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an understanding of what topology it predicts for microcircuits of 
any scale. The STDP model is a departure from traditional Hebbian 
models of learning, which state that neurons that fi re action poten-
tials together will have their interconnections strengthened. Instead, 
STDP takes into account the particular temporal order of pre- and 
post-synaptic neuronal fi ring (Morrison et al., 2008), such that the 
rule modifi es synapses anti-symmetrically, depending on whether 
the pre- or post-synaptic neuron fi res fi rst (Figure 1). The basic 
question we then aimed to answer is: what is the infl uence of this 
anti-symmetry on brain microcircuit topology?

Consider fi rst if a pre-synaptic “trigger” neuron causes a post-
synaptic, fi rst-order “follower” neuron to fi re. If this follower makes 
a direct feedback connection onto the trigger, the feedback con-
nection will be weakened, since the spike generated by the follower 
will arrive at the follower–trigger synapse immediately after the 
trigger neuron’s backward propagating action potential (Figure 1). 
The principle that STDP is suitable for eliminating strong recur-
rent connections between two neurons was originally proposed by 
Abbott and Nelson (2000). Here we expand on the principle with 
the observation that it holds for all polysynaptic loops connecting 
triggers and followers: if some nth-order follower’s action poten-
tial produces in the original trigger a subthreshold potential after 
the trigger has fi red, the functional loop will be broken by spike 
timing-dependent synaptic weakening of the feedback connection. 
With this intuition, we set out to prove analytically and by means 
of numerical simulation that network topology, and specifi cally 
the occurrence of functional loops in highly connected networks, 
is directly and necessarily regulated by STDP.

This theory paper provides clear predictions about STDP’s 
effect on neural circuit topology. The proof and simulations dic-
tate strong constraints on local and long range microcircuit con-
nectivity. We propose that if these constraints are not obeyed by 

INTRODUCTION
Connections between individual neurons in the brain are con-
strained fi rst by the spatial distribution of axons and dendrites 
within the neuropil (Braitenberg and Schuz, 1998; Stepanyants et al., 
2007). Global brain networks comprise dense connections within 
tissues, the gross structures in which these tissues are embedded, 
and the bidirectional long-range projections joining these struc-
tures. The topology of these networks is not yet fully specifi ed at the 
level of microcircuitry, however1. One theoretical constraint on this 
level of organization, the “no strong loops hypothesis,” considered 
only developmentally determined area to area connectivity patterns 
to implement its specifi c neuron to neuron network topological 
constraint (Crick and Koch, 1998). While local synaptic modifi -
cations are known to directly shape the pattern of connectivity 
in local neural tissue and thus local microcircuit topology (Le Be 
and Markram, 2006), our understanding of global brain network 
topology still derives largely from this developmentally patterned, 
area to area connectivity. Furthermore, measuring simultaneously 
the relative strengths of specifi c microcircuit connections remains 
technically challenging, and virtually impossible for even medium 
sized (100–200 neurons, 0.05–0.1 mm) microcircuits. For these 
reasons, it is not yet known how large scale, long range microcir-
cuit topology and the computation it supports emerges through 
synaptic modifi cations in the brain.

We wondered whether a synaptic modifi cation commonly 
observed in local circuit preparations and widely hypothesized to 
shape local dynamics in brain structures, spike timing-dependent 
plasticity (STDP; Markram et al., 1997), could be analyzed to yield 
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real neural  circuits, the hypothesis that standard STDP shapes the 
structure and function of real nervous systems must be revised. 
Our approach suggests that similar analyses of other learning 
rules may impose similar constraints on neural circuit topology 
and that the hypothetical signifi cance of these rules may similarly 
be tested.

METHODS
SIMULATION
The simulation methods of Song et al. (2000) were used to simulate 
each neuron in our 100 neuron network. We observed the reported 
topological results in each simulation after 10 s of network activ-
ity. In some cases, we performed additional, longer simulations of 
network activity to explore the convergence and stability of these 
topological measures under various conditions. Briefl y, each neuron 
model was integrate-and-fi re, with membrane potential determined 
as in Song et al. (2000), by τ

m
(dV/dt) = V
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 − V + g

exc
(t)(E

exc
 − 

V) + g
inh

(t)(E
inh
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The synaptic conductances g
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 and g
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 were modifi ed by the 

arrival of a presynaptic spike, as in Song et al. (2000), such that 
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g max = 0 01. . We initialized g a to different values for intra-network 
( . )g a = 0 005  and extra-network ( . )g a = 0 01  inputs.

For extra-network inputs, excitatory homogeneous Poisson 
spike trains were generated at a constant rate r

exc
 = 20 Hz. 

Inhibitory, inhomogeneous Poisson spike trains that model fast 
local inhibition were generated at a rate r

inh
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For all simulations we report here, the STDP update rule for a syn-

apse from neuron j to neuron i was g i j g i j g i j M ia a a( , ) ( , ) ( , ) ( )= + μ  for 
synaptic depression, and g i j g i j g g i j P i ja a a a( , ) ( , ) ( ( , )) ( , ),max= + − μ  
for synaptic potentiation, µ = 0.1 ( g a  is maintained in the inter-
val [ , ]).g gmin max  As in Song et al. (2000), M(i) and P

a
(i, j) decay 

exponentially, such that τ−(dM/dt) = −M(i) and τ+(dP
a
/dt) = −P

a
, 

τ+ = τ− = 20 ms. Also as in Song et al. (2000), M(i) is decremented by 
A− every time a neuron i generates an action potential, A− = 0.00035, 
and P

a
(i, j) is incremented by A+ every time a synapse onto neuron 

i from neuron j receives an action potential, A+ = 0.00035. This 
update rule effectively implements the anti-symmetric function 
of STDP (see Figure 1).

ANALYSIS
To randomize our networks for analysis (Figures 2B,C, 4C and 5), 
we created a random sequence of indices ranging uniquely from 1 
to n, where n was the number of off diagonal elements in our net-
work’s weight matrix. We used these indices to shuffl e uniquely the 
positions of all off diagonal elements in the matrix, thus preserving 
the network’s learned weight matrix, while destroying its learned 
topology.

We chose to sample unique loops (Figure 2C) in the networks 
rather than enumerating them, since for long loops (k > 20) the 
number of possible paths to search would exceed 1020. To this end, 
for each loop length k, we therefore constructed one million ran-
dom paths of length k − 1. We term these paths “unique” because 
we sampled neurons within each path without substitution (i.e., 
no paths containing sub-loops were generated such that a single 
neuron is traversed more than once). However, we allowed that 
each path could be represented more than once in the one million 
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FIGURE 1 | Schematic of the topological effect of STDP. Feedback 
connections in an initial topology (left) from fi rst (1) and second (2) order 
“follower” neurons (light blue) to a “trigger” neuron (green) create loops of 
length k = 2 and k = 3. These connections are selectively penalized by the STDP 
learning rule (lower middle, red). The plot (middle) depicts this rule, with the time 
difference between follower (black) and trigger (green) action potentials on the 

x-axis, and the expected synaptic modifi cation on the y-axis. When spikes 
successfully propagate through the loopy network they feed back to the trigger, 
arriving at the follower–trigger synapse immediately after the trigger neuron 
fi red and resulting in synaptic depression (red). Through repeated spike 
propagation events, STDP results in a completely feed forward learned topology 
(right) to the output neuron (dark blue).
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constructed paths. In fact, for the shortest paths constructed (k ≤ 3) 
this was necessarily the case since the total number of possible 
unique paths is less than one million.

We sampled unique loops from adjacency matrices constructed 
such that the weight threshold produced a matrix that was precisely 
half-full (for 100 neurons, a matrix with 5000 ones and 5000 zeros). 
For 4.0, 2.0, 1.0, 0.5, and 0.1 ms delays, these thresholds were 0.0032, 
0.0030, 0.0033, 0.0037, and 0.0046. In this way, we controlled across 
experiments for varying weight distributions, and sampled loops 
from the same number of links across all experiments. Counts 
were compared against the randomized network constructed from 
5000 links.

To detect network events (Figures 5B,C), we employed the 
method described by Thivierge and Cisek (2008). Briefl y, for each 
simulation in which network events were detected, we generated 
spike trains at 1 ms resolution for each neuron, equal in duration 
to the time series analyzed and comprising the same number of 
spikes as observed for that neuron. We constructed network spike 
time histograms of these spike trains across all neurons using a bin 
width of 10 ms. We then determined a threshold for the network 
equal to a count which 5% of these bins exceeded. Thresholds were 
determined 1000 times for each network and each simulation, and 
the mean of these 1000 values used as the threshold above which 
network events were detected in network spike time histograms 
for each simulation.

RESULTS
A PROOF OF STDP AS A FORM OF LOOP-REGULATING PLASTICITY
First, we represent STDP acting on a weight w associated with the 
connection between two neurons and their output variables x(t) to 
y(t), in the adiabatic approximation (i.e. small learning rate), as:

Δw C t S t dtxy xy∝
−∞

∞

∫ ( ) ( )

 
(1)

where C
xy

(t) = ∫ x(t′ − t)y(t′) is the correlator, and S(t) is the 
anti-symmetric STDP update function, S(t < 0) = exp(λt), 
S(t > 0) = −exp(−λt). Consider this function operating over con-
nections within a linear network driven by uncorrelated Gaussian 
inputs, ξ, such that &x t Wx t t( ) ( ) ( ),= + ξ  where x is a vector of activities 
with components denoted by x

i
, the weight connection matrix has 

components W
ij
, and the input satisfi es 〈 + 〉 =ξ ξ τ σ δ τ δi j

T
t ijt t( ) ( ) ( ) .2  

We show (see Section “Update Rule for the Weight Matrix” in 
Appendix) that the learning rule defi ned in Eq. 1 results in an 
update for the network weight matrix of the form ΔW = ΔW(W, 
τ, C

0
) where τ is the time constant of the STDP’s exponential, and 

C
0
 is the instantaneous correlator C(0). This update rule infl uences 

global network topology in a very specifi c way.
To formalize our original intuition analytically, consider a linear 

network with only excitatory connections, such that the dynamics 
may be expressed as &x Wx I A x= = − +( ) , where A

ij
 ≥ 0 is the net-

work connectivity matrix (comprising the off-diagonal elements of 
the weight matrix and zeros on the diagonal), and −I represents a 
self-decay term. Next, we introduce a “loopiness” measure that esti-
mates the strength of all loops of all sizes that occur in the network, 
εl k

kk A= =
∞Σ 1 1( / )tr [ ]. The function tr [·] stands for the trace opera-

tion; this operation, when acting on the k-exponentiation of the 

adjacency matrix (comprising ones and zeros, where the nonzero 
entry a

ij
 represents a connection from network node i to network 

node j), counts the total number of closed paths of length exactly 
equal to k, i.e. k-loops2. When applied to the network connectivity 
matrix A, the operation counts loops weighted by the product of 
the synaptic strengths of the looping connections, resulting in a 
slightly different, but still useful, measure of loopiness.

It is possible, however, to reduce this measure without actually 
regulating topology by simply reducing the weights of all connec-
tions. A topological loopiness measure should therefore include a 
penalty to the weights’ vanishing; we choose −1/2tr [AAT], (T stands 
for the transpose operation) which, for weighted graphs, measures 
the sum of the squares of all network weights, and for a binary 
graph, counts the number of links. We then defi ne the total topo-
logical loopiness as:

ε = −
=

∞

∑ 1 1

21 k
A AAk T

k

tr [ ] tr( ) [ ]  (2)

We show analytically that for any stable weight matrix W = −I + A, 
the change in this energy under random noise as a function of the 
evolution of the network under STDP, Δε ∼ tr [∂

A
εΔAT], is strictly 

semi-negative, and therefore STDP necessarily regulates this meas-
ure, resulting in a decrease in topological loopiness (see Section 
“Update Rule for the Weight Matrix” in Appendix). We therefore 
use the term STDP and “loop-regulating plasticity” interchange-
ably throughout.

LOOP-REGULATING PLASTICITY IN A NETWORK OF SIMULATED 
NEURONS
What are the effects of this form of plasticity on network topology 
(and specifi cally on the number of functional loops) in nonlinear 
networks, such as those found in neural microcircuits? Because 
our proof of STDP as a form of loop-regulating plasticity applies 
only to linear networks or nonlinear networks that may be linear-
ized, we aimed to show, using simulation, that the same principle 
extends to a biologically relevant, nonlinear regime. We replicated 
the simulation of Song et al. (2000), extending it in three ways 
(see Simulation). First, we created a network of 100 neurons, each 
receiving excitatory synapses from all other 99 “intra-network” 
input sources and from 401 randomly spiking “extra-network” 
input sources selected at random from 2500 homogeneous Poisson 
processes. All excitatory synapses underwent STDP. Second, we pro-
vided 250 inhibitory synapses to each neuron, sampled from 1250 
spiking sources; the inhibitory inputs modeled fast local inhibition 
to the network using inhomogeneous Poisson processes with rates 
modulated by the instantaneous aggregate fi ring rate of the network 
(see Simulation). Third, we explored four different forms of STDP 
update (Burkitt et al., 2004) and observed robust loop-regulating 
plasticity for each; the results presented here used the STDP update 
rule of Gütig et al. (2003).

We initialized our network with maximum extra-network 
weights, and intra-network weights at half maximum. This caused 
the network to spike vigorously when extra-network inputs became 
active, but spiking rates were limited by the fast local-inhibition. 

2Note that paths that traverse the same network node more than once are 
 also counted.
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After 20 s of simulated network activity, STDP had a profound effect 
on topological loopiness as defi ned in Eq. 2, measured over loops 
of length 2 ≤ k ≤ 100 for convenience (Figure 2A). We counted 
the number of closed, functional loops of varying length using tr 
[⎡A⎤k], where ⎡A⎤ was constructed by applying a sliding threshold 
to the network connectivity matrix (Figure 2B). We compared this 
quantity to the same, measured for a randomized network, con-
structed by randomly reassigning weights from the learned weight 
distribution to synapses in the network (see Analysis). These results 
are representative of all loop lengths measured (2 ≤ n ≤ 100) and 
show that as the weight threshold grows, the number of closed, 
functional loops in the STDP-learned network decreases more than 
in the randomized network. This form of loop-regulating plasticity 
can therefore be described as loop-eliminating.

THE EFFECT OF SYNAPTIC DELAYS ON LOOP-REGULATING PLASTICITY
We wondered what effect synaptic delays would have on this result, 
since we expected follower feedback spikes to cause less anti-loop 
learning as they fell further from the zero time difference maxima 
in the STDP update function. We also wondered if the decrease in 
the number of closed, functional loops compared to a randomized 
network also applied to unique, functional loops, in which no neu-
ron is traversed more than once. We therefore sampled the number 
of unique, functional loops through networks simulated with syn-
aptic delays from 0.1 to 4.0 ms. For each loop length 2 ≤ k ≤ 25, we 
constructed one million random paths of length k − 1, and for the 
learned and randomized networks (see Analysis). We searched for 
each path across all networks studied, and if the path and the kth link 
completing the functional loop existed in the network, we counted it 
for that network (see Analysis). The result is similar to that for closed 
loops, and, as expected, longer synaptic delays resulted in an expo-
nential decrease in the number of loops as a function of loop length 
that deviated less from the same function for randomized networks, 
indicating weaker loop-regulating plasticity (Figure 2C).

NETWORK IN-HUBS, OUT-HUBS, AND LOOP-REGULATING PLASTICITY
Next, we asked if other topological measures of the STDP-learned 
networks may be correlated with our observation of STDP’s effect 
on loopiness, since many different topological properties might 
coincide with or support this effect. For example, one means to cre-
ate networks poor in loops is to ensure that nodes in the network are 
either “out-hubs” or “in-hubs,” but not both (Ma’ayan et al., 2008). 
An out-hub in a network of neurons has many strong postsynaptic 
connections but few strong presynaptic connections, and an in-hub 
has many strong presynaptic connections but few strong postsyn-
aptic connections. We applied a sliding threshold to the network 
connectivity matrix learned by STDP, and examined the manifold, 
colored according to each applied threshold, which correlated in-
degree versus out-degree for each neuron in our network (Degree 
refers to the number of weights which exceed the threshold). This 
showed a clear inverse relationship between in- and out-degrees 
that varied in form with weight threshold (Figure 3A). In contrast, 
by examining the in-degree from extra-network inputs, we found 
a positive correlation (Figure 3B), indicating that out-hubs were 
more likely to be in-hubs within the larger extra-network topology, 
and that in-hubs in our network were more likely to receive only 
the weakest extra-network inputs.

0 0.002 0.004 0.006 0.008 0.01

10
0

10
5

10
10

Adjacency weight threshold

N
um

be
r 

of
 c

lo
se

d 
lo

op
s

Fewer Closed Loops Than Random

k=5

k=3

k=2

 

 
random
STDP

0 5 10 15 20 25
10

-2

10
0

10
2

10
4

10
6

Fewer Unique Loops, Varying Delay

Loop length

N
um

be
r 

of
 u

ni
qu

e 
lo

op
s

 

random
4.0 msec
2.0
1.0
0.5
0.1

0 5 10 15 20
0.05

0.1

0.15

0.2

Time (secs)

Decrease In Network Loopiness

10
0

n
=

1

1 k
tr

(A
T
)k

10
0

n
=

1

1 2
tr

A
AT

0 5 10 15 20
12

13

14

15

16

17

18

19

20

Time (secs)

Increase In Network Weightedness

A

B

C

FIGURE 2 | Global topological effects of STDP. (A) A monotonic decrease in 
the loopiness measure (see Eq. 2, fi rst term) over time is observed in a simulated 
network of 100 neurons undergoing STDP. Simultaneously, STDP results in a net 
increase in the weightedness of the network (inset, see Eq. 2, second term). 
Shown here and in (B) is the average of eight separate simulations of 20 s of 
network activity; error bars are standard deviation. (B) Number of closed loops of 
length 5, 3, and 2, decreases as a function of weight threshold for network 
connections. Dotted lines show counts for randomized networks with same 
number of total connections. (C) Number of unique loops sampled from fi ve 
networks with varying synaptic delays following 10 s of simulated activity, and 
from a random network with 5000 connections. Number of loops is shown as a 
function of loop length. Loops were sampled across different learned networks 
while maintaining the number of network connections at 5000 by varying the 
weight threshold (from 0.003 to 0.0046) for each delay. Greater synaptic delays 
decreases the loop-eliminating topological effect of standard STDP.
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REVERSE STDP RESTORED LOOPS AFTER LOOP-ELIMINATING 
PLASTICITY
Beyond these standard topological analyses, we also examined 
biological properties of the network. We measured total synaptic 
input as a function of total synaptic output for all neurons in 
the STDP-learned network. In the same experiment, we asked 
if reversing the polarity of the standard STDP function might 
undo the effects of loop-regulating plasticity that results from 
standard STDP, since under this “reverse” condition, follower 
spikes would cause strengthening of closed-loop feedback con-
nections. This reversal of polarity is biologically relevant, since it 
occurs at the synaptic interface between major brain structures 
such as neocortex and striatum (Fino et al., 2008), arises specifi -
cally at synapses between certain cell types, and is controlled by 

cholinergic and adrenergic neuromodulation, for example in the 
neocortical microcircuit (Seol et al., 2007). We found the same 
inverse relationship between in-degree versus out-degree for each 
neuron in our network (Figure 4A, green markers), as well as 
an inverse relationship between total synaptic input and output 
following 1.5 s of standard STDP (Figure 4B, green markers). 
These effects contributed to a reduction in the number of closed 
loops (Figure 4C, depicted as in Figure 2B), and each of these 
relationships could be largely abolished by 3 to 5 additional sec-
onds of reverse STDP (Figure 4, red markers), in contrast to 3 
to 5 additional seconds of standard STDP (Figure 4, blue mark-
ers), which strengthened them. We also found the same positive 
correlation between in-degree from extra-network inputs and 
out-degree within the network (Figure 4D), and between total 
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FIGURE 3 | Local topological effects of STDP. (A) Inverse relationship of in-
degree versus out-degree of intra-network connections for each neuron in a 
network after 10 s of STDP across multiple weight thresholds for network 
connections. Colors in left and right panels correspond to a weight threshold 

used to construct the network over which degrees were measured. The color 
key can be read from the left panels’ vertical axes and corresponding color found 
along each manifold. (B) Correlated extra-network in-degree and intra-network 
out-degree indicate an opposite effect of STDP on extra-network inputs.
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extra-network synaptic input and total intra-network synaptic 
output (Figure 4E). This effect was also largely abolished by 3–5 s 
of reverse loop-regulating plasticity, but reinforced by 3–5 s of 
standard loop-regulating plasticity.

DYNAMICAL EFFECTS OF LOOP-REGULATING PLASTICITY
What are the consequences of this form of network plasticity 
beyond topology? In the case of a linear network, reducing the 
number of loops implies more stable dynamics. Consider the sta-
bility of the unforced system 

r& r
x t Wx t( ) ( ) ;− = 0  the eigenvalues λ of 

W = −I + A can be expressed as:

− = ⎡⎣ ⎤⎦
= =

∞

∑ ∑log | |λi
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k

k k
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1 1

1
tr  (3)

which emphasizes the contribution of loops to system instability 
(Prasolov, 1994). Such a simple observation, however, does not make 
clear predictions about the effects of loop-regulating plasticity on 
nonlinear neural circuit function. We were surprised to fi nd that raster 
plots of network spiking activity, when sorted according to certain 
topological metrics (e.g., the sum of extra-network input weights, the 
sum of intra-network output weights, in-degree, or out-degree) con-
sistently revealed network events that originate with weak synchroni-
zation among out-hubs, followed by strong synchronization among 
in-hubs (Figure 5A, top), across eight independent simulations of 
the phenomenon. This effect was altered by randomizing the intra-
network weights, such that synchronization events became stronger, 
more frequently global, and more frequent among out-hubs alone 
(Figure 5A, bottom). Peri-event time histograms constructed across 
eight independent simulations reveal this same effect (Figure 5B, left 
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FIGURE 4 | Effect of reverse STDP. (A) In-degree versus out-degree of intra-
network connections following different durations and polarities of STDP, 
shows a strong inverse relationship for standard STDP. Adjacency weight 
threshold was 0.005. Markers correspond to the network after a period of 1 
second of standard STDP (green), followed by periods of 3 seconds or 5 
seconds of standard STDP (blue) or reverse STDP (RSTDP, red). (B) Total 
synaptic input versus output for intra-network connections shows a similar 
inverse relationship for standard STDP. (C) Number of closed loops of length 5, 

3, and 2, is decreased by standard STDP, and restored with reverse STDP 
(plotted as in Figure 2B). (D) In-degree of extra-network inputs versus out-
degree of intra-network outputs, plotted as in (A), shows a strong positive 
correlation for standard STDP. Adjacency weight threshold was 0.007 for extra-
network inputs and 0.005 for intra-network outputs. (E) Total synaptic extra-
network input versus total synaptic intra-network output, plotted as in (B), 
shows a similar positive correlation. In each panel the topological effects of 
STDP are reversed by reverse STDP.
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panels), with synchronization arising strongly among in-hubs after 
weak out-hub activation in the STDP-learned network, and globally 
in the randomized network (see Analysis for a description of how 
network events were detected). In the STDP-learned network, both 
in-hubs and out-hubs sustain spiking rates ranging from 4−9 Hz 
that are not correlated with in-degree, whereas in the randomized 
network, spiking rates range more broadly (3−16 Hz) and are highly 
correlated with extra-network in-degree (Figure 5B, right panels). 
We examined the summed network peri-event time histograms 

for the STDP-learned network and for networks that underwent 
randomization of their intra-network weights, their extra-network 
weights, or both (Figure 5C, top), across eight simulations for each 
condition. The resulting distributions, as well as a pooled distribu-
tion of times from all randomized networks, each differed from each 
of the others based on paired Kolmogorov–Smirnov tests (P ≈ 0). 
To examine what properties of these distributions distinguished 
them, we measured kurtosis and skew for each distribution from 
each simulation, and compared the distributions of kurtosis and 
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FIGURE 5 | Dynamical effects of STDP. (A) Raster plot of the spiking activity 
for a network after STDP (top), and for a surrogate network where intra-
network weights were reassigned randomly to network connections, thus 
destroying STDP-learned topology (bottom). Each point corresponds to a spike 
for each neuron. Each neuron was assigned a rank according to the sum of its 
extra-network input weights, with the lowest rank corresponding to the 
highest sum. (B) Peri-event time histograms for each neuron in the STDP 
network (top left) and its surrogate (bottom left), pooled across eight separate 
simulations (bin width, 2 ms). Histograms show different network propagation 
properties. Spike counts and extra-network weights for the same networks do 
not co-vary in the STDP-learned topology (top right), but are highly correlated 
for the surrogate (bottom right). (C) Peri-event time histograms summed 

across all simulations and all neurons for the STDP network (blue) and three 
surrogates, in which the intra-network connections (red), extra-network 
connections (green) or both (magenta) were randomized (top). Skewness 
versus kurtosis of these histograms averaged across eight separate 
simulations each (bottom, error bars show standard deviation) indicates the 
network distribution of spikes is more peaked with more spread for the STDP-
learned topology. Inset table shows P-values of unpaired t-tests of skew 
(upper right triangle) and kurtosis (lower left triangle) measurement 
distributions from each of eight simulations between each of the four 
conditions, plus the entire distribution of randomized networks (red, green, 
magenta, icons). Squares colored yellow are signifi cant, with stars indicating 
P-values’ orders of magnitude (from P < 0.05–0.0005).
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skew measures between each group. Kurtosis differed signifi cantly 
between the STDP-learned network topology and the randomized 
topologies (intra-network randomized, extra-network randomized, 
both randomized, Figure 5C, bottom). Results from unpaired t-tests 
of the distributions of skew and kurtosis measurements between four 
simulation conditions (calculated separately for each of the eight 
simulations) are shown in table inset (Figure 5C, bottom). These 
differences indicate that the effect of standard loop-regulating plas-
ticity is to generate network topologies that support network events 
with greater spread and sharper peaks in time.

DISCUSSION
Based on our simulations and analytical results, we propose that 
standard STDP must produce a network topology in real neural 
tissues that is conspicuously poor in both closed and unique loops, 
and that it will segregate neurons into out- and in-hubs to achieve 
this. Such a prediction can easily be tested by analyzing correla-
tions between the number of functional input connections and the 
number of functional output connections made by neurons recorded 
during multi-patch clamp experiments in a structure in which STDP 
has been observed (e.g., Song et al., 2005; Le Be and Markram, 2006). 
Our theory predicts this correlation should be negative.

The network that emerges in such tissues will organize its rela-
tionship to inputs from other structures in an orderly fashion, 
making local out-hubs the primary target for long range inputs, 
and thus establishing a feed forward relationship between the net-
work and its pool of inputs. In a larger system, we anticipate that 
local in-hubs would become long range outputs. This prediction 
may also be tested by correlating the local topological relationships 
of a neuron with its identifi ed role as either an input, output, or 
interneuron within that structure.

We also make a clear prediction for the effect of synaptic delays 
on modulating the topological effects of STDP. Correlations 
between these delays and functional connectivity data from multi-
patch clamp recordings from connected neurons undergoing STDP 
can also be measured to determine if synaptic delays predict the 
strength of reciprocal connections. Furthermore, we observe that at 
interfaces between brain structures where STDP is reversed by neu-
romodulation, circuit dynamics can be predicted from the expected 
change in network topology. For example, changes in STDP at the 
cortico-striatal synapse (Fino et al., 2005) resulting in reverse STDP 
would favor the emergence of strong cortico-striatal-thalamocorti-
cal loops resulting in oscillations in this circuit.

Interestingly, the depletion of loops and the separation of nodes 
into out-hubs and in-hubs has recently been reported in a variety 
of complex biological systems, including functional networks at the 
level of spatio-temporal resolution of fMRI, and the neural network 
of C. elegans (Ma’ayan et al., 2008), suggesting a general principle of 
organization and dynamical stability for entire classes of functional 
networks. These observations suggest quantitative measurements 
of topology in vertebrate microcircuits could produce similarly 
interesting results.

It has been observed in local circuit preparations that a bias exists 
among layer 5 pyramidal neurons of rat neocortex towards strong 
reciprocal connectivity (Song et al., 2005; Le Be and Markram, 
2006), and towards looping motifs among triplets of this neuro-
nal class (Song et al., 2005). Furthermore, cyclic connections are 

strongest among those neurons connected by the strongest synaptic 
weights. These same neurons also exhibit STDP at the excitatory 
synapses that join them (Markram et al., 1997). Given our analysis, 
it is now clear that these observations contradict each other; spe-
cifi cally, we have shown that standard STDP under normal spiking 
conditions with random, weakly correlated inputs is loop-eliminat-
ing. Therefore, other mechanisms and constraints than those we 
have analyzed must be at play.

Consider the case of networks that have recently spiked at abnor-
mally high rates, either due to increased excitability within the net-
work (e.g., due to injury, epilepsy, etc.) or due to otherwise elevated 
extra-network inputs. If the majority of post-synaptic potentials 
derived from loop feedback immediately cause action potentials, 
standard STDP may have the effect of strengthening loops. Also, a 
network driven by highly and specifi cally correlated inputs may spike 
in temporal patterns conducive to loop-strengthening by STDP (a 
hypothesis we are currently studying). Finally, as we have shown, a 
spiking network that has recently experienced a reversal of the polarity 
of STDP will also show an increase in the number of loops observed. 
Clearly more experiments and observation would be required in 
order to confi rm or rule out each of these mechanisms.

We observe that network activity propagates smoothly through 
the feed-forward topology generated by STDP (Figure 5A, 
top panel) without segregating neurons by average spike-rates 
(Figure 5B, upper right panel). The effect on global brain func-
tion of such properties would include stable average fi ring rates 
shared among all neurons, regardless of their topological position, 
and robust signal propagation, similar to “synfi re chains” (Abeles, 
1991; Hosaka et al., 2008). Finally, our theory holds that the reversal 
of STDP’s polarity represents a local switch for the modifi cation 
of both global brain network topology and global brain dynamics. 
Thus sources of modulation (Pawlak and Kerr, 2008) that accom-
plish this reversal locally are in fact regulating global brain function 
by means of this switch.

APPENDIX
UPDATE RULE FOR THE WEIGHT MATRIX
The classical defi nition of Hebbian learning for the weight w con-
necting two dynamical variables x(t) and y(t) can be written, in its 
simplest form, as:

ΔW Cxy= η  (A1)

C x t y t dtxy =
−∞

∞

∫ ( ) ( )  (A2)

where η is the learning constant, which for exposition’s sake will be 
set to 1. It is important, however, to keep in mind that in order to 
write Eqs. A1–A2 we are assuming an adiabatic approximation, i.e. 
the learning is small enough that the system can be considered to 
be in steady-state for the purpose of computing the correlation.

A natural extension of Eqs. A1–A2 is to introduce time, i.e. to 
consider delayed as well as instantaneous correlations:

ΔW C t S t dtxy∼
−∞

∞

∫ ( ) ( )  (A3)
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C t x t t y t dtxy ( ) ( ) ( )= −
−∞

∞

∫ ′ ′ ′  (A4)

It is assumed that the time-dependent weight function van-
ishes for long delays, lim

t→±∞ S(t) = 0; the classical learning 
rule is recovered when S(t) = δ(t). If, as some  experimental 
results describing STDP suggest (Markram et al., 1997), the 
weight function displays strict temporal anti-symmetry, i.e. 
S(t) = −S(−t), then,

ΔW C t S t dt C t S t dtxy xy∼ +
−∞

∞

∫ ∫( ) ( ) ( ) ( )
0

0

 (A5)

ΔW C t C t S t dtxy xy∼ − −⎡⎣ ⎤⎦
∞

∫ ( ) ( ) ( )
0

 (A6)

A multi-dimensional linear system driven by uncorrelated 
inputs can be described as:

&x t Wx t t( ) ( ) ( )= + ξ  (A7)

where each unit is independently subject to Gaussian white noise 
ξ(t), a vector whose components satisfy 〈ξ

i
(t)ξ

j
(s)〉 = σ2δ

ij
δ(t − s). 

The lagged correlator is related to the zero-lagged correlator by 
Risken (1996):

C t
e C t

C e t

W t

W tT
( )

| |

=
<

>

⎧
⎨
⎪

⎩⎪
0

0

0

0
 (A8)

where for notational convenience we name C
0
 = ∫ xT(t)x(t)dt, i.e. the 

correlator at zero lag, by construction a symmetric matrix. Hence 
the expression for the learning update is

ΔW C e e C S t dtW t WtT

∼ −⎡
⎣

⎤
⎦

∞

∫ 0 0

0

( )  (A9)

The temporal behavior of the weight function has been approxi-
mated by a piece-wise exponential form:

S t

e t

t

e t

t

t

( )

/

/

=
+ <

=
− >

⎧

⎨
⎪

⎩
⎪ −

τ

τ

0

0 0

0

 (A10)

where τ is STDP’s time-constant, i.e. it expresses the window over 
which the plastic changes due to temporal coincidence are signifi -
cant. Assuming that the network connections are only excitatory, 
and expressing without further loss of generality W = −I + A, we 
derive the synaptic weight update ΔW = ΔA as follows:

ΔA S t e C dt S t C e dtWt W tT

= − +
∞ ∞

∫ ∫( ) ( )0

0

0

0

 (A11)

Given that

e e e−
∞

− +
∞

−∫ ∫= = − −[ ]t Wt t I Wtdt dt W I/ / /τ τ τ
0 0

1
1  (A12)

We obtain

ΔA W I C C W IT= − − + −− −[ / ] [ / ]1 11
0 0

1τ τ  (A13)

Leading fi nally to

ΔA I A C C I AT∼ −
+

⎡
⎣⎢

⎤
⎦⎥

− −
+

⎡
⎣⎢

⎤
⎦⎥

− −τ
τ

τ
τ1 1

1

0 0

1

 (A14)

after dropping the multiplying constant τ/(1 + τ). From this expres-
sion it is possible to derive that the weight update is anti-symmetric, 
and that a perfectly symmetric system would not be modifi ed, as 
C

0
 would commute with A (see below, Eq. A20). Of course, any 

small initial asymmetry will eventually be blown up. We can also 
see that STDP’s time constant also introduces the same multiplying 
factor τ/(1 + τ) for A, which can be absorbed by a renormalization; 
we will assume therefore τ/(1 + τ) → 1 for the remaining of the 
exposition. Consistently, the limiting behavior of Eq. A14 implies 
ΔA(τ → 0) = 0.

MINIMIZATION OF LOOPS AND DYNAMICS
Now we can estimate the effect of the synaptic time-dependent 
plasticity expressed by Eq. A14 on the topology of the network. 
For this, we will postulate a penalty or energy function for what 
we will call “loopiness” of the network. A measure of the number 
of loops occurring in the network can be obtained by summing 
the trace of the exponentiation of the network connectivity matrix, 
Σk

kA ktr [ ]/ . This loop density can be simply minimized by making 
the connections vanish, so we need to introduce a regularization 
penalty to avoid this effect; an obvious measure of the strength of 
the connections in a network is tr [ ],AAT  which in a binary graph 
would be equivalent to the total number of links. We postulate then 
the following “loopiness” energy:

ε = ⎡⎣ ⎤⎦ − ⎡⎣ ⎤⎦∑ 1 1

2k
A AAk T

k

tr tr  (A15)

The change in this energy upon small changes ΔA is expressed as 
Δ Δε ε∼ ∂tr [ ]A

TA ; it can be easily verifi ed that ∂ = − −−
A

TI A Aε ( ) ,1  
and therefore:

Δε ∼ − [ ] − [ ]tr trK K1 2

K I A I A C C I AT T
1

1 1
0 0

1
= −( ) − − −( )⎡

⎣⎢
⎤
⎦⎥

− − −
( )

K A C I A I A CT
2 0

1 1
0= −( ) − −⎡

⎣⎢
⎤
⎦⎥

− −( )  (A16)

We will demonstrate in what follows that the traces of K
1
 and 

K
2
 are strictly semi-positive under the synaptic changes elicited 

by STDP (i.e. Eq. A14), and therefore the loopiness energy can 
only decrease over time. This will be the case for any stable weight 
matrix, i.e. as long as all the eigenvalues have negative real com-
ponents, and under the assumption that the system is driven by 
gaussian noise.

Let us consider tr [K
1
], rewritten as:

tr I A I A I AT T−( ) − − −( )⎡
⎣⎢

⎤
⎦⎥

− − −1 1 2
( )  (A17)

and which is of the form
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tr PP PT −( )⎡⎣ ⎤⎦
2  (A18)

For any matrix P,

tr trP P P P RRT T T T−( ) −( )⎡
⎣⎢

⎤
⎦⎥

= ⎡⎣ ⎤⎦ ≥ 0

which upon expanding leads to

tr PP PT −⎡⎣ ⎤⎦ ≥2 0  (A19)

and ensures the positivity of tr [K
1
], under the assumption C

0
 ≈ I. 

Moreover, we can show that this is valid for an arbitrary C
0
. Under 

the assumption of stability and homogeneous Gaussian noise, the 
correlation and weight matrices are related by the Lyapunov equa-
tion (Risken, 1996; DelSole, 1999):

WC C W QQT T
0 0+ = −  (A20)

where QQT is the generalized temperature tensor of the noise, whose 
components Q Qi j ij= σ2 are the corresponding noise variances. For 
the case we are considering, QQT = I, a symmetric system W = WT 
has the solution C

0
 = −W−1/2. A formal solution for the general case 

is (Horn and Johnson, 1991):

C dtWt W tT

0

0

=
∞

∫e e  (A21)

which reduces to

C dtIt At A tT

0
2

0

= −
∞

∫e e e  (A22)

Following the derivation in Eqs. A18–A19, the full expression 
for tr [K

1
] can be written as:

tr trK RR CT
1 0[ ] = ⎡⎣ ⎤⎦  (A23)

Given that

tr e e tr e eRR R RT A A A A TT⎡
⎣

⎤
⎦ = ( )( )⎡

⎣⎢
⎤
⎦⎥

≥ 0  (A24)

It follows through Eq. A22 that tr [K
1
] ≥ 0

Similarly, the second term in Eq. A16, tr [K
2
], can be 

rewritten as:

tr trA I A C A I A CT ( ) ( )−⎡⎣ ⎤⎦ − −⎡⎣ ⎤⎦
− −1

0
1

0

which can be reduced to

tr A A I A CT −( ) −⎡⎣ ⎤⎦
−( ) 1

0

Replacing A(I − A)−1 by (I − A)−1 − I, the term can be 
 transformed to

tr tr tr trC I A I A C C W W CT T
0

1
0 0

1
0[ ] − −( ) −⎡⎣ ⎤⎦ = [ ] − ⎡⎣ ⎤⎦

− −( )

 

(A25)

Assuming that QQT = I in Eq. A20, and pre-multiplying by W−1, 
we obtain,

W C W W CT− −= − −1
0

1
0  (A26)

tr tr trW W C W CT − −⎡⎣ ⎤⎦ = − ⎡⎣ ⎤⎦ − [ ]1
0

1
0  (A27)

from which we derive:

tr tr trK C W2 0
12[ ] = [ ] + ⎡⎣ ⎤⎦

−  (A28)

Now we can use the formal solution of the Lyapunov equa-
tion, Eq. A21, and the fact that for a stable matrix such as W we 
can write:

W dtWt−
∞

= −∫1

0

e

and modify Eq. A28 accordingly:

tr tr e e tr eK dt dtWt W t WtT

2

0 0

2[ ] = ⎡
⎣

⎤
⎦ − ⎡⎣ ⎤⎦

∞ ∞

∫ ∫  (A29)

The eigenvalues of any matrix satisfy λ(eW) = eλ(W); hence,

tr e eK dt dtk kt

k

N
t

k

N

2
2

10 10

2[ ] = −
=

∞

=

∞

∑∫ ∑∫Re( )λ λ  (A30)

where λ
k
 are the N eigenvalues of W. Calling λ

k
 = −µ

k
 + iγ

k
, µ > 0, 

the fi rst term in the r.h.s. above is

2 2

10 10

e e−

=

∞
−

=

∞

∑∫ ∑∫=μ μk kt

k

N
t

k

N

dt dt

Now we can compare both terms in the r.h.s. of Eq. A30 for each 
k and t: Re( ) Re( ),e e− − +≥μ μ γk k kt t i t  which leads directly to tr [K

2
] ≥ 0 

and completes the proof of the semi-negativity of the changes in 
the energy function (Eq. A16).

Interestingly, this result is related to a property of M-matri-
ces. A matrix is an M-matrix when: (1) the off-diagonal elements 
are semi-negative, M

ij
 ≤ 0∀i ≠ j, and (2) it is “positive stable,” 

Re [λ
i
 (M)] > 0∀i. It can be shown that for any M-matrix of 

dimension N (Th. 5.7.23 in Horn and Johnson, 1991) tr [MT M− ]
 ≤ tr [I] = N. Choosing −W as an M-matrix, the theorem leads to 
a similar result for the non-negativity of tr [K

2
] when C

0
 is close 

to the identity.
We have assumed throughout that the system is in a regime 

of dynamical stability, and presented a case for the stabilizing 
effect of STDP by linking loops and eigenvalues in Eq. 3. It 
follows that loopiness minimization (Eq. 2) is equivalent to 
maximization of stability (as defined by the l.h.s. of Eq. 3), con-
strained by the total matrix weight. We can further understand 
this by  explicitly expanding to first order the update Eq. A14 to 
see the effect on U i i= −∑ log | | .λ  Assuming again that QQT = I, 
the solution to the Lyapunov equation (Eq. A21) can be approx-
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imated by a series expansion in powers of A (Horn and Johnson, 
1991); to first approximation C

0
 � I + 1/2(A + AT), leading to 

ΔA ∼ A − AT. Through Eq. 3 we obtain δU � 1/2tr [AδA + δAA], 
and in turn δU � (tr [A2] − tr [AAT]) ≤ 0, making the system 
more stable.
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