figure 2A
shows the calculated optimal control stimuli for the unconstrained
case, Uyay = 0.35, and w0, = 0.2. In this case, adding a magnitude
constraint gives an optimal control stimulus which appears to be
very similar to the unconstrained stimulus “chopped off” at the
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FIGURE 2

Results for Sinusoidal PRC, with Z4 = 0.5, w = 1, and 8 = 2. (A) Optimal stimulus calculated for the unconstrained case (blue), Umax = 0.35 (red), and

Umax = 0.2 (green). (B) Time series traces of the phases 6, (blue) and 6, (red) of two neurons, where both have the optimal stimulus applied with
Umax = 0.35. (C) Phase difference ¢ between two neurons over multiple stimuli. Each stimulus u* is triggered when 6; = 0. (D) Log of the difference ¢ over
multiple stimuli. (E) Approximation to the Lyapunov exponent Ag; found from the slopes of the fits to log (¢) versus t (red) and the Lyapunov exponent
Acac (blue), for different values of umax. (F) Effect of the constraint on the energy used for the optimal stimulus, here computed for one cycle of the

stimulus. For panels (B—F), the initial conditions are §; = 0 and 6, = 0.1.

constraint; we will discuss this further below. We observe that the
unconstrained input has the highest efficacy of desynchronization as
measured by the Lyapunov exponent, and also the highest energy
utilization. The input with a constraint u,,., =0.35 gives
desynchronization results that are similar while achieving a
significant reduction in energy usage.

To investigate the efficacy of desynchronization between
Neurons 1 and 2, we ran simulations of the phases of Neurons
1 and 2 over a full cycle of the control stimulus, with initial
conditions ¢; =0 and 0, = 0.1. Figure 2B shows the time series
traces of these two neurons for the Sinusoidal PRC. We see growing
desynchronization over one cycle of the control stimulus, as
measured by the phase difference between the two traces.

Next, we apply successive control stimuli to pairs of neurons
with the event-based approach described above. We compute the
phase difference ¢ between the pair of neurons, which is observed to
grow exponentially over multiple cycles of the control stimulus; see
Figure 2C. This is also evident in Figure 2D, where we observe that
log(¢) approximately grows linearly with t. To quantify this, we
estimate the Lyapunov exponent based on the line of best fit to
log (¢) versus ¢ over multiple event-triggered control stimuli. We
used the first half of the time interval for these fits, since there is
saturation in these traces in the later part of time interval as the small
¢ approximation used to obtain Equation 3 no longer holds. These
estimated Lyapunov exponents A ;; are plotted at varying values of
the constraint in Figure 2E, along with estimates A,y obtained by

Frontiers in Network Physiology

TABLE 1 For the Sinusoidal PRC, comparison of the Lyapunov exponent Ayt
estimated from slope of the line of best fit for log(¢) versus t with the
Lyapunov exponent A, calculated from the integral formulation.

Umax Afit Acalc
0.5 0.114 0.126
0.35 0.0937 0.102
0.2 0.0583 0.0621

plugging the computed stimulus into Equation 3 and numerically
evaluating the integral over one cycle of the stimulus according to
Equation 14:

1 T
Aot = ¥J- Z'(6(s))u* (s)ds. (14)
0
Table 1 compares A gy and Ay for several values of t4,,,; good
agreement is found between these approaches. Finally, Figure 2F
shows the energy

T
| e
0
used over one cycle of the control stimulus for a range of values
of Upax.

Similarly, Figure 3 shows results for the SNIPER PRC with
Z4=0.5, =2, and w =1, corresponding to T = 27, and Table 2
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FIGURE 3

Results for SNIPER PRC with Zy = 0.5,w = 1, and f = 2. (A) Optimal stimulus calculated for the unconstrained case (blue), Umax = 0.35 (red), and

Umax = 0.2 (green). (B) Time series traces of the phases 6, (blue) and 6, (red) of two neurons, where both have the optimal stimulus applied with
Umax = 0.35. (C) Phase difference ¢ between two neurons over multiple stimuli. Each stimulus u* is triggered when 6; = 0. (D) Log of the difference ¢ over
multiple inputs. (E) Approximation to the Lyapunov exponent Az found from the slopes of the fits to log (¢) versus t (red) and the Lyapunov exponent

Acaic (blue), for different values of umax. (F) Effect of the constraint on the energy used for the optimal stimulus, here computed for one cycle of the

stimulus. For panels (B—F), the initial conditions are 8, = 0 and 6, = 0.1.

TABLE 2 For the SNIPER PRC, comparison of the Lyapunov exponent A
estimated from slope of the line of best fit for log(¢) versus t with the
Lyapunov exponent A, calculated from the integral formulation.

0.5 0.122 0.123
0.35 0.103 ‘ 0.101
0.2 0.0626 ‘ 0.0618

compares Agi and Acq for several values of .. Moreover,
Figure 4 shows results for the Hodgkin-Huxley PRC with =2
and period T = 14.56, which was obtained numerically; Table 3
compares the Lyapunov exponent estimates. Finally, Figure 5
shows results for the Reduced Hodgkin-Huxley PRC with =9
and period T = 11.85, which was obtained numerically; Table 4
compares the Lyapunov exponent estimates. In all of these
examples, the optimal input gives exponential divergence of
the phases of the neurons. As ;. becomes smaller, the
Lyapunov exponent becomes smaller while staying positive,
and the energy associated with the input stimulus is reduced.
We observe that the numerically calculated optimal inputs
without the magnitude constraint resemble Z'(6) for each
PRC. This was first noticed in Wilson and Moehlis (2014b),
where it was attributed to the numerical observations that the
optimal input is weak enough that 6 ~ wt, and fZ’ (6) dominates

Frontiers in Network Physiology

AZ () in Equation 10, so u*(t) =~ BZ' (wt)/2. This approximation
is explored in more detail in Moehlis et al. (2025).

Here we make the new observation that in some cases the
magnitude-constrained optimal input resembles the unconstrained
input  simply  “chopped  off’ at  the
i, Ugnop = Min (tyay, MaX (~Upay, 1 (t))), where here & would be

constraint,

the optimal input found by solving Equations 7, 8 using Equation 10,
i.e,, without any magnitude constraint. That said, we note that v, is
not necessarily a good approximation to the optimal input. Solutions to
the two-point boundary value problem have the property of modifying
a neuron’s phase to go from 6 = 0 to 0 = wt; in the time ¢;. This must
be the case for the unconstrained optimal input #(t) and for the
constrained optimal input u* (£). Because u,) is different from u (t)
during the time intervals for which the constraint is applied, but
otherwise the same, we do not expect it to exactly take 6 from 0 to
wt; in the time ¢;. However, numerically we find for some examples
that u* (¢) looks very similar to t,,. This appears to be because the
product Z (8)u (t) is very small in these examples. But, it is clear from
Figure 5 that for the constraint u,,,, = 0.5 the optimal u*(¢) can be
significantly different from w4 (t).

When f is large, the Lyapunov exponent term in Equation 4
dominates the energy usage term. Therefore, in the limit of large
the optimal inputs approach what is known as Bang-bang control, as
seen in Figure 6. For Bang-bang control, the controller alternates
between maximum and minimum inputs which switch at optimal
times (Kirk, 1998). In particular, the control is driven by the sign of
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Results for Hodgkin-Huxley PRC with =2 and T = 14.56. (A) Optimal stimulus calculated for the unconstrained case (blue), Umax = 0.3 (red), and
Umax = 0.2 (green). (B) Time series traces of the phases 0; (blue) and 6 (red) of two neurons, where both have the optimal stimulus applied with Upmax = 0.3.
(C) Phase difference ¢ between two neurons over multiple stimuli. Each stimulus u* is triggered when 6; = 0. (D) Log of the difference ¢ over multiple
stimuli. (E) Approximation to the Lyapunov exponent Ag; found from the slopes of the fits to log (¢) versus t (red) and the Lyapunov exponent Acaic
(blue), for different values of umay. (F) Effect of the constraint on the energy used for the optimal stimulus, here computed for one cycle of the stimulus. For

panels (B—F), the initial conditions are 6; = 0 and 6, = 0.1.

TABLE 3 For the Hodgkin-Huxley PRC, comparison of the Lyapunov
exponent Ag: estimated from slope of the line of best fit for log (¢) versus t
with the Lyapunov exponent A, calculated from the integral formulation.

0.4 0.0239 0.0243
0.3 0.0221 ‘ 0.0222
0.2 0.0163 ‘ 0.0172

Z'(0): if Z' >0 we take u = tax, and if Z' <0 we take U = —Uyax.
Thus, at every time the integrand is maximized subject to the 14,45
constraint, so the value of the Lyapunov exponent is maximized. The
unconstrained stimulus magnitudes rise with increasing f3, so in the
large 8 limit the magnitude constraint becomes more important.
Figure 6 shows the approach to Bang-bang control for increasing
(from left to right panel for each row) on the optimal input
for each PRC.

3.2 Results for population-level simulations
of neurons

While the results in the previous section illustrate that the
stimuli with and without magnitude constraints can give positive
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Lyapunov exponents for the phase difference betweeen pairs of
neural oscillators, we are also interested in how such inputs perform
for a larger population of coupled neural oscillators. In this section,
we consider a population of Reduced Hodgkin Huxley neurons with
all-to-all electrotonic coupling, and independent additive noise for
each neuron. The governing equations are:

N

Vi= fv(Vin)+ % Z “(Vj - V") Tu(t) 0 ),
=1
T:li = fn (Vi:ni)’ ]

where N = 100 is the number of neurons, u (t) is the common input
for all neurons, a =0.04 is the coupling strength, and #,(t) =
\2DN (0,1) is intrinsic noise modeled as zero-mean Gaussian
white noise with variance 2D, where D = 0.7. These values are
chosen so that there is a balance between the synchronizing
influence of the coupling and the desynchronizing influence of
the noise. Expressions for fy and f, are given in the
Supplementary Appendix. We suppose that at t =0 all neurons
have the same V; and #; corresponding to the neuron at the peak of
its action potential. Each neuron receives the same input u (t), but a
different realization of noise #; (¢). It is useful to think of the noise as
having a desynchronizing effect, and the coupling as having a
synchronizing effect.

To test our magnitude-constrained optimal inputs u*(t), we
use an event-based control scheme similar to Danzl et al. (2009),
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FIGURE 5

Results for Reduced Hodgkin-Huxley PRC with =9 and T = 11.85. (A) Optimal stimulus calculated for the unconstrained case (blue), Umax = 1.5
(red), and Upmax = 0.5 (green). (B) Time series traces of the phases 6; (blue) and 6, (red) of two neurons with initial conditions ; = 0 and 6, = 0.1, where both
have the optimal stimulus applied with Umax = 1.5. (C) Phase difference ¢ between two neurons over multiple stimuli. Each stimulus u* is triggered when
01 = 0. (D) Log of the difference ¢ over multiple inputs. (E) Approximation to the Lyapunov exponent As found from the slopes of the fits to log (¢)
versus t (red) and the Lyapunov exponent A (blue), for different values of Umax. (F) Effect of the constraint on the energy used for the optimal stimulus,
here computed for one cycle of the stimuilus. For panels (C—F), the initial conditions are 6; = 0 and 6, = 0.001.

TABLE 4 For the Reduced Hodgkin-Huxley PRC, comparison of the
Lyapunov exponent Ag: estimated from slope of the line of best fit for
log (¢) versus t with the Lyapunov exponent Acac calculated from the
integral formulation.

Umax Afit Acalc
25 0.219 0.227
1.5 0.160 0.172
0.5 0.0655 0.0625

Nabi et al. (2013), Wilson and Moehlis (2014b), Rajabi et al.
(2025). In particular, when the average voltage V for the neurons
crosses a threshold, we input one cycle of the pre-computed
optimal stimulus, which will have a desynchronizing influence.
Another control input occurs if the previous input has finished
and the average voltage again crosses threshold, for example, due
to the synchronizing influence of the coupling. According to this
control logic, each simulation generates a control input u (t) for
the full 350 msec time window. Figures 7-9 respectively show
for the optimal
with
Umax = 1.5, and optimal constrained input with w,, = 0.5.
Comparing the results using event-based control with the

results for population-level simulations

unconstrained input, optimal constrained input

network’s behavior without control, it is apparent that all of

these stimuli are able to keep the neural population

Frontiers in Network Physiology

desynchronized. We can interpret these results as follows: if
the population is too synchronized (its average voltage goes
above the control activation threshold), a cycle of input is
applied. If this does not sufficiently desynchronize the
population, another cycle of input is applied. If the population
is sufficiently desynchronized, no input is needed. However, the
coupling eventually leads to a level of synchronization which is
above the control activation threshold, triggering another cycle of
input. For u,,,, = 0.5 it is apparent that more cycles of the
stimulus are needed to achieve and maintain desynchronized
dynamics; see Figure 9.

This motivates us to better understand how the average amount
of energy required to keep the neural population desynchronized
with this event-based scheme depends on the magnitude constraint.
To investigate this, we consider 100 different population-level
simulations for different values of ,,,,. For each simulation, the
neurons start out completely synchronized. Results are shown in
Figure 10 for the average energy

350
<j [u(0)dt),
0

where ¢-) denotes the average over the 100 simulations, and the
integration is over the first 350 msec. The error bars represent the
standard deviation over the 100 iterations of the population-level
simulations. The variability is due to the different realizations of
noise for each simulation. We see that the average energy needed to
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FIGURE 6

Approaching Bang-bang control in the large f limit. (A) Results for Sinusoidal PRC with Z; = 0.5 and w = 1, for = 5 and (B) = 20. Optimal stimulus
calculated for Upmax = 0.5 (blue), Umax = 0.35 (red), and Umax = 0.2 (green). (C) Results for SNIPER PRC with Z; = 0.5 and w = 1, for =5 and (D) 8 = 20.
Optimal stimulus calculated for Umax = 0.5 (blue), Umax = 0.35 (red), and umax = 0.2 (green). (E) Results for Hodgkin-Huxley PRC with =5 and (F) with
B =20. Optimal stimulus calculated for Umax = 0.4 (blue), Umax = 0.3 (red), and Umax = 0.2 (green); here T = 14.56. (G) Results for Reduced Hodgkin-
Huxley PRC with =20 and (H) with g = 40. Optimal stimulus calculated for Umax = 2.5 (blue), Umax = 1.5 (red), and Umax = 0.5 (green); here T = 11.85.

desynchronize the population increases monotonically with 4y,
until the constraint no longer has any effect on the computed input.

We used the average voltage as a measure of synchronization
because this is easily defined, and one expects this to be related to the
local field potential, which can be measured experimentally.
However, a more common measure of synchronization is the
Kuramoto order parameter (Kuramoto, 1984), whose amplitude is
15 i0j

R= s (15)

where N is the number of neurons, and 6 ;€ [0,27) is the phase of
the j™ neuron in the sense of isochrons (Winfree, 1967). In
particular, the phase is defined at all points in the basin of
attraction of the periodic orbit; this is important because to
calculate the Kuromoto order parameter we need to know the
phase even if noise, coupling, and/or a control input causes the
state of the neuron to be off the periodic orbit. We define 6 =0
(which is equivalent to 6 = 27) to be the phase at which the neuron
spikes, and parametrize the isochrons so that 6 =27/T in the
absence of noise, coupling, and control input, where T is the
period of the neuron. We can estimate the phase of a neuron by
setting its current state (V;, n;) as the initial condition at ¢ = 0 for the
Reduced Hodgkin-Huxley equations for a single neuron in the
absence of noise, coupling and control input. We integrate these
equations forward in time until a voltage spike occurs at time f;.
Because the spike corresponds to 6 = 27 and the phase advances

Frontiers in Network Physiology

according to § = 271/T, the phase corresponding to the state (V;,7;)

ts
0= 27'[(1 —?>

To obtain the order parameter R at a given time, we estimate the
phases of all N = 100 neurons at that time, and use these in Equation

is given by Equation 16:

(16)

15. Higher values of R correspond to greater synchronization.

Figure 11 shows results from this order parameter calculation
for the plots shown in Figure 7 (no constraint on the magnitude of
u), Figure 8 (for uqy = 1.5), and Figure 9 (for u.x = 0.5), at
10 msec intervals. We see that, broadly speaking, the control
inputs tend to reduce R, and that R increases when there are no
control inputs, due to the synchronizing effect of the coupling. The
results for the no constraint case and for u,,,,, = 1.5 are quite similar
except for later times. The fact that R increases more rapidly in the
no constraint case than for u,,,, = 1.5 is due to the variability in
results due to noise. More interestingly, we see that the order
parameter tends to have higher R values for u,,,, = 0.5; because
the control input is more constrained, a single cycle of input has a
smaller effect on the order parameter.

4 Discussion

Motivated by deep brain stimulation treatment of neurological
disorders including Parkinson’s disease, there has been much recent
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Results for Population-Level Simulations with Unconstrained Input. Here « = 0.04 and D = 0.7. The top panel shows the network’s behavior without
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Results for Population-Level Simulations with Constrained Input at Umax = 1.5. Here a = 0.04 and D = 0.7. The top panel shows the network’s
behavior without control, with synchronized dynamics. The second panel illustrates the same network with event-based control using the optimal u(t)
with Upmax = 1.5, where the red trace shows the mean voltage, and the horizontal green dotted line shows the control activation threshold (V = -30 mV)
The third panel shows the control input. The bottom panel is a raster plot of the spike times

interest in using control theory to design optimal input stimuli
which desynchronize neural populations. One such approach used
chaotic desynchronization to achieve this goal in an energy-optimal
fashion (Wilson and Moehlis, 2014b). In this paper, we generalized
this optimal chaotic desynchronization methodology by including a
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magnitude constraint on the input. In particular, we showed how to
calculate the optimal stimuli which satisfy such a contraint, and
that lead

desynchronization neurons

demonstrated such  inputs to  exponential

of of
dysynchronization of populations of coupled, noisy neurons. This

pairs and effective

frontiersin.org


https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2025.1646391

Zimet et al.

10.3389/fnetp.2025.1646391

Rt
i
St i
AL

Results for Population-Level Simulations with Constrained Input at Umax = 0.5. Here a = 0.04 and D = 0.7. The top panel shows the network’s
behavior without control, with synchronized dynamics. The second panel illustrates the same network with event-based control using the optimal u(t)
with Umax = 0.5, where the red trace shows the mean voltage, and the horizontal green dotted line shows the control activation threshold (V = =30 mV)
The third panel shows the control input. The bottom panel is a raster plot of the spike times

approach is based on a phase-reduction of the dynamics of a neuron,
with the phase response curve quantifying the effect of an external
input on a neuron’s phase. Based on the knowledge of a neuron’s
phase response curve, we calculated the inputs that are optimally
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desynchronizing while minimizing energy utilization, using
methods from optimal control. The addition of a magnitude
constraint allows for the design of optimal stimulation inputs
with a maximum amplitude that is customizable based on
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The magnitude of the Kuramoto order parameter for different
constraints on the magnitude of the control input, calculated at

10 msec intervals for the results shown in Figures 7-9. Higher values of
R correspond to greater synchronization.

biological and electronic considerations. Interestingly, while these
constrained inputs use less energy, they still achieve population-level
desynchronization.

We note an extension of the current paper which could be of
interest in future work: incorporation of both magnitude and
charge-balance constraints on the control stimulus. This follows
from the observation that non-charge-balanced stimuli, such as
those considered in this paper, can cause harmful Faradaic
reactions that may damage the DBS electrode or neural tissue
(Merrill et al.,, 2005). This has motivated the use of a charge-
balance constraint for optimal control design (Nabi and Moehlis,
2009; Wilson and Moehlis, 2014b). However, this presents
additional challenges because it increases the dimension of the
two-point boundary value problem which must be solved
numerically. Our approach could be applied to other types of
neurons, including those for common neurostimulation targets
such as the subthalamic nucleus or the thalamus, even for
periodically bursting neurons, as long as the phase response
curve can be determined. If it is not possible to obtain this
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from electrophysiological measurements (Netoff et al., 2012), or
if there is not an accurate mathematical model which would allow
numerical techniques to be used Ermentrout (2002), Monga et al.
(2019), an approach such as that described in Wilson and Moehlis
(2015b), which can estimate the phase response curve based on
aggregate measurements such as the local field potential, could be
used. Moreover, we expect that similar population-level control
results would be found for other types of coupling, such as synaptic
coupling and/or heterogeneous coupling, provided that the
coupling strength is not too strong.

We imagine that the results from this paper can be useful to the
neuroscience community in cases where there are biological or
electronic hardware considerations which limit the allowed input
magnitude for a stimulus. With deep brain stimulation becoming an
increasingly adopted therapeutic technique for treatment of
neurological disorders, this research extends ongoing research
efforts to theoretically inform the optimal design of deep brain
stimulation protocols.
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