
NEURAL CIRCUITS

While these approaches have yielded important insights into brain 
function, they have typically either addressed global pathways or 
microcircuitry without linking the two together. The translucent 
zebrafish larva represents an opportunity to create functional 
connectivity maps of an entire vertebrate nervous system in vivo 
using optical imaging.

Our long-term goal is to map out the functional connectivity 
of a vertebrate brain with cellular resolution using optical meth-
ods. Our working hypothesis is that mapping neural activity in 
a relatively simple vertebrate brain will provide insight into the 
mechanisms that direct the flow of neural information. This manu-
script describes methodology that may be used to understand the 
mechanisms responsible for the propagation of seizure-related 
neural bursting activity in the larval zebrafish transgenic for the 

IntroductIon
A fundamental problem in neuroscience is to understand how 
information flows through pathways in the central nervous sys-
tem (CNS). The control of this process is thought to be the basis 
of cognition, and irregularities are thought to be at the core of 
many mental disorders, substance abuse, and seizures. Functional 
connectivity, an important component of this problem, has been 
studied at the cognitive level using fMRI (Logothetis, 2003; Zhou 
et al., 2009), MEG (Owen et al., 2009; Stam, 2009; Babajani-Feremi 
and Soltanian-Zadeh, 2010), and EEG (Cantero et al., 2009; 
Carbonell et al., 2009; de Haan et al., 2009), and at the microcir-
cuit level using multi-electrode arrays (Chiu and Weliky, 2002; 
Pillow et al., 2008; Ye et al., 2008; Field et al., 2010) and optical 
imaging techniques (Cacciatore et al., 1999; Taylor et al., 2003). 
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connectivities may be calculated. This automatic functional connectivity mapping procedure 
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 ratiometric cameleon Ca2+ indicator (Higashijima et al., 2003) 
or other preparations transgenic for ratiometric Ca2+ indicators 
(Garaschuk et al., 2007; Mank et al., 2008).

Even with a relatively simple vertebrate such as the larval 
zebrafish, it would be daunting to attempt to map the full reper-
toire of information regulation mechanisms. Therefore, as a first 
step we simplified the problem by studying neural pathways domi-
nated by large-scale coherent bursting activity induced by chemo-
convulsants. It has been shown that the 7-days-post-fertilization 
(dpf) larval zebrafish exhibits epileptiform-like electrographic 
activity in response to bath application of the chemoconvulsant 
PTZ, a GABA

A
 antagonist (Baraban, 2005, 2007; Baraban et al., 

2005, 2007). In addition, we have recently shown that PTZ induces 
Ca2+ activity that can take the form of waves that propagate through 
the CNS.

From a network perspective, during a burst, a large popula-
tion of neurons acts in concert. This means that, analytically, the 
coherent activity of many underlying neurons may be combined 
and treated as a small set of population variables, which simplifies 
the problem of studying bursting activity propagation. Thus, to 
compare the reduction of dimension achieved by studying (1) a 
neural subsystem with (2) the CNS undergoing bursting  activity 
we note that in the neural subsystem, activity flows between a small 
set of neurons communicating via synapses, but in a CNS destabi-
lized to bursting, the activity flows between a small set of neuronal 
populations via the ensemble of their synapses, which we denote as 
their reduced connectivity.

Thus, the number of variables in our problem is reduced from 
the huge number of individual neurons to the much smaller 
number of independently acting neuronal populations that are 
involved in bursting activity. In this context, the details of syn-
aptic connectivity are subsumed in the reduced connectivity of 
the neuronal populations. Thus, while we cannot directly meas-
ure changes in synaptic connectivity between individual neurons 
in the seizing larval zebrafish, we can measure changes in the 
reduced connectivity and draw conclusions about how neuronal 
 populations interact.

The immediate purpose of the methodology that we present 
here is to provide a way to identify putative neuronal popula-
tions and to visualize reduced connectivities both at the abstract 
population and the neuronal level. Our algorithm consists of first 
estimating firing rates from ratiometric imaging data, reducing the 
data’s dimension (i.e., filtering the data with a set of empirically 
determined spatial functions), then inferring reduced connectivi-
ties in the dimensionally reduced space. This allows us to visualize, 
either for a given neural population or a given pixel, which other 
populations or pixels influence its activity and which other pixels 
are influenced by it. We are also able to visualize dynamical modes 
of activity that are represented in the data. These are crucial pieces 
of information both for the experimentalist and the theorist, and 
may be used as the basis for the identification of mechanisms 
involved in the processing of neural activity, network modeling, 
and simulation efforts.

We have applied our method to the estimation of reduced con-
nectivities from waves of neural activity in chemoconvulsant-in-
duced seizures in larval zebrafish. For this reason, there are limits on 
what we can conclude from the particular dataset that we analyze 

here: (1) Only a single optical plane is imaged. Actual connec-
tivities could only be inferred if the entire network were imaged. 
Complete optical sectioning would be required to image the entire 
network (or at least a much more complete sample of neurons). 
Furthermore, complete optical sectioning requires imaging of a 
larval zebrafish (since the adult brain cannot be completely imaged 
due to its opacity); (2) We use a linear model to infer connectivi-
ties. This may be reasonable for the widespread excitatory activity 
of a seizure, but not for a normally functioning nervous system; 
(3) The seizure-related activity that we image has a higher signal-
to-noise ratio (SNR) than would be expected due to normal activ-
ity (since much more calcium is expected to be produced in this 
case). In order to apply our analysis framework (presumably with 
a non-linear neuronal model) to normal neuronal physiology, we 
would need higher SNRs. (4) Because of the assumptions in our 
model, linearity of neural activity and calcium release solely due 
to action potentials (see Materials and Methods), the term “firing 
rate” should perhaps be replaced by the weaker term “field poten-
tial.” That being said, points (1) and (3) are technical limitations 
and there is hope of overcoming them (although we would still be 
limited to imaging zebrafish early in development), and theoretical 
progress has been made on point (2) (Pillow et al., 2008; Vogelstein 
et al., 2009, 2010; Tao and Sornborger, 2010). Finally, we have used 
the term “firing rate” because it makes sense given our modeling 
framework, but caution the reader to remember the assumptions 
used in our model.

MaterIals and Methods
ZebrafIsh straIns and MaIntenance
Larvae transgenic for the YC2.1 cameleon Ca2+ indicator 
(Higashijima et al., 2003) were obtained from adult zebrafish 
(Danio rerio) maintained in the University of Georgia Zebrafish 
Facility following standard procedures (Westerfield, 2000). The line 
of zebrafish transgenic for cameleon was originally obtained from 
Dr. Joe Fetcho (Cornell University, NY, USA). Embryos and larvae 
were reared as previously described (Westerfield, 2000) and staged 
by hours post-fertilization (hpf) at 28°C and by standard staging 
criteria (Kimmel et al., 1995). All experiments were performed in 
accordance with National Institutes of Health guidelines under 
protocols approved by the University of Georgia Animal Care and 
Use Committee.

confocal MIcroscopy
Larvae were mounted in 1% agar and imaged in either a Dvorak–
Stotler chamber (Lucas-Highland, Chantilly, VA, USA) or an 
imaging chamber (ALA Scientific Instruments, Inc., MS-CPC). 
Larvae were exposed to a bath of 4.4 mM (+)-Tubocurarine 
chloride hydrate (Sigma, cat. # T2379) for 8–10 min prior to 
mounting. This exposure resulted in paralysis lasting up to 4 h. 
Confocal microscopy was performed on a Leica TCS SP5 con-
focal microscope (Leica DMI 6000 B, Leica Microsystems Inc.). 
Cameleon YC2.1 fluorescence was excited with the 458-nm line 
of a 100-mW argon laser. Emission was imaged at 485 ± 20 nm 
(cyan) and 535 ± 15 nm (yellow). From the beginning of each 
experiment, 15 mM PTZ (Sigma, cat. # P6500) was continu-
ously perfused through the chamber at a rate of 8.3 μl/s. Laser 
intensity was set such that fewer than 1% of pixels reached 
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fIrIng rates
Assuming that firing rates were approximately constant during the 
time between frames, and that all intracellular Ca2+ release was due 
to action potentials, we deconvolved the Ca2+ concentration, c(t) 
(see Supplementary Material for a detailed calculation) to calculate 
the firing rate, m(t), with the expression
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The time constant, τ, was set to 1.75 s (Yaksi and Friedrich, 2006). 
Since the calcium release per action potential α is small (∼250 nM; 
Hires et al., 2008), this expression may be expanded as
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Therefore, we report a rescaled firing rate m←αm in arbitrary 
units.

sVd of fIrIng rates
One might expect the firing rates to be of the same low dimension 
as the ratio that was calculated with the SOARS method; how-
ever, the data dimension can change due to the non-linearity of 
the transformations performed on the ratio data. Therefore, we 
performed an SVD on the firing rates, M = USVT, to determine 
the number of statistically significant dimensions. Here, the firing 
rates m(t) are represented as a matrix, M. Thus, M was a P × T 
matrix, where P = 128 × 128 = 16384 and T = 3600. The statisti-
cally significant number of dimensions making up the ratio was 
typically from 40 to 50 and the dimension of the firing rate data 
was usually only slightly higher, from 50 to 60. Thus, the SVD 
was a product of U, a 16384 × n matrix, S, an n × n matrix, and 
VT, an n × 3600 matrix, where n was typically in the range of 
50 to 60. This allowed us to calculate the NMF and correlation 
matrices quickly.

non-negatIVe MatrIx factorIZatIon
In cases where we were interested in dynamics at the population 
level (Figures 4 and 5), we used NMF, an unsupervised, parts-
based data decomposition/dimensional reduction technique that 
has been used in image processing and pattern recognition (Lee and 
Seung, 1999, 2001), in computational biology (Brunet et al., 2004), 
and many other fields of interest (see, for instance, Devarajan, 
2008). Donoho and Stodden (2004) showed that, for a fairly gen-
eral class of image libraries, NMF did indeed find a parts-based, 
local decomposition.

Furthermore, by definition, an NMF of the firing rate data had 
the property that the factors into which the data were decom-
posed were all non-negative and had non-negative time-courses. 
This choice was important from the following point of view: The 
physiologically relevant interaction between neurons is synaptic 
excitation and inhibition. If the factors into which the data were 
decomposed can be both positive and negative (as they may be in 

saturation. 8-bit images were collected at a rate of 1 Hz at a 
scale of 256 × 256 pixels, converted to raw data and binned to 
128 × 128 using ImageJ (Rasband, W.S., ImageJ, U. S. National 
Institutes of Health, Bethesda, MD, USA, http://rsb.info.nih.gov/
ij/, 1997 2009).

data analysIs
Our analysis algorithm was implemented using the following 
steps: (1) We performed a statistical optimization for the analy-
sis of ratiometric signals (SOARS) analysis on the ratiomet-
ric imaging data. This provided us with a low-noise estimate 
of the ratio. (2) We calculated estimates of intracellular Ca2+ 
concentrations from the ratio, then (3) calculated estimates of 
neuronal firing rates from Ca2+ concentrations. We calculated 
(4) a singular value decomposition (SVD) of the neuronal firing 
rates. This was used to (5) form an efficient (fast) non-negative 
matrix factorization (NMF) of the firing rates. Then (6) using 
either the non-negative factors or the singular eigenvectors, we 
calculated a least-squares estimate of the reduced connectiv-
ity matrix. Finally (7) we visualized incoming and outgoing 
connectivities in the pixel space (i.e., as an image) and (8) we 
visualized eigenvectors of the reduced connectivity matrix in 
the pixel space.

statIstIcal optIMIZatIon for the analysIs of ratIoMetrIc 
sIgnals
The SOARS algorithm has been described elsewhere and a MATLAB 
implementation is available upon request. For input to SOARS, two 
imaging datasets are required. For the cameleon FRET indicator, 
we excited at 458 nm (cyan fluorescent protein, CFP) and imaged 
emission at 485 and 535 nm (yellow fluorescent protein, YFP). 
The method consists of the following computations resulting in 
a denoised ratio: First, pixel time-courses for both CFP and YFP 
datasets were standardized by subtracting the time-course’s mean, 
then normalizing by its SD. The standardized time-courses were 
then subtracted from each other. An SVD was then performed 
on the resulting dataset and statistically significant eigenvectors 
were detected. Statistical significance was determined according 
to the distribution of the time-courses of the singular eigenvectors 
(i.e., the right eigenvectors). If the distribution was Gaussian (null 
hypothesis), the eigenvector was rejected, if non-Gaussian, it was 
retained. Gaussianity was determined with a Lilliefors test. Finally, 
the statistically significant eigenvectors and their projections in 
the YFP and CFP datasets were used to reconstruct a denoised 
estimate of the YFP/CFP ratio (Broder et al., 2007; Fan et al., 2007; 
Sornborger et al., 2008; Xu et al., 2008).

calcIuM concentratIons
Based on previously published data (Miyawaki et al., 1999), a good 
approximation for the relationship between the YFP/CFP ratio, 
R(t), and the Ca2+ concentration, c(t), is

c t
R t R

R R t
( ) = ( ) −

− ( )
−10 6 5. min

max

.

We used this expression to determine Ca2+ concentrations for all 
pixels in the SOARS denoised ratio.
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or groups of neurons), we rearranged either the rows (incoming 
connectivities), or columns (outgoing connectivities) of K

eff
 as 

128 × 128 arrays and inspected them as images.

eIgenVectors of the reduced connectIVIty MatrIx
The eigenvectors, ν, of the connectivity matrix were visualized by 
projecting θ, the eigenvectors of K

eff
, back to the pixel space with 

the relations ν ≈ Uθ (SVD) and ν ≈ Wθ (NMF). The approximate 
eigenvectors were then visualized rearranged in 128 × 128 arrays 
and inspected as images.

results
IMagIng WIdespread coherent neural actIVIty In larVal 
ZebrafIsh
Widespread coherent neural activity in the form of large-scale Ca2+ 
waves was induced in the larval zebrafish CNS with the chemoconvul-
sant PTZ, which has previously been shown to induce electrophysiologi-
cal correlates of seizures (unpublished data; see Baraban, 2005, 2007; 
Baraban et al., 2005, 2007). The results presented below are an analysis of 
a single, representative ratiometric Ca2+ imaging dataset out of approxi-
mately 24 datasets that we have analyzed. A live, 7 dpf larval zebrafish 
transgenic for cameleon YC2.1 was paralyzed with curare, mounted 
laterally and imaged using a 10× objective such that the focal plane 
contained the CNS from the spinal cord to the forebrain (Figure 1A). 
The  cameleon Ca2+ indicator was imaged in CFP (465–505 nm) and 
YFP (524–598 nm) bands (Figure 1A). One hour of ratiometric Ca2+ 
imaging data was taken with a confocal microscope at a rate of 1 Hz.

In Figure 1B, we show the first five (of 16) statistically significant 
SOARS eigenvectors for this dataset. These eigenvectors depict the 
dominant ratiometric signal in the dataset and were used to con-
struct a movie of the denoised ratio that was used for our firing rate 
estimates (see below). Under the experimental conditions above, 
the denoised ratio gave evidence of Ca2+ activity (Figure 1C).

The Ca2+ activity in the dataset analyzed in this paper took the 
form of six large waves and other low amplitude activity that propa-
gated throughout the CNS (Figure 2A). Comparison of different 
Ca2+ events revealed a variety of propagation patterns (Figure 2B). 
This suggested that there were multiple pathways for the propaga-
tion of coherent neural activity.

estIMatIng fIrIng rates froM ratIoMetrIc IMagIng data
We estimated firing rates in two steps: First, quantitative intracellu-
lar Ca2+ concentration estimates were calculated for each pixel of the 
SOARS estimated ratio. The K

d
 used for these estimates (K

d
 = 10−6.5) 

was taken from published measurements of the cameleon YC2.1 Ca2+ 
indicator (Miyawaki et al., 1999). Second, Ca2+ concentrations were 
deconvolved to determine average firing rates for neurons within each 
pixel area (20 μm2, or of the order of 10 neurons). The Ca2+ decay 
constant was taken to be 1.75 s, the largest value for which estimated 
firing rates from our deconvolution remained positive. This value is 
smaller than published values for zebrafish olfactory neurons (Yaksi 
and Friedrich, 2006) by a factor of two, but consistent with the decay 
constant for many other neuronal Ca2+ measurements (Badea et al., 
2001). Setting the decay rate to a larger value, then eliminating the few 
negative values (setting a threshold at zero) did not significantly change 
our results. This suggests that our firing rate estimation procedure is 
robust to changes in the decay constant of order approximately 1 s.

the SVD or independent component analysis; ICA) then excita-
tory or inhibitory coupling between populations can be difficult to 
assess. However, when all of the factors are positive and represent 
a positive contribution to firing rates, then couplings between the 
factors may be interpreted as being excitatory when they are positive 
and inhibitory when they are negative. Thus, to identify putative 
neuronal populations from the dimensionally reduced firing rate 
data, we performed an NMF on the firing rate data, M = : WH, 
where W and H were non-negative matrices and had dimensions 
P × n and n × T, respectively. The NMF was calculated by iterating 
the update rules (Lee and Seung, 1999, 2001):

H H
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where Wk and Hk are the W and H matrices at the kth iteration.

reduced connectIVIty MatrIx
We used a linear model to relate firing rates at time t with firing 
rates at time t + ∆t; i.e., we assumed that the firing rates were related 
by m(t + ∆t) = Km(t). This equation could be written in matrix 
form as M′ = KM, where M′ denoted the firing rate matrix shifted 
by one time-step.

To calculate a least-squares estimate, K
eff

, of the connectiv-
ity matrix, K, we first projected the firing rate data into a low-
dimensional space (i.e., filtered the data) by using either an SVD 
or an NMF of M. In the SVD basis, this resulted in the relation 
K X X XXT T

eff = ′ ′ ′( )−1
, where X = SVT was a reduced firing rate 

matrix in the SVD basis and X′ denoted the same matrix shifted 
by one time-step. In the NMF basis, this resulted in the relation 
K H H HHT T

eff = ′ ′ ′( )−1
,  where H′ is, similarly, H shifted by one 

time-step. The connectivity matrix resulting from this calculation 
is effectively an “average” connectivity in that it is determined by 
fitting to the entire dataset. For this reason, it would also provide 
useful spatial information relating to connectivity even for data 
generated by non-linearly acting neuronal populations. Similarly, 
reduced connectivity matrices could be calculated for calcium con-
centrations (instead of firing rates). However, couplings are more 
likely to be physiologically relevant when calculated from firing 
rate data. Note that, for typical experiments, the full 16384 × 16384 
coupling matrix, K, was too big to be determined directly without 
dimensional reduction.

IncoMIng and outgoIng connectIVItIes
Both of the full reduced connectivity matrices, ′K eff , were approxi-
mated by projecting back from the reduced space to the pixel space 
with the relations K UK U T′eff eff≈  (for the SVD) or K WK W′eff eff≈ −1  
(for the NMF). Since visualizing these huge reduced connectivity 
matrices in the pixel basis was intractable, we visualized incoming 
and outgoing connectivities for individual pixels (putative neurons 
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to remove low-level background noise for better visualization. 
Two factors, the blue and magenta factors depicted in Figure 4A, 
represent the initial firing rates in two sets of axonal tracts (blue), 
one located dorsally and the other located ventrally, and neurons 
(magenta) in the spinal cord and brain. The firing rate activity 
then propagated to a presumptive neuronal ensemble, the yellow 
factor (second down, left panel of factors), in the hindbrain, and 
tectum as depicted in Figures 4C–F. A new ensemble, the cyan 
factor, located primarily in the anterior hindbrain and tectum 
then increased its amplitude (Figures 4E,F). Finally, the activ-
ity propagated posteriorly to two presumptive axonal tracts in 
the spinal cord, the green and red factors (Figures 4G,H). These 
tracts were distinct from those in Figure 4A. The entire event 
lasted for roughly 114 s. (See Movie S2 in Supplementary Material 
for a movie of the estimated firing rate and the estimated fir-
ing rate decomposed into 25 non-negative factors for the entire 
1-h dataset).

functIonal couplIng betWeen neuronal enseMbles
The NMF provided us with a set of putative neuronal ensem-
bles (factors) and their time-courses. Information regarding the 
interactions between these ensembles may be summarized in a 
reduced connectivity matrix (see Materials and Methods). We have 
assumed that the wave-like bursting activity is (approximately) 
linear for this seizure model (i.e., that average bursting rates within 
the wave are not varying considerably as it propagates, therefore 
we can linearly expand the gain function within the wave), nor-
mal physiological interactions between neurons would require a 
non-linear model. In Figure 5, we plot the reduced connectivi-
ties between all of the 10 NMF factors used in Figure 4. In this 

To illustrate the steps that we used in our firing rate estimation pro-
cedure, we determined firing rates for a Ca2+ wave from our dataset. In 
Figure 3, we depict (1) the SOARS estimated YFP/CFP ratio (the ratio) 
with background subtracted, (2) Ca2+ concentration, and (3) firing rate 
for 20 s during the Ca2+ wave. In a panel on the right, we show time-
courses within the hb ROI depicted in Figure 1A. Although there are 
statistically significant changes in the ratio as a function of time, these 
changes are not easily discernible by eye except between 0 and 5 s in the 
ratio. Therefore, we subtracted the mean ratio to show the dynamics 
of the ratio. The ratio is non-linearly related to the Ca2+concentration, 
therefore regional changes in Ca2+ concentrations are more evident. 
With the assumption that action potentials are the dominant source 
of Ca2+ release, large changes in Ca2+ concentration are associated with 
high firing rates. In this event, a wave of uniform neuronal firing is 
evident in the forebrain, tectum, and ventral hindbrain. (See Movie S1 
in Supplementary Material for a movie of the ratio, Ca2+ concentration 
and firing rate estimates for the entire 1-h dataset).

deterMInIng putatIVe neuronal enseMbles usIng non-
negatIVe MatrIx factorIZatIon
In Figure 4, we show a spatio-temporal decomposition of neu-
ronal firing rates of the event in Figure 2A using NMF (Lee 
and Seung, 1999) into spatial factors and their time-courses. A 
number of decomposition methods are available for such purposes 
including the SVD (Sirovich and Uglesich, 2004), ICA (Makeig 
et al., 1997), and others. Below, we make use of both SVD and 
NMF factorizations.

For this figure, we approximated firing rates using 10 non-
negative factors capturing 98.1% of the root-mean-squared 
(RMS) variability. The factors were thresholded for the figure 

Figure 1 | ratiometric imaging data of Ca2+ wave events in 7 dpf 
HuC::cameleon transgenic zebrafish upon exposure to the 
chemoconvulsant, PTZ. (A) CFP and YFP images from an imaging dataset. The 
larva is mounted such that the spinal cord is in the lower left and the brain is in the 
upper right of this and all subsequent panels. (sc: spinal cord, hb: hindbrain, tec: 

tectum, fb: forebrain). (B) Intermediate results from a SOARS analysis (Broder 
et al., 2007). These eigenvectors depict part of the covarying ratiometric signal that 
SOARS detected in this dataset. (C) The averaged, denoised ratio in a region of 
interest (ROI) drawn about the hindbrain [hb, see (A)]. Four Ca2+ events (two of 
large amplitude and two of smaller amplitude) are shown in this 1100 s trace.
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As discussed in Section “Materials and Methods,” an important 
property of the NMF factors is that their interactions may be inter-
preted as either excitatory or inhibitory. For instance, the asterisk (*) in 
Figure 5 denotes the reduced connectivity between factor 3 and factor 
1 (the yellow and red factors in Figure 4, right panels). This connectiv-
ity is effectively excitatory (green) in that when the firing rate increases 
in the neuronal ensemble represented by 3, it tends to also increase in 
1. The “x” in Figure 5 denotes the reduced connectivity between factor 
3 and factor 2 (the yellow and orange-yellow factors in Figure 4, right 
panels). This connectivity is effectively inhibitory (cyan) since when 
the firing rate increases in 3, it tends to decrease in 2.

Although Figures 2A, 3 and 4 show a representative wave of 
activity in our dataset, taken individually it only provides anecdotal 
evidence of wave dynamics. The reduced connectivity matrix, on 
the other hand, translates the dynamical information contained in 
all waves in the dataset into structural information about reduced 
functional connectivities at the population level.

InferrIng neuronal couplIng froM enseMble couplIng
The information in the reduced connectivity matrix may be 
visualized at the neuronal level. Here, we did this by calculat-
ing the reduced connectivity matrix in the SVD basis, then 

matrix the diagonal (i.e., self-coupling) has been removed. [The 
diagonal is large because the waves move slowly (time-scale of 
minutes), but the connectivity matrix is calculated on a faster 
time-scale (1 s)].

Figure 2 | (A) Frames from a movie of the evolution of the first large 
(100 s) event in Figure 1C (see bar drawn over the event in Figure 1C for 
precise timing). Light (dark) pixels indicate Ca2+ concentrations above (below) 
baseline. We visualized a wave by depicting the time that a given pixel reached 
its maximum with color and the amplitude of the maximum with intensity (a 
phase/intensity plot). The correspondence between times and amplitudes with 
color and intensity (resp.) is shown in the colorbar. Note that the event in (A) is a 
wave beginning in the axonal tracts in the presumptive lateral funiculus (blue 
arrowhead) in the spinal cord, traveling to the presumptive eminentia granularis 
and other locations in the hindbrain and tectum (cyan arrowhead), then back 
to a different set of axonal tracts in the spinal cord (red arrowhead). 
(B) Phase-intensity plots of six other Ca2+ wave events that occurred during the 
1-h imaging experiment. Note the variety of propagation patterns. Lower right 
scale-bar refers to all phase-intensity plots in column (B).

Figure 3 | estimating firing rates from ratiometric Ca2+ imaging data. 
Background subtracted YFP/CFP ratios, and associated Ca2+ concentrations 
and firing rates are depicted for the same laterally mounted 7 dpf zebrafish 
larva as was depicted in Figure 1. Snapshots from 20 s of data are shown at 
5 s intervals with time running from top to bottom. The left column depicts the 
background subtracted YFP/CFP ratio estimated using the SOARS method. 
Numbers in the upper left denote the number of seconds from the beginning 
of the experiment. The middle left column depicts intracellular Ca2+ 
concentrations calculated from the ratios in the left column (see Materials and 
Methods). The middle right column depicts firing rates deconvolved from the 
Ca2+ concentrations in the middle left column (see Materials and Methods). 
Normalized time-courses (mean subtracted, divided by SD) showing relative 
timing of peaks and shapes of the ratio, calcium and firing rates for the ROI 
depicted in Figure 1A are shown in the right-hand column. CNS regions and 
scale are given in Figure 1A. See Supplemental Information for a complete 
movie of the entire experiment.

Frontiers in Neural Circuits www.frontiersin.org February 2011 | Volume 5 | Article 2 | 6

Tao et al. Mapping functional connectivity

http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


In Figure 6, we show three examples of incoming (receiving 
activity from other neuronal populations) and outgoing (propa-
gating activity to other neuronal populations) connectivities in 
neurons from various regions of the CNS. The region (white box) 
in Figure 6A is excited by neurons distributed throughout the 
hindbrain and tectum (Figure 6A, Incoming, green) but inhibits 
small populations of neurons located in the dorsal hindbrain and 
the tectum (Figure 6A, Outgoing, cyan) and excites neurons with 
projections into the spinal cord (Figure 6A, Outgoing, green). The 
pixel (white box) depicted in Figure 6B has a different connectiv-
ity pattern than that in Figure 6A, and excites and inhibits smaller 
populations of neurons. The pixel in Figure 6C, is apparently con-
nected only to a few other neurons in the spinal cord.

VIsualIZIng the floW of actIVIty In the cns
The activity of a neuronal population represented by an eigen-
vector of the reduced connectivity matrix will persist within the 
same population assuming linear dynamics. Of course, neuronal 
networks are not linear systems; nonetheless, these eigenvectors 
may be considered as canonical pathways or circuits in the flow of 
bursting activity through the nervous system. Although we cannot 
determine the identities or physical connectivities of the neurons 
in this data, the pattern of activity observed using these methods 
is consistent with what is known about the types of connections 
present in the optic tectum, tegmentum, hindbrain, and spinal 
cord. In zebrafish, as well as other vertebrates, sets of intercon-
nected nuclei located in the hindbrain and midbrain receive input 
largely from the telencephalon, optic tectum, and spinal cord and 
project to a variety of targets, including neurons within the hind-
brain, midbrain, extraocular motoneurons, and motor circuits in 
the spinal cord (e.g., Kimmel et al., 1982; Mendelson, 1986; Metcalfe 
et al., 1986; Wulliman et al., 1996; Ali et al., 2000; Perez-Perez et al., 
2003a,b).

projecting the matrix back to the pixel basis (i.e., we are recon-
structing a filtered form of the full reduced connectivity matrix, 
see Materials and Methods). This full reduced connectivity 
matrix contained the connectivity pattern for each pixel in 
the dataset.

Figure 4 | A propagating Ca2+ wave decomposed into a set of contributing 
factors. In this analysis, non-negative matrix factorization was used because 
non-negative factors may be interpreted as putative neuronal populations 
contributing to the wave (see text). (A–H) depict the combination of factors 
contributing to various instants in the evolution of the Ca2+ wave depicted in 
Figure 2A. Each frame in (A–H) is made up of a linear combination of the matrix 

factors shown in the 10 panels on the right. The amplitude of each factor is 
depicted in the panels underneath (A–H). The white line denotes the specific 
time of each reconstructed frame. The time of each panel is shown in (A–H) 
above the white line. CNS regions and scale are given in Figure 1A. See 
Supplemental Information for a complete movie of an NMF of the entire 1-h 
experiment using a 25 factor decomposition.

Figure 5 | reduced network connectivities estimated using a non-
negative matrix factorization (NMF) of the data. Large self-couplings (white 
boxes) due to the slowness of wave propagation have been dropped (see text). 
In the NMF connectivity matrix, quantities less than zero (cyan, see colorbar) 
may be interpreted as effectively inhibitory couplings between the neuronal 
populations represented by the matrix indices. Conversely, quantities greater 
than zero (green) may be interpreted as effectively excitatory couplings between 
neuronal populations. From the information in this reduced connectivity matrix, 
we can infer how the putative neuronal populations depicted in Figure 4 are 
interacting. White asterisk, connectivity between factors 3 and 1 (population 3 
effectively excites population 1); white ×, connectivity between factors 3 and 2 
(population 3 effectively inhibits population 2).
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mate dynamical modes captured by the data. We have checked that 
the connectivity matrices derived with our method were robust to 
changes in the Ca2+ decay rate (1 < τ < 4 s) used in firing rate estimates 
and to our choice of R

max
 and R

min
 in the calculation of Ca2+ concen-

trations. This is largely due to the fact that the reduced connectivity 
matrix was linearly derived from the Ca2+ concentration and that 
the ratio varied close to the linear region of the ratio/concentration 
curve during the wave events. Because of this reliance on approximate 
linearity, there remains a question of the global amplitude of the fir-
ing rates from which the connectivity matrices are derived. In order 
to eliminate this unknown factor, simultaneous electrophysiological 
and imaging experiments need to be performed.

The limitations of our approach as presented here include both 
methodological and technical aspects. One limitation is introduced 
by our use of a linear model to infer connectivities. While a non-
linear model is more appropriate for determining connectivities in 
a normally functioning nervous system, application of our analysis 
framework with a non-linear neuronal model to study normal neu-
ronal activity requires significantly higher SNRs than are currently 
achievable using extant lines of transgenic zebrafish. Furthermore, 
our approach as presented here is limited by the data of bursting 

In Figure 7, we show three examples of eigenvectors of the 
reduced connectivity matrix. Two of the eigenvectors are com-
plex (a and b) and one is real (c). Eigenvector (a) represents a 
dynamical mode that conveys firing from a dorsal region of the 
hindbrain and tectum to the entire hindbrain and tectum. This 
mode has a characteristic frequency of 0.08 Hz (T

period
 = 78 s), as 

determined from the complex phase of its eigenvalue. Eigenvector 
(b) represents a dynamical mode that conveys firing from the 
hindbrain and tectum to the spinal cord with frequency 0.02 Hz 
(T

period
 = 367 s). Eigenvector (c) represents a dynamical mode that 

does not propagate. This mode primarily represents activity of an 
individual neuron in the spinal cord whose activity is independent 
of other neurons.

dIscussIon
In summary, we have set forth and demonstrated a method for visu-
alizing functional neuronal ensembles and mapping reduced func-
tional connectivities in ratiometric Ca2+ imaging data. Our results 
clearly show that with these methods we were able to discover neural 
populations contributing to firing rate dynamics, identify putative 
incoming and outgoing connectivities in our imaging data, and esti-

Figure 6 | Putative in- and out-going reduced connectivities for 
presumptive neurons (pixels) in the CNS of a 7 dpf larval zebrafish. 
Reduced connectivities estimated from an SVD decomposition have been 
visualized in the image basis (see text). Green (cyan) pixels represent putative 

excitatory (inhibitory) coupling strengths. (A,B,C) show representative in- and 
out-going reduced connectivities for presumptive neurons in different regions of 
the CNS. For ease of visualization, the presumptive neurons (pixels) are depicted 
with a 2 by 2 pixel white box. CNS regions and scale are given in Figure 1A.
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The dimensional reduction methods that we presented here are 
designed to be amenable to the analysis of large datasets with lim-
ited computational space. The dataset analyzed in this manuscript 
contained 3600 frames, each of which was 16384 (128 × 128) pixels. 
But performing an analysis on 50 or even 100 factors reduces the 
least-squares fit of the reduced connectivity matrix to a fit on a 50 
or 100 by 3600 data matrix.

The question concerning whether the connectivity matrices 
represent real functional connections or just time-delayed events 
depends on a number of things such as the imaging frame rate 
and the completeness of the measurements over the entire brain. 
Generally, it is known to be difficult to prove causality. From this 
point of view, the connectivity matrices that we calculate are “effec-
tive” connectivities representing potential connectivities given the 
data and information gleaned from them would necessarily need 
to be validated with electrophysiology. Our point of view is that 
our connectivities are useful additions to our knowledge about the 
system and contain information that cannot be gleaned from elec-
trophysiological measurements, since electrophysiological meas-
urements typically sample only a very small number of neurons, 
whereas with imaging methods large tissues may be measured.

Because they capture crucial information about putative neuro-
nal connectivities, connectivity matrices inferred with our method 
can be combined with realistic simulations of neuronal networks 
and electrophysiological experiments to validate hypothesized 
mechanisms of neuronal interaction and activity propagation. In 
this context, the simple linear model that we used to estimate the 
reduced connectivity matrix can be replaced with more biophysi-
cally motivated non-linear models, which may be fit using statis-
tical methods similar to those that we have used. Two of us have 
already shown that, using data from numerical experiments, accu-
rate reduced connectivity matrices may be estimated using realistic, 
integrate-and-fire neuronal models (Tao and Sornborger, 2010).

conclusIon
In summary, we have used a zebrafish seizure model to explore an 
automated procedure for detecting putative neuronal ensembles 
that are active in CNS-wide events and for mapping their functional 
connectivities directly from ratiometric Ca2+ imaging data. Our 
results show that this analytical framework can be used to visual-
ize the connectivity of neuronal ensembles that are involved in the 
flow of seizure activity in neuronal networks. We have shown that 
the eigenvectors of the connectivity matrix are a useful means of 
summarizing putative neural circuits involved in activity flow.

With the accelerating development of fast, high-resolution imag-
ing techniques and transgenic animals engineered for neural imag-
ing purposes, the need to develop systematic procedures to extract 
as much functional information as possible directly from large 
datasets is becoming more and more pressing. The procedure that 
we presented here and, more generally, the analysis framework that 
our work represents was developed as a practical, user-independent 
means to serve this need.
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