
Computational analysis of two
novel deep brain stimulation
pulsing patterns on a
thalamocortical network model
of Parkinson’s disease

AmirAli Farokhniaee1* and Siavash Amiri2

1Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada,
2Didab PVT. Ltd. Co, Tehran, Iran

Deep brain stimulation (DBS) at high frequencies has revolutionized efforts to
alleviate Parkinson’s disease symptoms for approximately 30 years. Since then,
there has been vast investigation into themechanisms of action of DBS. Recently,
synaptic suppression was found to play a pivotal role in the fundamental
mechanisms underlying DBS. Based on this understanding, researchers
introduced two novel DBS pulsing strategies that use a minimal number of
stimuli. In contrast to conventional DBS (cDBS) pulsing, which employs
continuous high-frequency pulses (>100 Hz), the two novel methods
incorporate changes in pulsing frequency and on/off pulsing periods. In this
computational study, we investigated the network effects of these two suggested
patterns using an updated version of a biophysically realistic thalamocortical
network model of DBS. Both suggested pulsing patterns significantly reduced the
exaggerated beta power (~13 Hz–30 Hz oscillations) in the motor cortex, with
careful consideration of the intensity of the stimulating pulses. In addition, they
significantly reduced the level of network synchronization. We compared these
findingswith the effects of 20 and 130Hz cDBS on our networkmodel and did not
observe effects contrary to those of 130 Hz cDBS. The two suggested patterns,
which were computationally successful in reproducing known DBS network
effects, could potentially increase the battery life of DBS device and reduce
themicrolesion effect associated with long-term cDBS pulsing. These outcomes,
however, require confirmation in further studies.
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1 Introduction

Parkinson’s disease (PD) affects approximately 1% of the world population over the age
of 60, and its prevalence continues to increase alongside increasing life expectancy (Reeve,
Simcox, and Turnbull, 2014). It is associated with the loss of dopamine-producing neurons
in the brain and is characterized by abnormal neural firing within the cortex and basal
ganglia regions of the brain. Deep brain stimulation (DBS) is an established therapy for PD
and is used clinically to relieve motor symptoms. Although effective in reducing symptoms,
DBS is also associated with side effects, movement disturbances, paresthesia, depression,
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speech dysfunction (Deuschl et al., 2006), technical limitations, and,
critically, a lack of clarity on how it alters the processing of
information that drives key neural activities.

To date, the majority of research on the symptoms of PD and
their control by DBS has focused on the altered basal ganglia
function (Wiecki and Frank, 2010; Caligiore et al., 2016).
However, recent studies suggest that the key neural activity
changes may be mediated and/or driven by the motor cortex
(Lindenbach and Bishop, 2013). There are compelling clinical
reasons to consider the importance of the motor cortex in the
generation of symptoms and cortical stimulation as a potential
therapeutic in PD (Caligiore et al., 2016; Arbuthnott and Garcia-
Munoz, 2017), knowing the important role of antidromic activation
of the cortex via the hyperdirect pathway and alterations in cortical
firing patterns in the therapeutic efficacy of DBS (Anderson
et al., 2018).

In parallel, there has been a vast investigation into
understanding the DBS mechanisms of action during the last
2 decades. Recently, researchers emphasized the depletion of
neurotransmitters due to high-frequency DBS, i.e., the synaptic
suppression mechanism, as one of the building blocks of the DBS
mechanisms of action (Farokhniaee and McIntyre, 2019). This
mechanism causes acute effects (in the order of seconds) based
on short-term synaptic plasticity principles, that is, the suppression
of synaptic communication due to the depletion of neurotransmitter
release in response to the application of high-frequency DBS pulses.
Consequently, it suppresses the exaggerated increase in neuronal
firing in the postsynaptic cells and neighboring neurons.

This fundamental understanding, combined with theoretical
calculations, led to the suggestion of two novel patterns that
maximize the suppression of neuronal firing while delivering the
minimum possible number of stimuli (Farokhniaee and McIntyre,
2019). These two novel patterns have shown promising effects in
single neuron simulations; however, they have not been tested on
any neuronal network, i.e., populations of neurons. This is essential
in understanding the meso- and macro-scale effects of these
stimulation patterns to gain better insights into their
practical efficacy.

Hence, in this study, we applied these novel patterns on a
recently developed network model of DBS, the thalamocortical
microcircuit model (TCM), which has manifested known
network effects of DBS and gained the attention of many
researchers in the field (Farokhniaee and Lowery, 2019;
Farokhniaee and Lowery, 2021). The importance of TCM as the
platform for testing DBS strategies is due to numerous reasons: the
incorporation of the synaptic suppression mechanism, the
production of exaggerated beta power (oscillations in the range
of 13 Hz–30 Hz) along with synchronization of the action potentials,
and finally, the suppression of the elevated beta power,
desynchronization of the network spike patterns, and formation
of untouched, excited, and inhibited clusters of neurons within the
whole network during high-frequency DBS.

In this paper, we analyzed the effects of the suggested DBS
patterns on the thalamocortical network by estimating power
spectral densities (PSDs) to investigate the formation and
deformation of oscillation patterns and, in addition, evaluating
Morgera’s index of synchrony (M), which is useful in measuring
the amount of synchronization in the network of spiking neurons.

Our results indicate that both novel strategies are successful in
delivering similar outcomes as conventional DBS patterns at 130 Hz
while applied with careful tuning of their intensities, and further
interpretations of the results are provided as a discussion
in Section 4.

2 Materials and methods

2.1 Model description

Certain alterations of synaptic weights within and between the
thalamus and cortex in a neural mass model of the thalamo-cortex
led to elevated beta power in the rat’s motor cortex (Reis et al., 2019),
which is a well-known neurophysiological activity in Parkinsonism.
On the other hand, a rat model of PD showed the exaggerated
synchronized patterns of spiking neurons in addition to the
exaggerated beta power (Li et al., 2012). Inspired by these
studies, the spiking neuronal network of the thalamo-cortex in
PD-like conditions was introduced (Farokhniaee and Lowery,
2019) and developed as a network model of DBS, known as
TCM (Farokhniaee and Lowery, 2021), with a recent improved
version that provides higher computational efficiency by utilizing a
more advanced algorithm (Farokhniaee and Amiri, 2025). The
developers of TCM introduced an important underlying
mechanism of action of high-frequency DBS, that is, the synaptic
suppression due to short-term synaptic plasticity (Farokhniaee and
McIntyre, 2019), thereby establishing TCM as a biophysically
realistic network model of DBS. As such, TCM exhibited known
network effects of DBS that include elevated beta power, exaggerated
synchronized patterns of neuronal spikes, the formation of neuronal
clusters such as excited and inhibited ones, and optimized intensity
of the DBS-induced electric field to cause the most suppression of
the elevated beta power.

TCM contains 540 subthreshold noise-driven spiking neurons
that obey Izhikevich neuronal dynamics (Izhikevich, 2003)
inherently, connected via Tsodyks–Markram synapses (Tsodyks
and Markram, 1997). The excitatory populations in the primary
motor cortex were distributed into three layers: supragranular or
surface (S, 100 neurons), granular or middle (M, 100 neurons), and
infragranular or deep (D, 100 neurons), with a shared population of
cortical inhibitory neurons (CI, 100 neurons). The thalamocortical
relay nucleus (TCR, 100 neurons) and thalamic reticular nucleus
(TRN, 40 neurons) form the excitatory and inhibitory populations of
the thalamus, respectively. The distributions of neurons in each
substructure of the model, along with complete neuron and synapse
parameters, are already presented by Farokhniaee and
Lowery (2021).

The network dynamics of the model are described by the
following set of equations (Farokhniaee and Amiri, 2025):

_vij � 0.04v2ij + 5vij − uij + 140 + Iij + ∑6
j′�1

∑Nj

i′�1
ωi′j′,ijPSCi′j′ t − Δj,j′( )

+∑
k,tk

μjkδ t − tk( ) + ξ t( ) + Idbsδj3

_uij � aij bijvij − uij( ). (1)

If vij ≥ vpij + ζ(t), then vij⟵cij and uij⟵uij + dij.
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For each structure of the TCM model, j = 1, 2, 3, 4, 5, and 6
corresponds to the structures S, M, D, CI, TRN, and TCR,
respectively. For each neuron i = 1, 2, . . ., Nj in structure j
(where Nj is the total number of neurons in layer j), vij is the
membrane voltage, and uij represents the membrane recovery
variable, where aij, bij, cij, and dij are each neuron’s parameters,
with random changes that provide non-identical neurons in the
network. Iij is the bias current, with ξ(t) and ζ(t) as white
Gaussian noises. The synaptic connections deliver the PSCs to
the neurons using a weighting matrix with ωij elements.∑k,tkμjkδ(t − tk) presents Poissonian background noise, with
inputs occurring at time tk in each structure. In Equation 1, Δ
presents the sum of synaptic and axonal transmission delays
(Shepherd, G., & Grillner, 2018) with values presented in the
original study.

The PSCs are the solutions I in Tsodyks–Markram dynamics
given by Equation 2.

_u � − u

τf
+ U 1 − u−( )δ t − ts − Δ( )

_x � −1 − x

τd
− u+x−δ t − ts − Δ( )

_I � − I

τs
+ Au+x−δ t − ts − Δ( ), (2)

where x represents the fraction of available neurotransmitters after
synaptic transmission and u is the fraction of available
neurotransmitter resources ready to be used. ts is the spike time,
δ is the Dirac delta function, U is the increment of u produced by an
incoming spike, τf, τd, and τs are the decay (or recovery) time
constant of the variable u, x, and I, respectively. A is the absolute
synaptic response.

Idbs is the DBS-induced intracellular transmembrane current
that is added only to 50% of layer D (j = 3) neurons using the
Kronecker delta function. In the case of conventional DBS (cDBS), it
is defined as follows:

Idbs t( ) � A∑T
t′�0

δ t − t′( ), t � 0,
1

fdbs
,

2
fdbs

, . . . , T, (3)

where A is the amplitude of the Dirac delta function, t′ is the pulse
event time that repeats every period of DBS, fdbs is the DBS
stimulation frequency, and T is the total time of DBS delivery.

The two novel patterns whose effects on the TCM network
were investigated are defined as A-DBS and B-DBS. A-DBS
includes an initial burst of pulses at the onset of DBS with
20 pulses at 130 Hz, followed by tonic stimulation at 95 Hz.
B-DBS, on the other hand, contains 20 pulses at 130 Hz for the
initial burst at the DBS onset, which is followed by burst packs of
4 pulses at 130 Hz that are delivered every 37 ms (Farokhniaee and
McIntyre, 2019).

2.2 Local field potential and power
spectral density

The local field potential (LFP) was estimated following the first-
order approximation of the electric field due to the postsynaptic
currents of the desired neuronal population. In this work, the

cortical LFP was simulated as the sum of all excitatory PSCs
(EPSC) in the D layer and all inhibitory PSCs (IPSC) in the CI
layer scaled by the conductivity of the surrounding gray matter, σ ≈
0.27 (S m)−1, and the distance between the recording electrode and
each neuron, r = 100 µm (Lindén et al., 2011), as shown in
Equation 4:

LFP t( ) � 1
4πσr

∑N3

i�1
PSCi t( ) +∑N4

i�1
PSCi t( )⎛⎝ ⎞⎠. (4)

2.3 Network synchronization (Morgera’s
index of synchrony)

Morgera’s covariance complexity (Morgera, 1985; Kavasseri
and Nagarajan 2006) is a linear measure to evaluate the amount
of synchronization and is accurate for neuronal populations
when the number of samples (simulation time points, P) is
much larger than the number of neurons (N). Let Γ be the
matrix that contains the time series of the membrane voltages
(spike trains) in its columns 1 to N. The rows will then be the
samples (P rows). Singular value decomposition of Γ yields N
eigenvalues, whose variance corresponds to the ith component,
σ i, as in Equation 5

σ i � λ2i∑N
i�1λ

2
i

, i � 1, 2, . . . , N. (5)

This provides us with the covariance complexity, C, which in
information theoretic terms is described as in Equation 6:

C � − 1
logN

∑N
k�1

σk log σk. (6)

Finally, Morgera’s index of synchrony is defined as M � 1 − C,
which has a value between 0 (indicating full random behavior) and 1
(fully synchronized network).

2.4 Simulation

We ran the improved version of the TCM model (Farokhniaee
and Amiri, 2025) that ensures embedment of all-to-all random
connectivity for 12 s on both Windows and Macintosh machines
with success. When simulating the model using a CPU, the parallel
algorithm was utilized in updating each time-step through the whole
network (multicore and multithread computing). In addition to
being solved by CPU power, this model can be run on a graphical
processing unit (GPU, available only on a Windows machine),
which is useful for simulations that include a higher number of
neurons and populations. The simulations that run on a GPU show
their strength in run time when the number of neurons is much
higher than several hundred. Setting a desirable subpopulation to
0 will lead to the deactivation of that subpopulation from the whole
network. We neglected the Poissonian background noise when
running the simulations. The white Gaussian noise had a mean
of 0 and a standard deviation of 0.5. The threshold noise was set to
have a mean of 0 and a standard deviation of 0.1.
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FIGURE 1
Raster plots of the TCM network for 12 s are presented here with the DBS onset at second 6 for different cDBS frequencies, (A) 20 Hz and (B) 130 Hz,
and the suggested patterns, the (C) A-DBS and (D) B-DBS protocols. (E) PSD corresponding to the LFP estimated for panel A with the harmonics of 20 Hz
oscillations shown by arrows, and (F) PSD corresponding to the LFP estimated for panel B. The PSDs of panels C and D are shown in Figure 2, where we
focused on these two raster plots. The subpopulation layers and nuclei abbreviations are as follows: S, surface or supragranular; M, middle or
granular; D, deep or infragranular; CI, cortical inhibitory neurons; TCR, thalamocortical relay; and TRN, thalamic reticular nucleus.
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3 Results

3.1 Network raster plots, spike trains, and
LFP spectral analysis

The results of the simulations during different stimulation
paradigms (with the onset at second 6) are shown in Figure 1.
Figures 1A, B show the results for 20 and 130 Hz cDBS,
respectively. A visual comparison of the two diagrams draws
attention to the removal of the synchronized events due to
130 Hz cDBS, while they persist during low-frequency DBS
at 20 Hz. The PSDs of the simulated LFPs during the off DBS
period (the first 6 s of the simulations) on top of the on DBS

period (the last 6 s of the simulations) are illustrated in
Figure 1E and F for the simulated LFPs of the two panels in
Figures 1A, B. The 20 Hz cDBS led to the creation of 20 Hz
harmonics (evident as integer multiples of 20 Hz peaks) and
apparently an elevated beta power, whereas the 130 Hz cDBS led
to the removal of the exaggerated beta power during the off
DBS period.

Figures 1C, D show the results of the application of A-DBS and
B-DBS, respectively. For a clearer understanding of these effects, we
examined the raster plot panels shown in Figures 1C, D within a 1-s
window around the stimulation onset, and the results are shown in
Figures 2A, B. We also selected two random pyramidal cell neurons
with regular spiking behavior in layer D of the network and

FIGURE 2
(A) Zoomed plot for one second of simulation that contains the onset of the A-DBS pattern (already presented in Figure 1C in a large scale); (B) same
as A but for B-DBS. (C, D) Two spike trains of PY cells in the cortical D layer are shown for panels A and B, respectively. The top spike trains are those that
received the stimulation directly, and the bottom ones are those that received it indirectly (via synaptic connections in the network). (E) PSDs during the
on and off periods of A-DBS, corresponding to the LFP estimated for Figure 1C. (F) Same as G but for the B-DBS pattern; Figure 1D. The harmonics of
16 Hz are highlighted by arrows, evident during B-DBS application. The subpopulation layers and nuclei abbreviations are as follows: S, surface or
supragranular; M, middle or granular; D, deep or infragranular; CI, cortical inhibitory neurons; TCR, thalamocortical relay; and TRN, thalamic
reticular nucleus.
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illustrated their spike trains in Figure 2C,D for the two different
patterns under each corresponding raster plot. In addition, as shown
in Figure 1, we investigated the PSD of the two simulated LFPs
during off/on periods of A-DBS and B-DBS in Figures 2E, F,
respectively. A-DBS appears to have power effects similar to
high-frequency 130 Hz cDBS with the attenuation of beta-band
activity. However, B-DBS does not appear to attenuate beta power
and instead generates harmonics of 16 Hz oscillations (32 Hz, 48 Hz,
and so on), which we discuss in Section 4. Combining this
information with the spike trains shown in Figure 2C, D, we
suggested increasing the amplitude of the stimulation pulses,
i.e., A shown in Equation 3, by five times in the model to
investigate if we would obtain a different effect. Figure 3 shows
the results of this change in the amplitude of stimulation with the
exact same set-up as shown in Figure 2. In this case, we obtained the

attenuation of beta-band activity in both A-DBS and B-DBS patterns
(Figures 3E, F).

3.2 Beta power attenuation and network
synchronization

To summarize our results and compare the different stimulation
paradigms, we measured the amount of beta power attenuation
(which is the difference of beta power due to stimulation from the
PD condition (off stimulation)) during the different paradigms with
100 times repetition and showed the results in Figure 4A as boxplots.
The statistically significant changes from the PD condition are
marked by * and ** for p < 0.05 and p < 0.01, respectively,
utilizing the t-test. A-DBS was shown to provide a similar

FIGURE 3
(A) Zoomed plot for one second of simulation that contains the onset of the A-DBS pattern, but this time with a higher intensity (×5). (B) Same as A
but for B-DBS. (C, D) Two spike trains of PY cells in the cortical D layer are shown for panels A and B, respectively. The top spike trains are those that
received the stimulation directly, and the bottom spike trains are those that received it indirectly (via synaptic connections in the network). (E) PSDs during
the on and off periods of A-DBS, corresponding to the LFP estimated for panel A, but for the whole 12 s of simulations (6 s off stimulation and 6 s on
stimulation). (F) Same as G but for the B-DBS pattern, panel B. The harmonics of 16 Hz that were evident in Figure 2H have disappeared. The
subpopulation layers and nuclei abbreviations are as follows: S, surface or supragranular; M, middle or granular; D, deep or infragranular; CI, cortical
inhibitory neurons; TCR, thalamocortical relay; and TRN, thalamic reticular nucleus.
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amount of beta power attenuation as in the application of 130 Hz
cDBS, while B-DBS did not show a significant change in beta power
with respect to that during the off-stimulation period. However,
increasing the intensity of the B-DBS pulses appeared to have a
significant change in beta power attenuation and provided similar
changes as shown in both A-DBS and 130 Hz cDBS. Notably, we also
tested the effect of a 95 Hz cDBS pulsing in our model to check for
the necessity of the presence of the initial burst during A-DBS and
found that the beta power attenuation is not as significant as that
of A-DBS.

In addition to the beta power attenuation, we estimated the
synchronization in the network during different stimulations and
PD conditions (off stimulation) by evaluating Morgera’s index of
synchronization,M. cDBS at 130 Hz causes the highest amount of
desynchronization in the network (it has the lowest M), and
A-DBS with no increased amplitude causes the second average
highest amount of desynchronization. We found that an increase
in the stimulation amplitude, A, does not cause a significant
desynchronization in the network with respect to the off-
stimulation period, although it appeared to be the effective

way to reduce the exaggerated beta power, particularly
for B-DBS.

4 Discussion

In this study, we investigated the cortical network effects of two
newly suggested patterns of open-loop DBS based on synaptic
suppression mechanism derived from the characteristics of
glutamatergic synapses. These two methods (A-DBS: tonic
stimulation at a slightly lower frequency than 130 Hz and
B-DBS: bursting packs with pauses in between) had already
been theoretically derived and well described (Farokhniaee and
McIntyre, 2019), and in this article, we applied them to a
biophysically realistic model of the thalamo-cortex (Farokhniaee
and Lowery, 2021; Farokhniaee and Amiri, 2025). The results of
beta power analysis during A-DBS were not contradictory to those
of 130 Hz cDBS and, on average, led to the same level of
attenuation. However, the B-DBS pattern also achieved the
same results only if its intensity was increased by a factor of
five. To be more comprehensive and take into account another
neurophysiological feature in addition to beta power attenuation
analysis, we utilized Morgera’s covariance complexity as a measure
of the simultaneous firing of cortical neurons. We found that both
A-DBS and B-DBS reduced the network synchronization to the
same extent as 130 Hz cDBS, although with statistically significant
differences. The increase in the pulsing intensity by a factor of five
did not help in reducing the amount of network synchronization.
Overall, these findings suggest that the A-DBS pattern is more
promising than B-DBS in achieving effects equivalent to high-
frequency cDBS. While B-DBS was partially successful in
desynchronizing network activity, it produced significant beta
attenuation only with careful fine-tuning. Another interesting
point that we observed during the application of B-DBS at low
intensity was the production of 16 Hz harmonics in the LFP PSD;
Figure 2F. Knowing that low-frequency cDBS (such as the one at
20 Hz, shown in Figure 1E) amplifies the driving frequency due to
the resonance phenomenon and produces its harmonics, then the
same phenomenon takes place for B-DBS as it includes burst packs
that periodically repeat eight times for every 500 m, i.e., 16 times
per second (16 Hz), with its following harmonics (see
Figures 2B, F).

To draw a more robust conclusion from our findings, several
points must be considered. First, another set of calculations based
on the mean of the synaptic parameters might improve or change
the network effects, considering that the parameters of the original
study were obtained from a digital reconstruction and simulation
of rat neocortical anatomy (Markram et al., 2015), although it
seems unlikely since the theoretical calculations (Farokhniaee and
McIntyre, 2019) were based on robust synaptic features, which
were provided as a sensitivity analysis in the supplementary
materials of the referenced work (Farokhniaee and McIntyre,
2019). Second, the assumption to reduce the synaptic
transmission by a 50% duty cycle was the basis of the
theoretical calculations behind A- and B-DBS patterns, which
could vary based on the desired level. Nevertheless, to gain
more insights in addition to those found in this study, future
works may try investigating the neurophysiological outcomes of

FIGURE 4
(A) Beta power attenuation evaluated during different stimulation
protocols. (B)Morgera’s index of synchrony estimated during different
states, off DBS and on DBS, with different protocols. * indicates p <
0.01, and ** indicates p < 0.001. The boundaries of the boxplots
indicate the 25 and 75 percentiles of the distributions, and the black
horizontal lines show their median. The means of the distributions
were added as crosses. The dots out of the boxes and their boundaries
indicate the outliers. ×5 means five-times higher intensity.
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the novel patterns in animal experiments such as a rat model,
which would help us understand the translational feasibility of
these two patterns in practice that, in theory, turned out not to be
contradictory with cDBS outcomes. Nevertheless, it is crucial to
investigate the neurophysiological outcome of the novel patterns
represented in this study to better validate them with real data,
such as cortical LFP recordings and electrocorticography (ECoG)
from the primary motor cortex. Since the wealth of data in the field
of DBS is derived from subthalamic nucleus LFP recordings, the
addition of basal ganglia structures to the TCM model would help
in further validation of our computational analysis. We
hypothesize that the two novel patterns have significant effects
not only at the neurophysiological level, including reduction of the
microlesion effect, but also in the biomedical engineering aspects
of DBS, such as extending the battery life of the implantable pulse
generator. These hypotheses should be validated through both
theoretical and experimental studies. Amplitude, frequency, and
the on–off conditions all affect the energy consumption of the
stimulator, and the amount of current needed to have effective
outcomes should be carefully compared and quantified across
different cases. In addition, the safety ranges of the amplitudes
suggested here, such as the increase in B-DBS amplitude by a factor
of five, should be carefully measured in future animal-
model studies.
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