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Burst termination may involve pre- and post-synaptic factors 
(Rubin et al., 2009), but this study focuses exclusively on post-
synaptic mechanisms. Moreover, we concentrate on factors coupled 
to Na+ because Ca2+-dependent K+ currents (I

K–Ca
), which often 

contribute to burst termination in vertebrate CPGs (Grillner, 2003, 
2006), are not essential for respiratory rhythmogenesis under stand-
ard conditions in vitro (Onimaru et al., 2003; Crowder et al., 2007). 
Here we show that blocking I

pump
, I

K–Na
, and – to a lesser extent – 

I
K–ATP

 each causes depolarization and steady-state attenuation of 
inspiratory bursts, which impedes respiratory rhythmogenesis. In 
synaptically isolated preBötC neurons, we simulated bursts in cur-
rent clamp and measured 3–8 mV of transient hyperpolarization 
attributable to I

pump
, I

K–Na
, and I

K–ATP
, which contribute to active 

phase termination during cycles of respiratory network activity 
in vitro. The data suggest that Na+ and ATP-dependent outward 
currents contribute to inspiratory burst termination and support 
rhythmic function of the preBötC.

Materials and Methods
The Institutional Animal Care and Use Committee at The College 
of William and Mary approved all protocols. Neonatal C57BL/6 
mice of post-natal ages 0–4 days were dissected in standard arti-
ficial cerebrospinal fluid (ACSF) containing (in mM): 124 NaCl, 
3 KCl, 1.5 CaCl

2
, 1 MgSO

4
, 25 NaHCO

3
, 0.5 NaH

2
PO

4
, and 30 

dextrose, equilibrated with 95% O
2
–5% CO

2
 (pH 7.3). Transverse 

slices (550-μm thick) that expose the preBötC on the rostral 
surface (Ruangkittisakul et al., 2010) were perfused at 4 ml/min 
with 27°C ACSF and visualized with Koehler illumination and 

introduction
Breathing in mammals depends on inspiratory rhythms that origi-
nate in the preBötzinger Complex (preBötC) of the ventral medulla 
(Tan et al., 2008; Bouvier et al., 2010; Gray et al., 2010). The preBötC 
is unique from an experimental perspective because the cellular 
mechanisms of rhythm generation can be investigated in slices that 
retain inspiratory motor function in vitro.

The inward currents that underlie inspiratory bursts include the 
Ca2+-activated non-specific cation current (I

CAN
) and the persistent 

Na+ current (I
NaP

; Feldman and Del Negro, 2006; Pace et al., 2007; 
Koizumi and Smith, 2008). I

NaP
 and I

CAN
 flux Na+ during inspira-

tory bursts, so burst termination may depend on activity-dependent 
outward currents linked to Na+ accumulation, as well as the related 
depletion of ATP due to Na+ pumping. Na/K ATPase electrogenic 
pump current (I

pump
) has been linked to burst termination in spinal 

locomotor and oral-motor central pattern generator (CPG) networks 
(Ballerini et al., 1997; Del Negro et al., 1999; Darbon et al., 2003) and 
midbrain dopamine neurons (Johnson et al., 1992). In addition to 
generating net outward current, Na/K ATPase pumps consume ATP, 
which evokes ATP-sensitive K+ current (I

K–ATP
) in respiratory neurons 

(Pierrefiche et al., 1996; Mironov et al., 1998; Haller et al., 2001), and 
thus could influence burst termination. Na+-dependent K+ current 
(I

K–Na
) could also be involved because Slack-like I

K–Na
 responds directly 

to cytosolic Na+ in the lamprey CPG (Yuan et al., 2003; Wallen et al., 
2007), and Slick-like I

K–Na
 activates in response to Na+ and is inhibited 

by ATP (Bhattacharjee et al., 2003). Therefore, depending on subunit 
composition, I

K–Na
 could act in conjunction with both I

pump
 and I

K–ATP
 

to assist in burst termination.
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 videomicroscopy. ACSF K+ concentration was raised to 9 mM and 
respiratory motor output was recorded from the XII nerve roots 
with suction electrodes.

Patch pipettes (3–4 MΩ) were filled with solution containing (in 
mM): 140 K-Gluconate, 5 NaCl, 1 EGTA, 10 Hepes, 2 Mg-ATP, and 
0.3 Na-GTP (pH 7.3, KOH). Whole-cell current-clamp recordings 
were performed with a Dagan IX2-700 amplifier (Minneapolis, MN, 
USA). Data were acquired digitally at 4 kHz after 1 kHz filtering.

We bath-applied strophanthidin (10 μM, in ethanol, 0.01% 
final concentration in ACSF) to block I

pump
, quinidine (100 μM, 

in DMSO, 0.01% final concentration in ACSF) to block I
K–Na

, and 
glibenclamide (500 μM, in DMSO, 0.05% final concentration in 
ACSF) to block I

K–ATP
 (Sigma-Aldrich, St. Louis, MO, USA). Dose–

response curves for quinidine (1, 10, 100, 500, and 1000 μM) and 
glibenclamide (100, 500, 1000, and 2000 μM) were measured in 
three or more slices at each dose. The final concentration of ethanol 
and DMSO never exceeded 0.1% in the ACSF. To assess respiratory 
network function in dose–response experiments, we measured XII 
burst amplitude and area, which were normalized with respect to 
control. We also measured XII burst half width and respiratory 
frequency, which are reported in millisecond and hertz.

The amplitude, area, and half width of inspiratory bursts were 
measured during whole-cell recordings in the context of respira-
tory rhythmic activity. We normalized the burst measurements 
in steady-state antagonist conditions with respect to control to 
compute the relative attenuation of the inspiratory burst. The nor-
malization procedure enabled us to study the effects of antagonists 
across multiple experiments.

We applied 500-ms current pulses to simulate inspiratory-like 
bursts in synaptically isolated neurons. A cocktail of ionotropic 
synaptic receptor antagonists was used to stop network activity 
including: 50 μM DL-2-amino-5-phosphonovaleric acid (APV), 
10 μM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), 5 μM 
picrotoxin, and 5 μM strychnine. The amplitude of the current 
injection was adjusted to evoke at least nine spikes per pulse 
(∼20 Hz). A transient phase of hyperpolarization was always 
recorded at the offset of the current pulse, which we used as a 
model of burst termination in preBötC neurons during endog-
enous respiratory rhythm generation. The current pulse was then 
repeated in the presence of strophanthidin, quinidine, or glibencla-
mide. In most cases, the transient phase of hyperpolarization was 
reduced, suggesting the removal of an activity-dependent outward 
current. The antagonist-sensitive response was obtained by digital 
subtraction, to measure the contribution of I

pump
, I

K–Na
, or I

K–ATP
 to 

the transient post-pulse hyperpolarization evoked by the original 
500-ms current pulse.

Two-tailed t-tests were used to assess changes in XII output 
(amplitude, area, half width, and frequency), inspiratory burst mag-
nitude (amplitude, area, and half width), as well as the amplitude 
of transient hyperpolarization responses evoked in synaptically 
isolated neurons.

results
contribution of Ipump

We exposed rhythmically active slice preparations to strophanthi-
din (10 μM) while recording XII output and inspiratory preBötC 
neurons (Figure 1). Bias current was adjusted to establish a −65 mV 

baseline in control, and was not adjusted after strophanthidin appli-
cation. Within 6 min the XII nerve discharged tonically (n = 11 of 
12 slices tested), preBötC neurons depolarized 8.8 ± 1.5 mV (n = 7), 
and respiratory frequency sped up significantly from 0.23 ± 0.03 
to 0.41 ± 0.07 Hz (p < 0.05, n = 7). In addition to increasing fre-
quency, blocking I

pump
 decreased inspiratory burst amplitude by 

52 ± 12% (p < 0.005), decreased area by 68 ± 7% (p < 0.05), and 
decreased burst half width by 50%, from 245 ± 46 to 122 ± 29 ms 
(p < 0.05, all n = 7).

Strophanthidin-induced tonic XII discharge generally lasted 
30 s. After a total exposure of 7.7 ± 4.8 min, more than half of the 
preBötC neurons tested ceased firing and remained quiescent at 
a membrane potential above −55 mV (n = 4 of 7 tested). In one 
case the XII output maintained rhythmic function even after the 
recorded cell fell quiescent (e.g., Figure 1). XII output stopped in 
four preparations after 8.3 ± 6.0 min of continuous exposure, at 
which time the recorded preBötC neuron was also quiescent at a 
depolarized state, without rhythmic drive. Three slices maintained 
rhythmogenesis throughout the experiment. These effects reversed 
after 20–40 min of washout.

The experiments shown in Figure 1 provide limited insights 
into the burst-terminating role of the Na/K ATPase pump because 
all neurons experienced a profound shift in baseline membrane 
potential, and inspiratory-related synaptic drive potentials were 
modified in terms of frequency and magnitude. Thus we sought to 
study I

pump
 without the confounding network effects that sped up 

the rhythm yet diminished synaptic drive. We synaptically isolated 
preBötC neurons using a cocktail of ionotropic receptor antago-
nists (Materials and Methods), and simulated burst-like responses 
with current pulses. Baseline membrane potential was biased to 
−70 mV, which is very close to E

K
 in 9 mM K+ ACSF (i.e., −71 mV) 

VM

XII

a control d washoutb c
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a b c d A
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 m
V
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Figure 1 | effects of 10-μM strophanthidin on a preBötC inspiratory 
neuron (VM) and Xii motor output. (A) An overview of the entire experiment 
showing control (a, 0 min), early strophanthidin (b, 3 min), late strophanthidin 
(c, 7 min), and washout (d, 35 min). The solid bar shows strophanthidin 
application. (B) Individual traces (15 s) of the sections shows in (A).
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1.8 s. In general, I
pump

 was responsible for −6.4 ± 1.7 mV of post-
burst hyperpolarization that decayed back to baseline in 1.6 ± 0.6 s 
(n = 32 subtractions in nine neurons).

contribution of IK–na

We studied the pharmacology of I
K–Na

 by measuring quinidine 
dose–response curves for respiratory XII output in vitro (Figure 3, 
Table 1, n ≥ 3 separate slices tested at each concentration). At 1 and 
10 μM we observed no significant effects. One hundred micromolar 
quinidine, and all higher concentrations, significantly attenuated 
every measure of XII output: amplitude, area, half width, and fre-
quency, before stopping rhythmogenesis. We chose 100 μM for sub-
sequent whole-cell recording experiments because 100 μM exceeds 
the half-maximal inhibitory concentration (IC

50
) of 20 μM and its 

effects on XII output were reversible.
We exposed rhythmic slices to 100 μM quinidine while record-

ing inspiratory preBötC neurons and monitoring XII output 
(Figure 4). Membrane potential was biased to −65 mV initially 
and not adjusted further during quinidine application and 
washout. Ultimately, quinidine depolarized preBötC neurons by 
14.1 ± 5.4 mV (n = 4), but had a biphasic effect on inspiratory 
bursts prior to steady state. First, the decremental burst pattern 
changed to an incrementing burst pattern with greater amplitude 
and area (Figures 4 and 5). Baseline membrane potential hyper-
polarized −5 to −10 mV during this phase, likely due to accumula-
tion of other activity-dependent outward currents responding to 
enhanced Na+ influx during the quinidine-enhanced inspiratory 
bursts. This transient phase lasted less than 2 min so we could 
not compute burst statistics. After an average of 14.8 ± 4.0 min, 
the inspiratory burst amplitude decreased by 65 ± 18% and 
burst area decreased by 74 ± 8% (both p < 0.001, n = 4). Half 
width increased significantly in two cases from 75.1 ± 13.4 to 
95.6 ± 13.4 ms (p < 0.005), decreased significantly in one case 
from 391 to 99 ms (p < 0.05), and did not change significantly 
in a fourth case. All inspiratory burst activity at the cellular and 
network (XII) level stopped after 36.0 ± 5.4 min of quinidine 
exposure. In a 2 min window preceding rhythmic cessation, res-
piratory frequency significantly slowed down to 0.07 ± 0.02 Hz, 
compared to the original control frequency of 0.20 ± 0.03 Hz 
(p < 0.024, n = 4).

We studied I
K–Na

 in synaptically isolated preBötC neurons to 
circumvent the network-level effects of quinidine, which change 
inspiratory burst dynamics. Again, we applied current steps to sim-
ulate bursts. Since I

K–Na
 is a K+ current we adjusted bias to establish 

a −50 mV baseline, which exceeds E
K
 by approximately 20 mV. The 

contribution of I
K–Na

 was obtained by subtraction (control – 100 μM 
quinidine, Figure 2B). Applying the same magnitude of step cur-
rent in the presence of quinidine caused depolarization block of 
spiking because quinidine increases input impedance (Figure 2B1). 
Therefore, we repeated the experiment but lowered the magnitude 
of the pulse to evoke burst-like repetitive spiking similar to control 
(Figure 2B2). In response to the lower magnitude step command, 
I

K–Na
 caused a −7.7 ± 1.1 mV hyperpolarization lasting 0.54 ± 0.14 s 

(11 subtractions in three neurons). In response to the larger ampli-
tude step (equivalent to the pulse magnitude in control) I

K–Na
 caused 

a −7.6 ± 1.2 mV hyperpolarization lasting 0.74 ± 0.13 s (53 subtrac-
tions in five neurons). Despite the disparity in the magnitudes of 

and thus minimizes K+ currents. We evoked burst-like spiking in 
control and in the presence of 10-μM strophanthidin. There was 
a transient phase of hyperpolarization at burst offset in control, 
which was diminished in the presence of strophanthidin. We com-
puted the I

pump
 contribution to this post-burst hyperpolarization by 

digital subtraction of the traces (Figure 2A). The inset in Figure 2A 
shows the digital subtraction of the raw traces, which represents 
the membrane trajectory attributable to I

pump
 for this representative 

cell. The magnitude of the I
pump

 mediated post-burst hyperpolariza-
tion varied from −14 to −1 mV, Figure 2A (inset) shows a single 
sweep measuring −3.75 mV, which decayed back to baseline in 
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Figure 2 | Burst-like responses to current-pulse injections in synaptically 
isolated preBötC neurons. Broken-line boxes highlight the subtractions that 
are displayed as insets in each condition. Separate voltage scale bars are given 
for the inset and (upper) and main voltage trace (lower). Each sweep lasts 3 s; 
each inset lasts 0.5 s. The broken lines show baseline membrane potential 
(top) and the nadir of the post-burst hyperpolarization (bottom). The arrow 
indicates the amplitude of the post-burst hyperpolarization attributable to the 
pharmacological removal of each outward current. (A) Effects of 10-μM 
strophanthidin. Baseline membrane potential was adjusted to −70 mV in 
control (gray) and strophanthidin (black). (B) Effects of 100-μM quinidine. 
Baseline membrane potential was adjusted to −50 mV in control (gray) and 
quinidine (black). (B1) Shows the same current magnitude in control and 
strophanthidin. (B2) shows the response to a diminished current magnitude in 
quinidine conditions, which was adjusted to evoke approximately the same 
magnitude of depolarization and spiking as in control. (C) Effects of 500-μM 
glibenclamide. Baseline membrane potential was adjusted to −50 mV in 
control (gray) and glibenclamide (black) for (C1), separate black traces for (C2).
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Table 1 | effects of quinidine on respiratory activity in vitro. Slices with respiratory rhythmic motor output were exposed to quinidine at concentrations 

shown below.

Concentration Time to Time to washout Amplitude Area Half width (ms) Frequency (Hz) 

(μM) stop (min) (min) (norm) (norm)  

     Control Quinidine Control Quinidine

1 NA NA 1.22 ± 0.13 0.96 ± 0.15 588 ± 60 437 ± 186 0.16 ± 0.02 0.16 ± 0.02 

   (p > 0.05) (p > 0.05)  (p > 0.05)  (p > 0.05)

10 NA NA 0.87 ± 0.06 0.62 ± 0.07 575 ± 344 332 ± 186 0.21 ± 0.12 0.11 ± 0.04 

   (p > 0.05) (p > 0.05)  (p > 0.05)  (p > 0.05)

100 46.3 ± 1.7 24.4 ± 5.7 0 ± 0 0 ± 0 654 ± 210 0 ± 0 0.21 ± 0.05 0 ± 0

500 15.9 ± 0.5 75.4 ± 6.6 0 ± 0 0 ± 0 678 ± 354 0 ± 0 0.18 ± 0.09 0 ± 0

1000 3.1 ± 1.6 114.7 ± 44.4 0 ± 0 0 ± 0 370 ± 106 0 ± 0 0.22 ± 0.03 0 ± 0

The time to stop respiratory rhythm (time to stop) and the duration of the recovery (time to washout) are reported in minutes. The effects on the amplitude and area of 
XII burst discharges are normalized with respect to control. The effect on half width of the XII burst is reported in milliseconds and the effect on respiratory frequency 
is reported in hertz. Paired t-tests are reported for changes in XII amplitude, area, half width, and respiratory frequency. No statistics are reported for 100 μM–1 mM 
because the respiratory rhythm stopped entirely.
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Figure 3 | Dose–response curves for quinidine plot Xii peak amplitude 
(circle), area (square), half width (triangle), and respiratory frequency 
in vitro (asterisk) versus concentration. Inset traces (30 s) show XII activity 
at the time points and drug conditions as shown.

the injected currents and the amount of depolarization they evoked, 
the amplitude and duration of the I

K–Na
-mediated hyperpolarization 

responses were statistically indistinguishable (p > 0.05).

contribution of IK–atP

We studied the pharmacology of I
K–ATP

 by measuring glibenclamide 
dose–response curves for respiratory XII output in vitro (Figure 6, 
Table 2, n ≥ 3 separate slices tested at each concentration). One hun-
dred micromolar glibenclamide significantly slowed respiratory 
frequency from 0.29 ± 0.09 to 0.26 ± 0.05 (p < 0.05) but had no other 
significant effect on XII output. Five hundred micromolar signifi-
cantly decreased XII burst amplitude by 54 ± 23% and attenuated 
burst area by 47 ± 23% (both p < 0.001). XII half width decreased 
from 305 ± 59 to 163 ± 44 ms, but this was not  statistically signifi-

cant. Respiratory frequency slowed significantly from 0.26 ± 0.03 
to 0.06 ± 0.03 Hz (p < 0.01). One to two millimolar significantly 
perturbed all measures of XII output before ultimately stopping 
respiratory rhythmogenesis.

We performed whole-cell recordings in the context of network 
activity while applying the IC

50
, 500-μM. Glibenclamide precipi-

tated unless stirred constantly, which often caused transient block-
age of the ACSF perfusion lines and perturbed laminar solution 
flow through the recording chamber. This limitation does not affect 
XII recordings but often dislodges whole-cell recording pipettes 
and precludes long-lasting recordings that include control, glib-
enclamide, and washout conditions. Nevertheless, Figure 7 shows 
a complete experiment in which the neuron depolarized nearly 
30 mV, inspiratory burst amplitude decreased by 49%, burst area 
decreased by 55%, and half width decreased from 185 to 85 ms. 
Respiratory frequency slowed from 0.21 to 0.09 Hz. Inspiratory 
bursts transiently increased (Figure 7 row 2), but subsequently 
decreased (rows 3 and 4). Ultimately the neuron locked into a 
non-terminating plateau-like state akin to burst that cannot self-
terminate. This is shown in row 4 of Figure 7, where membrane 
potential is ∼0 mV prior to the start of washout (<44 min). In 
washout conditions we terminated the plateau with −20 pA of cur-
rent bias, and inspiratory bursts recovered substantially. XII output 
returned to control.

We also measured I
K–ATP

 using step currents. Solubility prob-
lems prematurely terminated 12 out of 15 experiments, but we 
obtained reliable measurements in control, glibenclamide, and 
washout conditions in three cases. Current pulses were applied 
from a baseline membrane potential of −50 mV to measure I

K–ATP
, 

to maximize the driving force for K+ current. The I
K–ATP

 contribu-
tion was obtained by subtraction (500 μM glibenclamide – con-
trol, Figure 2C). Two neurons showed a glibenclamide-sensitive 
post-burst hyperpolarization (Figure 2C1), which measured 
−3.2 ± 0.6 mV and decayed in 41.7 ± 7.5 ms (57 subtractions in 
three cells). One neuron tested showed no effect. After prolonged 
exposure, glibenclamide abolished repetitive spiking in two of three 
neurons tested (Figure 2C2).
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Figure 5 | inspiratory bursts in control and quinidine (15 and 30 min) 
conditions. Traces are taken from Figure 4, as denoted by asterisks.
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Figure 4 | effects of quinidine on inspiratory bursts and Xii motor output. The intracellular and XII responses are shown in control, quinidine (15, 30, and 
35 min), and washout. All sweeps (30 s) are scaled to the absolute voltage calibration shown at right. Asterisks (*) denote inspiratory bursts shown at higher 
resolution in Figure 5.
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Figure 6 | Dose–response curves for glibenclamide (gLi) plot Xii peak 
amplitude (circle), area (square), half width (triangle), and respiratory 
frequency in vitro (asterisk) versus concentration. Inset traces (30 s) show 
XII activity at the time points and drug conditions as shown.

discussion
Post-synaptic mechanisms that contribute to inspiratory burst ter-
mination include I

pump
, I

K–Na
, and I

K–ATP
, outward currents evoked 

by the accumulation of Na+ or the depletion of ATP due to Na+ 
pumping. Since inspiratory bursts employ I

CAN
 and I

NaP
 as inward 

charge carriers (Del Negro et al., 2005; Pace et al., 2007; Koizumi 
and Smith, 2008), both of which flux Na+, outward currents that 
are directly or indirectly sensitive to Na+ are well suited for a role 
in terminating the active phase of the respiratory cycle.

The pharmacological blockade of I
pump

, I
K–Na

, and I
K–ATP

 in vitro 
reversibly depolarized the baseline membrane potential, which 
led to depolarization block of spiking, and then ultimately the 
attenuation of inspiratory bursts. Respiratory frequency either 
decreased (quinidine and glibenclamide) or increased (strophan-
thidin) before stopping altogether. These data suggest direct effects 
on the rhythmogenic mechanism or effects on sources of excitatory 
drive to the rhythm generator, e.g., tonic serotonergic drive to the 
preBötC from the midline raphé (Ptak et al., 2009), rather than 
effects on premotor or motor neurons (Koizumi et al., 2008). These 
data further suggest that the activity dependent outward currents 

I
pump

 and I
K–Na

, as well as I
K–ATP

 to a lesser extent, play a significant 
role in maintaining proper inspiratory burst dynamics, and that 
these dynamics are important to maintain rhythmogenic function 
in preBötC.

caveats and liMitations of PharMacology
Bath-applied drugs affect the entire respiratory network, so it is 
hard to separate their effects on cellular burst-terminating mecha-
nisms from network-wide effects on membrane  excitability and 
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et al., 1999), and midbrain dopamine neurons (2 μM, Johnson et al., 
1992). We previously used 10 μM to block I

pump
 in a study of respira-

tory frequency regulation (Del Negro et al., 2009).
One millimolar quinidine blocks I

K–Na
 in lamprey CPG interneu-

rons (Wallen et al., 2007) and cloned human I
K–Na

 (Bhattacharjee 
et al., 2003). We applied 100 μM because this concentration 
exceeded the IC

50
 (20 μM, Figure 3), was reversible, and higher 

doses increased input impedance.
Five hundred micromolar is the IC

50
 for glibenclamide effects 

on respiratory motor output (Figure 6). A prior report shows 
that 50 μM glibenclamide enhances inspiratory bursts, but does 

synaptic drive. To minimize this inherent ambiguity, we per-
formed pharmacological experiments in rhythmically active 
slices (Figures 1, 4, and 7) and in synaptically isolated neurons 
(Figure 2). We infer the roles of I

pump
, I

K–Na
, and I

K–ATP
 from both 

experiments.
We selected antagonist concentration(s) to block I

pump
, I

K–Na
, and 

I
K–ATP

 while minimizing undesired effects on membrane or network 
properties.

Strophanthidin blocks I
pump

 at low micromolar concentrations in 
spinal locomotor interneurons (10 μM, Ballerini et al., 1997; Darbon 
et al., 2003), brain stem masticatory motoneurons (4 μM, Del Negro 

Table 2 | effects of glibenclamide on respiratory activity in vitro. Slices with respiratory rhythmic motor output were exposed to glibenclamide at 

concentrations shown below.

Concentration Time to stop Time to washout Amplitude Area Half width (ms) Frequency (Hz) 

(μM) (min) (min) (norm) (norm)

     Control gLi Control gLi

100 NA NA 1.21 ± 0.31 0.96 ± 0.30 324 ± 13 239 ± 17 0.29 ± 0.15 0.26 ± 0.15 

   (p > 0.05) (p > 0.05)  (p > 0.05)  (p > 0.05)

500 NA NA 0.46 ± 0.14 0.53 ± 0.23 305 ± 59 163 ± 44 0.26 ± 0.03 0.06 ± 0.03 

   (p < 0.001) (p < 0.001)  (p > 0.05)  (p < 0.01)

1000 20.0 ± 0.2 26.4 ± 10.4 0 ± 0 0 ± 0 281 ± 22 0 ± 0 0.34 ± 0.06 0 ± 0

2000 10.5 ± 0.5 21.8 ± 9.1 0 ± 0 0 ± 0 269 ± 62 0 ± 0 0.14 ± 0.01 0 ± 0

The time to stop respiratory rhythm (time to stop) and the duration of the recovery (time to washout) are reported in minutes. The effects on the amplitude and area of 
XII burst discharges are normalized with respect to control. The effect on half width of the XII burst is reported in milliseconds and the effect on respiratory frequency 
is reported in hertz. Glibenclamide is abbreviated as GLI. Paired t-tests are reported for changes in XII amplitude, area, half width, and respiratory frequency. No 
statistics are reported for 1 and 2 mM because the respiratory rhythm stopped entirely.
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Figure 7 | effects of glibenclamide on inspiratory bursts and Xii motor output. Intracellular and XII responses are shown in control and glibenclamide (2, 10, 
and 15 min). All sweeps (30 s) are scaled to an absolute voltage calibration shown at right. Applied current (Iapp) is shown for washout conditions because it was used 
to bias the membrane potential transiently.
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neurons continually depolarize (which was common in steady 
state, see Figures 1, 4, and 7), then fewer and fewer neurons would 
be able to participate in rhythmogenesis. The net synaptic drive 
would decrease, resulting in smaller bursts. This general attrition 
from the network may ultimately abolish the ability to generate 
rhythmic activity and XII motor output.

role of Ipump

I
pump

 has a tonic component that is constitutively active to main-
tain ion gradients, as well as a transient component that is activity 
dependent. Transient I

pump
 has been measured in motoneurons (Del 

Negro et al., 1999), dopamine neurons (Johnson et al., 1992), and 
preBötC neurons (Del Negro et al., 2009), all of which show rhyth-
mic bursting activity in networks. The transient component of I

pump
 

can reach 600 pA and last 50–150 ms (Del Negro et al., 2009). Here 
the transient component of I

pump
 caused a −6 mV after-hyperpo-

larization lasting 0.1–1.6 s (Figure 2A). These results suggest that 
the transient I

pump
 exerts a profound but short-lasting effect that 

may help stop the inspiratory burst and then rapidly deactivate. In 
the context of ongoing respiratory rhythm, blocking I

pump
 causes, 

on average, 8.8 mV of depolarization and depolarization block 
of spiking. This steady depolarization of the baseline membrane 
potential we largely attribute to loss of the tonic component of 
I

pump
, which can be as high as 200 pA during the post-inspiratory/

expiratory phase in preBötC neurons (Del Negro et al., 2009). The 
tonic discharge seen in XII motor output after 5 min of exposure 
to strophanthidin may result from a large number of preBötC neu-
rons depolarizing collectively. It may also be partially attributable 
to depolarization of XII motoneurons by Na/K ATPase blockade. 
Pathological depolarization due to loss of the tonic component of 
I

pump
, combined with loss of the transient component of I

pump
 may 

give rise to a population of highly depolarized preBötC neurons that 
can no longer participate in rhythmogenesis. In the experiments 
where rhythmogenesis persisted in strophanthidin (e.g., Figure 1), 
we speculate that fewer preBötC neurons are involved in rhythm 
generation since the network output, as assessed by XII output, 
was greatly diminished.

role of IK–na and IK–atP

I
K–Na

 and I
K–ATP

 function like the transient component of I
pump

. 
Removing I

K–Na
 and I

K–ATP
 also caused depolarization, depolari-

zation block, and eventually rhythm cessation. Removal of I
K–Na

 
(Figures 4 and 5) enhanced inspiratory bursts transiently, con-
sistent with model predictions (as we described above). The 
inspiratory burst showed an incrementing pattern, in contrast 
to the decremental pattern observed before blocking I

K–Na
. At 

this early stage of the experiment, it is unlikely that quinidine 
affected the whole rhythmogenic network, so its effects on the 
burst- terminating mechanisms of the recorded neuron were more 
apparent. Figure 7 showed qualitatively similar data for I

K–ATP
 

blockade, in which the first 2 min showed a transient enhance-
ment of burst magnitude probably due to selective removal of the 
activity dependent outward current before the drug affected the 
entire rhythm-generating network. A prior report showed that 
50 μM glibenclamide enhanced inspiratory burst magnitude and 
duration, which is also consistent with a role for I

K–ATP
 in burst 

termination (Haller et al., 2001).

not change respiratory rate (Haller et al., 2001). Therefore, the 
extent of the I

K–ATP
 blockade at 50 μM is unclear. Intracellular 

application of 100 μM glibenclamide fully occluded K–ATP 
channel agonist effects in expiratory neurons (Pierrefiche et al., 
1996). However, intracellular application does not allow one 
to assess the cellular and network effects of the drug simul-
taneously, which was necessary for the present study (e.g., 
Figures 1, 4, and 7). Bath-applied 500-μM glibenclamide affected 
respiratory rhythm in vitro, but also abolished repetitive spiking 
capabilities in two out of three neurons tested (Figure 2C2). 
Therefore, we cannot exclude the possibility that glibenclamide 
impedes rhythmogenesis, at least in part, because it impairs the 
ability to spike repetitively.

insPiratory burst terMination: the role of calciuM-
dePendent PotassiuM currents?
Burst termination in vertebrate CPGs often involves I

K–Ca
 

(Grillner, 2003, 2006). Large- (BK) and small-conductance (SK) 
forms of I

K–Ca
 influence respiratory regulation and gasping in 

vivo and in vitro (Büsselberg et al., 2003; Zavala-Tecuapetla et al., 
2008), but I

K–Ca
 is not essential for rhythmogenesis in vitro, and 

removing I
K–Ca

 from the preBötC causes no consistent change in 
inspiratory burst characteristics (Onimaru et al., 2003; Crowder 
et al., 2007).

insPiratory burst terMination: activity dePendent  
outward currents
A model of rhythmogenesis in the preBötC posits that synaptic 
depression and activity dependent outward currents terminate 
inspiratory bursts (Feldman and Del Negro, 2006; Rubin et al., 
2009). Eliminating or attenuating outward currents results in 
depolarization block and bursts that cannot self-terminate. This 
experimental study focuses on “activity dependent” outward 
currents that respond to Na+ accumulation or ATP depletion 
due to Na+ pumping, which occurs during the inspiratory burst. 
The role(s) of synaptic depression, voltage-dependent outward 
currents, as well as the deactivation or inactivation of inward 
currents (I

CAN
 and I

NaP
) are beyond the scope of this work but 

by no means ruled out as contributors to burst termination in 
the preBötC.

In response to blocking I
pump

, I
K–Na

, and I
K–ATP

, the net decrease 
in burst magnitude and duration was the opposite outcome 
predicted by the model. The straightforward model prediction 
does not take into account the reaction of the network to phar-
macological blockade of outward currents. In the real system, 
depolarization of membrane potentials, combined with depo-
larization block of spiking, exert persistent and pathological 
effects on network function. Individual preBötC neurons become 
impaired at quiescent depolarized states and thus cannot sustain 
phasic inspiratory burst activity. Initially, blocking I

pump
 and I

K–ATP
 

increased respiratory frequency (Figures 1 and 7). This can be 
attributed to constituent rhythm-generating neurons depolar-
izing closer to burst threshold and firing at a faster rate, which 
may speed the process of recurrent excitation in the rhythm-
generating network. Recurrent excitation influences the interburst 
interval and respiratory frequency (Rekling et al., 1996; Rekling 
and Feldman, 1998; Mironov, 2008, 2009). However, as preBötC 
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Physiological significance
Simulated bursts allowed us to measure post-burst hyperpolariza-
tion responses that reflect I

pump
, I

K–Na
, and I

K–ATP
. I

K–Na
 may play the 

largest role in burst termination because it caused −7.7 mV of 
post-burst hyperpolarization lasting 0.50–0.75 s. This is consist-
ent with the almost universally overlooked role of I

K–Na
 in causing 

delayed outward currents in a wide range of mammalian neurons 
(Budelli et al., 2009). In the preBötC specifically, I

pump
 may also 

play a significant role. It generated −6.4 mV of post-burst hyper-
polarization lasting 1.6 s. The present results are consistent with 
the possible role of I

pump
 suggested by preliminary experiments 

and modeling studies (Del Negro et al., 2009; Rubin et al., 2009). 
Since burst generation and termination appear linked to Na+, it 
is logical that both of these Na+-activated currents play a larger 
role in termination. I

K–ATP
 may be the least significant in terms of 

magnitude; it caused −3 mV of hyperpolarization lasting 0.4 s, and 
in some cases may not be involved at all, since in one out of three 
neurons tested showed no evidence of I

K–ATP
.

Most in vitro experiments that permit detailed cellular and 
systems level experiments are performed on neonatal and some-
times embryonic tissues. The cellular mechanisms of burst genera-
tion and termination may continue to change during post-natal 

 development and into adulthood. In particular, the role of synaptic 
inhibition may become more important to promote inspiratory–
expiratory phase transitions (Manzke et al., 2010).

In neonatal (Del Negro et al., 2009) and adult (Richter, 1982, 
among others) rodents, burst termination is accomplished within 
∼1 s in inspiratory neurons. The mechanism may depend on pre-
synaptic factors (Rubin et al., 2009) as well as outward currents 
not necessarily coupled to Na+ accumulation. Nevertheless, the 
present data indicate that inspiratory burst termination involves 
active outward currents such as I

pump
 and I

K–Na
, as well as I

K–ATP
 to 

a lesser extent, which should be considered when studying and 
modeling the preBötC.
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