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Skilled hand function relies heavily on the integrity of the primary motor cortex (M1) and
on a web of cortico-cortical connections projecting onto it. We used a novel explorative par
adigm to map the origin of cortico-M1 pathways assessed by dual transcranial magnetic
stimulation (TMS) in three healthy participants. Subthreshold conditioning TMS (cTMS) was
delivered over a grid of ~100 spots. Covering the left hemisphere, and was followed by
suprathreshold test (tTMS) delivered over the ipsilateral M1. Grid points were tested eight
times, with interstimulus intervals between cTMS and tTMS of 4 and 7 ms. Participants
were asked to stay relaxed with no particular task. Motor evoked potentials (MEPs) from
c¢TMS +tTMS were normalized to MEPs from tTMS alone and were compared to the value
expected from tTMS alone using t-statistics. The t-values from each grid point were then
used to plot statistical maps. Several foci of significant cortico-M1 interactions were found
in the dorsal-medial frontal cortex, in the ventral frontal cortex, in the superior and inferior
parietal lobules and in the parietal operculum. The majority of active foci had inhibitory
effects on corticospinal excitability. The spatial location of the network of different sub-
jects overlapped but with some anatomical variation of single foci. TMS statistical mapping
during the resting state revealed a complex inhibitory cortical network. The explorative
approach to TMS as a brain mapping tool produced results that are self-standing in single
subjects overcoming interindividual variability of cortical active sites.
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INTRODUCTION

Voluntary hand movements are at the basis of a variety of human
behavior ranging from object manipulation to communicative
gestures. The hand motor cortex is also known to be sublimi-
nally involved in a series of cognitive abilities such as imagery of
movement (Jeannerod, 2001; Cattaneo et al., 2009), action under-
standing (Cattaneo and Rizzolatti, 2009), numerical competences
(Andres et al., 2007; Sato et al., 2007), or language (Papathanasiou
et al., 2004; Glenberg et al., 2008; Bracco et al., 2009). Cortico-
motor projections to the primary motor cortex (M1) represent
the neural basis of the hand motor repertoire in this wide range
of behavioral settings. Investigating cortico-cortical projections
to M1 in humans relies mainly on transcranial magnetic stim-
ulation (TMS) using either single coil paired-pulse paradigms
(Cattaneo et al., 2005; Prabhu et al., 2007; Koch et al., 2010b)
or, more frequently, dual-coil paired-pulse paradigms (Civardi
et al., 2001). The dual-coil technique adopts the simultaneous
use of two distinct TMS coils. A test (tTMS) is applied to the
motor cortex and its effect is measured as motor evoked potentials
(MEPs). A conditioning (cTMS) is applied to a cortical area that
is hypothetically linked to the motor cortex. The inter-stimulus
interval (ISI) that have been found to be effective are indica-
tive of direct cortico-cortical connections. These latencies range
from 4 ms for parieto-motor connections to more than 10 ms for

interhemispheric connections. This paradigm has been extensively
used to investigate connections between M1 in the two hemi-
spheres (Ferbert et al., 1992), between the posterior parietal lobe
and M1 (Koch et al., 2007, 2008a,b, 2009; Koch and Rothwell,
2009), between the ventral or dorsal premotor cortices and M1
(Koch et al., 2006; O’shea et al., 2007; Davare et al., 2009), between
the pre-supplementary motor area (pre-SMA) and M1 (Mars et al.,
2009) and between the cerebellum and M1 (Daskalakis et al.,
2004).

The dual-coil paradigm as most other TMS experimental
designs is based on a priori assumptions on where to aim the con-
ditioning magnetic stimuli on the cortical mantle to test effects on
a specific behavior. This experimental approach has a main limi-
tation in anatomical variability of the functionally active regions
between individuals. TMS is currently considered to be dependent
on explorative whole-brain measures of activity such as functional
magnetic resonance imaging (fMRI) in order to be maximally reli-
able in stimulus localization (Sack et al., 2009). In the present study
we assessed, without a priori spatial assumptions, the origin of
short-latency ipsilateral cortico-motor pathways in the whole left
hemisphere convexity. In three participants we repeatedly probed
the scalp surface with cTMS while stimulating the M1 with tTMS.
The results were analyzed individually as statistical maps of the
value of the t parameter.
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MATERIALS AND METHODS

PARTICIPANTS

Three participants were involved in the experiment. They were
27, 30, and 36-years-old. Two of them were male. They were
right handed as assessed by the Edinburgh handedness inven-
tory (Oldfield, 1971), with no previous history of neurological or
psychiatric disorders. Participants were screened for contraindi-
cations to TMS (Rossi et al., 2009) and gave written informed
consent to the experimental procedure, which complied with the
Helsinki declaration on human experimentation (World Med-
ical Association General Assembly, 2008) and had been previ-
ously approved by the Ethical Committee of the University of
Trento.

GENERAL EXPERIMENTAL DESIGN

The experiment was designed on single participants. In each of
them we tested the effects of cTMS pulses on the amplitude of
MEPs recorded from intrinsic hand muscles evoked by a tTMS
pulse applied over the hand motor cortex. cTMS was applied
over a grid overlying the scalp of the left hemisphere. The effects
of TMS on the motor cortex can suffer from undesired time-
dependent changes. These time-dependent changes can be related
to head-movement, slow drifts in excitability of the motor cor-
tex unrelated to the experimental design or build-up effects of
repeated magnetic stimulation (though the latter cause should be
prevented by applying stimuli more than 5s apart, this notion
applies to single TMS pulses and not to dual-coil stimuli). There-
fore, in a mapping experiment as the present one, we aimed at
distributing evenly over time the cTMS +tTMS and the tTMS
pulses.

As a general rule each point of the grid was tested with
cTMS + tTMS for eight times, but two stimulations of the same
point were never consecutive (see details of sampling below in
the mapping procedure paragraph). Rather, groups of points were
stimulated in a fixed sequence that was repeated eight times in
every session so that the time interval between stimulations of
the same grid point was the same for all grid points. In this
way each grid point was probed eight times, scattered along the
duration of the experimental session. Since also the tTMS alone
condition suffers from time-dependent changes also the tTMS
pulses were evenly distributed in the series of stimuli. Every three
cTMS + tTMS pulses a single tTMS pulse was delivered to M1
alone. But, more importantly, single cTMS 4 tTMS MEPs were
normalized to a sliding average of tTMS MEPs rather than to a
global average of all tTMS MEPs of the whole session (see details
in the mapping procedure paragraph).

The whole mapping of the left hemisphere was repeated in
two different blocks that corresponded to the two different ISIs
between ¢TMS and tTMS of 4 or 7ms. Throughout the whole
experiment participants were sitting comfortably in a chair with
their head on a chinrest. They were instructed not to pay atten-
tion to the magnetic stimuli or to the movements of the operator
behind them. They kept their eyes freely open and they had to keep
both hands completely relaxed. Only the right hand was monitored
by the experimenter for muscular contraction with electromyo-
graphic (EMG) recordings which provided also audio feedback to
the participant.

MRI NEURONAVIGATION AND SCALP GRIDS

Prior to the experiment the three participants underwent a high-
resolution T1-weighted magnetization-prepared rapid gradient
echo sequence scan of the brain that was used for monitoring the
site of TMS. The scans were obtained with 176 axial slices, in-plane
resolution 256 x 224, 1-mm isotropic voxels, generalized autocal-
ibrating partially parallel acquisition with acceleration factor =2,
time repetition = 2700 ms, time echo =4.180 ms, time to inver-
sion = 1020 ms, flip angle = 7° using a MedSpec 4-T head scanner
(Bruker BioSpin, Ettlingen, Germany) with an eight-channel array
head coil. The BrainVoyager (Brain Innovation BV, The Nether-
lands) software was used to reconstruct a three-dimensional image
of the scalp surface and a three-dimensional image of the brain
(gray matter) surface. The grid of points to be targeted with cTMS
was marked on the virtual scalp surface only (and not on the real
head). This permanent marking of the grid on the virtual head
rather than on the real one assured that the grid and the tTMS
were placed at identical locations from one session to another for
the same participant, provided of course that co-registration was
done accurately.

The mean distance between scalp points in all participants was
of 1.7 cm, which corresponded to a distance between points on the
cortical surface of 1.3 cm, assuming a mean scalp-pia distance of
16 mm (Okamoto et al., 2004). Such distance between grid points
on the pial surface allowed uniform coverage of the cortical con-
vexity. For the purpose of data analysis (see below) we constructed
a flat map of the brain surface (by means of the MesH morphing
tool of the Brainvoyager software) on which we overlapped the
orthogonal projection of the scalp points. Figure 1 shows the flat
maps of the three participants with an outline of the major sulci.
Figure 2 shows the distribution of the grid points on the flat maps.
Each point is represented with an 8-mm diameter spot, corre-
sponding on average to the area of the induced electrical field with
the stimulation apparatus and parameters used for cTMS assum-
ing a spherical cortex model and the scalp-pial distance constant
(Wagner et al., 2009). During the actual experiment we used the
Neuronavigation module of the Brainvoyager software, interfaced
with the ultrasound tracker CMS20S (Zebris Medical, Isny, Ger-
many) to coregister the participant’s head and the TMS coil that
delivered the cTMS pulses, thus allowing to move the coil over the
scalp grid while updating online the coil position.

EMG RECORDINGS

The first dorsal interosseus (1DI) and the opponens pollicis
(OP) muscles of the right hand were recorded simultaneously via
Ag/AgCl electrodes in a bipolar belly tendon montage. The analog
signal was band-pass filtered between 5 Hz and 5 kHz and ampli-
fied 1000 x by means of a 1902 two-channel amplifier (Cambridge
Electronic Design, Cambridge, UK). The analog EMG signal was
then digitalized (sampling frequency of 4000 Hz) by means of a
1401 micro Mk-II unit (Cambridge Electronic Design). The dig-
italized signal was acquired in epochs of 500 ms, triggered by the
tTMS pulse. The signal from 200 ms before the pulse to 300 ms
after the pulse was acquired via the Signal software (Cambridge
Electronic Design) and stored on a Computer for offline analy-
sis. The rationale for recording the OP and 1DI muscles is that
their action is that of flexing the thumb and the index finger.
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participant #1

participant #3

@ superior frontal s.
@ intraparietal s.
@ superior temporal s.

@ central sulcus

@ precentral s.
postcentral s.

@ inferior frontal s.

FIGURE 1 | Flat maps of the three participants’ left hemispheres
showing the main sulci.

They are therefore synergistic in most primate prehensile behav-
iors (Brochier et al., 2004). The two muscles were considered
as a functional unit in further analysis and the MEPs recorded
from them were averaged (see below, Data Analysis). Albeit the
two muscles may have different hot spots, it is common in lit-
erature to record MEPs in two distinct intrinsic hand muscles
simultaneously such as 1DI and abductor digiti minimi (Davare
et al.,, 2009). Also it should be considered that the motor rep-
resentation of the thumb and index finger are closer to each
other than those of the thumb and other digits (Beisteiner et al.,
2001).

TRANSCRANIAL MAGNETIC STIMULATION

Two magnetic stimulators were used in this experiment. The
one delivering tTMS over M1 was a Magstim 200 monophasic
single-pulse stimulator (The Magstim Company, Whitland, UK),

participant #1

FIGURE 2 | Flat maps of the three participants’ cortical surface
superimposed onto the individual grids that were used to deliver
¢TMS. The number of grid points was of 102 for participant 1; 99 for
participant 2; and 100 for participant 3.

connected to a custom made figure-of-eight coil with 25 mm wind-
ings. The one delivering the cTMS pulses was a Magpro unit
(Magventure, Skovlunde, Denmark) connected to an MC-B35
figure-of-eight coil with windings of 35 mm diameter. As a first
step, the resting motor threshold (rMTh) was assessed with stan-
dard methods (Rossini et al., 1994) separately for each coil, using
the 1DI as the target muscle. Even when using different stimula-
tor types, adjusting intensities to the individual stimulator motor
threshold allows to compare the effects of the two stimulators
(Rothkegel et al., 2010).

The tTMS coil was placed over the hand motor hot spot with
coil current flowing posteriorly and laterally. tTMS stimuli were
monophasic and their intensity was set at 120% of rMTh. The
cTMS coil was positioned tangentially to the scalp with orien-
tations that were varied according to the mechanical interaction
between the two coils. It delivered single biphasic stimuli with
intensity of 90% of rMTh. Paired stimulation was achieved by
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means of the Signal software and the 1401 unit that ensured
sub-millisecond accuracy in the timing of triggers.

MAPPING PROCEDURE

In the three participants two main conditions were tested: 4 and
7 ms ISI. The tTMS coil was kept in place over M1 by means of
a mechanical arm. The position of the cTMS coil was changed
manually. The hemispheric grid was broken down into 5 grids of
approximately 20 spots each. This subdivision was arbitrary and
was made in order to facilitate the operator’s task. These subgrids
were stimulated in several different sessions in different days, each
session lasting for about 1h. Consecutive sessions belonged to
different ISIs (4 or 7 ms) in a random order.

Every grid spot was stimulated once with cTMS, in a sequen-
tial order. When all grid spots had been stimulated, the sequence
was restarted until it was repeated eight times. In this way eight
different data points were sampled for each spot. Every three
cTMS + tTMS pulses a single tTMS pulse was delivered. In these
occasions the cTMS coil was not withdrawn from the scalp in order
to avoid changes of the head position associated with the tTMS
stimuli only. Trigger of stimuli was done manually by the experi-
menter at his discretion, however the delay between single stimuli
was set to be no shorter than 5s. In this way the stimulus onset
was not predictable by the participant. The room was refrigerated
with a target temperature of 17°C to delay coil heating.

DATA ANALYSIS

The EMG recordings were inspected to remove trials with sig-
nificant artifacts or trials with significant (>50 \V) pre-stimulus
EMG activity. No additional digital filtering was added to the ana-
log filters applied at the source. The peak to peak amplitude of
MEPs was extracted by an automatic algorithm looking for max-
imum and minimum values in the time window between 18 and
40 ms after the tTMS stimulus. MEPs from ¢TMS + tTMS trials
were normalized to the amplitude of MEPs from trials with tTMS
alone. Considering the long duration of sessions, the interruptions
due to coil heating and the spontaneous fluctuations of MEPs,
the conditioned responses were normalized to the mean of three
nearest test MEPs, in a sliding window along the sequence of trials.
The result of the normalization process was a series of eight values
per each point of the grid per each of the two recorded muscles.
Such values ranged from 0 to +00 and contained information
on both the effect of the cTMS—TMS pulses (the numerator of
the normalization ratio) and the effects of tTMS. In a following
step the normalized values were averaged between the two mus-
cles, so that a single series of eight samplings was obtained for
each point for each condition. A further manipulation of data was
done by applying a base 10 logarithmic transformation of each
value. In this way data were symmetrically distributed around
0, between —oo and +o00. In other words, if (¢cTMS + tTMS
MEPs < tTMS MEPs), the ratio is in the unit interval (0,1), whereas
if (cTMS + tTMS MEPs > tTMS MEPs), the ratio is in the half-line
(1,00), where the ratio of 1 corresponds to equality. Negative val-
ues indicated amplitude of cTMS + tTMS MEPs smaller than the
instantaneous value of MEPs from tTMS alone. On the contrary
positive values indicated amplitude of cTMS + tTMS MEPs larger
than the instantaneous value of MEPs from tTMS alone. The log

transformation of the ratio produces a symmetrical distribution
that is more appropriate for ¢-statistics. Interestingly, the base of
the logarithm is not relevant for the further ¢-statistics, because
logarithmic transformation has the property that if cTMS + tTMS
MEPs is K times greater than tTMS MEPs, the log-ratio is the
equidistant from zero as in the situation where tTMS MEPs is K
times greater than cTMS + tTMS MEPs. Therefore the choice of
a base 10 logarithm is purely arbitrary, since the same t-values
would have been obtained with any other base, provided that, as
is the case here, t-statistics are computed against a null hypothesis
of x = 0.

At this point the groups of eight values from each grid point
were processed in a single-sample ¢-test against the null hypothesis
of the sample having a mean value of zero (corresponding to no
significant difference between conditioned MEPs and test MEPs).
The values of t were obtained and mapped onto the flattened
projection of the cortical gyri described in the Neuronavigation
paragraph. A significance level of p=0.05 was adopted corre-
sponding (with 7° of freedom) to a ¢ value outside = 2.36; no
corrections for multiple comparisons were applied. The STATIS-
TICA 6.0 (StatSoft inc.) software package was used to compute
statistics. Finally the results were mapped onto the flattened grids.
Stimulated spots with significant effects, i.e., with t-values exceed-
ing +2.36/—2.36, will be referred to as “active foci.” They have been
numbered univocally within each participant with an alphabeti-
cal label corresponding to the cortical region (for example spots
located in the ventral frontal cortex are labeled with “vf”) followed
by a sequential number. Labels have been attributed starting from
the 7-ms ISI maps and then in the 4-ms ISI maps. Note that since
labeling has been made on individual basis, the same label cor-
responds to the same spot within each participant, but there is
no strict correspondence between different participants. For such
descriptive purposes the cortex of the left hemisphere has been
arbitrarily subdivided in six main regions: (1) the caudal part of
the dorsal and medial frontal cortex; (2) the rostral part of the
dorsal-medial frontal cortex; (3) the ventral frontal cortex; (4) the
parietal opercular region; (5) The inferior parietal cortex; (6) The
superior parietal cortex.

The location is described analytically in the results (a) mak-
ing reference to sulcal anatomy and (b) on Talairach coordinates
produced by transforming the three individual brains in Talairach
space (Talairach and Tournoux, 1988). Therefore consistency or
discrepancy between participants, between the two ISIs and with
the previous findings in literature were determined on the basis
of the two parameters of (a) sulcal landmarks, and (b) Talairach
coordinates.

CONTROL MEASURES

Two different controls were performed. In order to validate the
procedure of averaging the two signal from the 1DI and OP mus-
cles, we conducted a separate analysis of the ¢-values derived from
each muscle individually and tested their correlation. Second, as a
measure of repeatability of the mapping procedure, the spots with
significant t-values were checked for consistency of the results
re-testing them in a subsequent separate session with the same
experimental procedure and analytical process described in the
data analysis section.
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SMOOTHED MAPS

Purely for illustrative purposes we extrapolated smoothed maps
of the t-values from the single data points. The map was 125
pixels wide and was superimposed on the flattened cortical sur-
faces. The values of ¢ were plotted with a color coding. The
values in points that were not stimulated were extrapolated from
those of stimulated points according to their distance from them,
with a decay that followed a cumulative distribution function
with SD = 1.8. These parameters were purely arbitrary as, like
stated before, these interpolated smoothed maps had no analytical
function but had the only purpose of illustrating the clusters of
active spots as single active regions. These smoothed maps have
been made in order to obtain a display of the effects of cTMS
that takes account of all values of ¢ not only of the significant
ones.

RESULTS

Participant #1 was tested for a total of 12h in 10 different days;
participant #2 was tested for 10 h in 9 different days; and partici-
pant #3 was tested for a total of 10 h in 10 different days. None of
them reported any discomfort from stimulation or head and neck
fixation. With the Magstim 25 mm coil the mean rMTh calculated
through all sessions was for participant #1 of 62% (SD 6%), for
participant #2 of 67% (SD 3%), and for participant #3 of 58% (SD
2%). With the Medtronic MC-B35 figure-of-eight coil the mean
rMTh calculated through all sessions was for participant #1 of 51%
(SD 3%), for participant #2 of 52% (SD 3%), and for participant
#3 of 49% (SD 2%). In the 7-ms ISI the spots that produced sig-
nificant values of ¢ were 12 in participant #1, 12 in participant #2,
and 10 in participant #3. In the 4-ms ISI the spots that produced
significant values of t were 10 in Participant #1, 7 in Participant #2,
and 8 in participant #3. The active foci were progressively and uni-
vocally labeled within each participant. Their individual Talairach

coordinates, together with uncorrected values of t are presented in
Tables 1 and 2 and their maps superimposed on individual brain
anatomies are shown in Figures 3 and 4.

SEVEN MS ISI
The results are shown in the left panel of Figure 3.

Posterior dorsal frontal cortex

In all participants a distinct inhibitory region was found over the
medial portion of the precentral sulcus. Averaged Talairach coor-
dinates between the three participants were —7, —9, 68. In all three
participants the active focus was labeled as Brodmann Area (BA) 6
according to the Talairach atlas. The inhibitory effect was present
in two adjacent spots in participants #1 and #2 while it was found
over one single focus in participant #3.

Anterior dorsal frontal cortex

In all participants a cluster of active foci with inhibitory effects was
found along the superior frontal gyrus, located around 4 cm ros-
tral to the precentral sulcus. Two adjacent foci showed the effect in
participants #1 and #2 while four adjacent foci were active in par-
ticipant #3. The averaged Talairach coordinates of all foci between
all three participants were —11, 32, 54. Corresponding to the supe-
rior frontal gyrus and the rostral border of BA6 with BA8 according
to the Talairach atlas.

Ventral frontal cortex

In all participants a cluster of active foci was found over the region
corresponding to the junction of the precentral sulcus with the
inferior frontal suclus. Two adjacent foci were present in par-
ticipants #1 and #2 and one focus was found in participant #3.
The averaged coordinates were of —56, 4, 36, which corresponded
according to the Talairach atlas to the precentral gyrus, anterior
border of BA6 with BA9 and BA44.

Table 1 | Active foci found with the ISI of 7 ms.

Region Participant #1 Participant #2 Participant #3
Focus x y z t Focus x y z t Focus x y z t
Posterior dorsal frontal cortex — pdf1 -2 —-14 69 —-241 pdfi -5 —-10 68 —-2.46 pdf1 -3 ) 68 —-3.15
pdf2 -12  -12 69 -250 pdf2 -15 -8 67 -3.79
Anterior dorsal frontal cortex adf1 -15 32 b5 —4.17 adfi -1 36 b4 —2.70 adfi —18 36 50 —-4.1
adf2 -6 32 57 =277 adf2 -10 38 52 287 adf2 -9 37 50 -2.99
adf3 -9 29 57 =391
adf4 -16 17 60 -3.34
Ventral frontal cortex vf1 —-54 3 45 =320 vf1 —-52 1 32 =246 Vi1 —57 7 31 —-2.80
vf2 —62 3 36 —-354 vf2 -53 -3 34 -3.68
Parietal operculum pol -60 —-20 O —-3.47 pol —61 -29 19 =334 pol —-62 -22 16 -2.61
po2 -60 -23 15 -3.25
po3 -58 -7 20 -2.51
Inferior parietal cortex ip1 —-47 —-62 40 -3.60 ip1 -57 —-61 25 -3.00 ipl —44 —-67 36 -3.34
ip2 —-53 —-66 24 —243 ip2 -52 -70 26 —495 ip2 -36 -76 31 —-4.18
Superior parietal cortex sp1 —-26 48 B8 344 spl —-20 -48 62 -3.65 spl -38 50 49 -2.59
sp2 -13  —-47 61 -3.84 sp2 -17 -68 57 -3.78

The cortical regions, the label, the Talairach coordinates, and the t-values are shown.
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Table 2 | Active foci found with the ISI of 4 ms.

Region Participant #1 Participant #2 Participant #3
Focus x y z t Focus x y z t Focus x y z t

Posterior dorsal frontal cortex — pdf2 -12 =12 69 =270 pdf2 -15 -8 67 -—-5.89

Anterior dorsal frontal cortex adf3 -7 16 58 —2.89 adf3 0 19 60 -3.77 adf4 -16 17 60 -—2.84
adf4 -14 16 56 —4.15 adfs -4 13 61 —-3.63
adfs -6 6 59 —-4.12

Parietal operculum po2 -60 -23 15 —-295 pol —61 -29 19 -293 pol -62 -22 16 285
po3 -58 -7 20 -2.51 po2 -53 —-29 29 -254 po2 —-64 —22 25 381

po3 -61  —-22 34 -267

Inferior parietal cortex ip3 -59 —-18 36 -—2.48 ip3 -54 =31 42 -233 ip3 —-45 -38 48 -3.04
ip4 -64 30 31 -266 ipd -48 -35 51 -252 ip4 —-40 —-48 45 -2.52
ip5 —-61 37 32 —-464 ip5 —-46 —-42 57 -3.72
ip6 -49 36 44 274

Superior parietal cortex sp3 —-26 —-74 b1 290 sp3 -12 -70 57 256 sp3 -29 —-67 42 3.1

The cortical regions, the label, the Talairach coordinates, and the t-values are shown.

Parietal operculum

A clear cluster of inhibitory active foci was found in all three partic-
ipants in the parietal opercular region, over the ventral portion of
the postcentral gyrus and sulcus. Three adjacent foci were present
in participant #1 and only one focus in the other two participants.
The mean Talairach coordinates were of —60, —21, 14, correspond-
ing to the postcentral gyrus at the border between BA40 and BA43
according to the Talairach atlas.

Inferior parietal cortex

A cluster of inhibitory active foci was found in all three participants
in the inferior parietal lobule, in correspondence with the angular
gyrus in all three participants but was in a considerably more ven-
tral position in participant #2 than in the other two participants.
In all participants we found two adjacent foci. The mean coor-
dinates were: —48, —67, 30 corresponding to the angular gyrus,
BA39 according to the Talairach atlas.

Superior parietal cortex

A cluster of inhibitory active foci was found in all three partici-
pants, composed of two adjacent foci in the first two participants,
and of one focus only in participant #3. Its location was in all
three participants over the ventral anterior part of the supe-
rior parietal lobule, at its border with the intraparietal sulcus.
The mean Talairach coordinates were —23, —50, 57, correspond-
ing to the superior parietal lobule, at the border between BA7
and BA5.

FOUR MS ISI
The results are shown in the right panel of Figure 3.

Posterior dorsal frontal cortex

In participants #1 and #2 a single active focus with inhibitory
effects was found in the same locations as in the 7-ms ISI condition.
No active focus was found in participant #3. Mean Talairach coor-
dinates were of —13, —10, 68, corresponding to BA 6 according to
the Talairach atlas.

Anterior dorsal frontal cortex

In all three participants an anterior cluster of inhibitory foci was
found, composed of three adjacent foci in participant #1, one focus
in participant #2, and of two adjacent foci in participant #3. This
was located systematically 1-2 cm caudal to the one found in the 7-
ms ISI condition along the superior frontal sulcus. Mean Talairach
coordinates were —8, 14, 59, corresponding to the superior frontal
gyrus, BA6 according to the Talairach atlas.

Ventral frontal cortex
In no subject did we find active foci in the ventral frontal cortex at
this ISIL.

Parietal operculum

We found in all three participants a cluster of inhibitory active foci
(two adjacent foci in participants #1 and #2 and three adjacent
foci in participant #3). These partially overlapped with the ones
found in the 7-ms ISI but the clusters were systematically more
dorsal than in the 7-ms ISI condition in all three participants. The
mean Talairach coordinates were of —60, —22, 23, corresponding
to the inferior parietal lobule, at the border between BA40, BA43,
and BA2.

Inferior parietal cortex

A cluster of inhibitory active foci was found in all three partici-
pants (four adjacent foci in participant #1, three adjacent foci in
participant #2, and two adjacent foci in participant #3) distributed
along the postcentral sulcus. The averaged Talairach coordinates
were of —52, —35, 43, corresponding to the postcentral sulcus and
the border between BA40 and BA2.

Superior parietal cortex

A single excitatory active focus was found in all three partici-
pants in the superior parietal lobule in its posterior half. The
averaged Talairach coordinates were —22, —70, 50, correspond-
ing to the superior parietal lobule, BA7 according to the Talairach
atlas.
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t-values

t-values

t-values

FIGURE 3 | Statistical maps of the three participants in the

7 and 4 ms ISls. The color scale of the spots indicates the
values of the statistical parameter t obtained with single-sample
t-tests comparing the normalized, log-transformed cTMS +tTMS
MEPs to the average value of 0. Negative (blue) values indicate
inhibitory effects of cTMS on tTMS while positive (red) values

participant #2 participant #1

participant #3

indicate facilitatory effects. Statistical threshold is set at p=0.05,
corresponding to values of t outside the +£2.36 interval. Spots with significant
tvalues are highlighted in dark red or blue as shown in the scale and are
labeled with an alphabetical code indicating the cortical region and a serial
number. The values of t and the coordinates of the spots are presented in
Tables 1 and 2.

CONTROL MEASURES

In all three participants the ¢-values from the 1DI and OP muscles
showed strong correlations at both the 7 and 4-ms ISIs. The results
are shown in Figure 4. The correlations validated the assumption
that the data from the two muscles could be averaged in a single
value.

Re-tests over selected scalp positions corresponding to active
foci confirmed the findings of the mapping. One active spot for
each cluster was re-tested and specifically the one with the highest
value of t was chosen. Table 3 shows the t-values from the map
and from the re-test for each active focus.

SMOOTHED MAPS
The smoothed flat maps that were constructed are shown in
Figure 5.

DISCUSSION

The present experiment provides a whole-hemisphere functional
measure of the source of cortical sites interacting at short-latency
(4-7 ms) with the ipsilateral hand-related corticospinal pathway.
The two ISIs of 4 and 7 ms were chosen on the basis of the observa-
tion that all previous studies testing cortico-cortical interactions
with double coil TMS identify narrow peaks of ISIs at which an
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effect is present, with no effect at all of cTMS at shorter or longer
ISIs. Such active ISIs obviously vary according to the site of cTMS,
likely as a consequence of different fiber length and size. In par-
ticular, parietal cTMS effects peak at 4 ms with a 2-ms temporal
resolution (range 3—5 ms ISIs; Koch and Rothwell, 2009); ventral
premotor cTMS peaks at 6 and 8 ms on a time scale resolving
2ms (effective range at 5-9 ms; Davare et al., 2009); mesial pre-
motor/prefrontal cTMS peaks is effective at 6 ms with a temporal
resolution of 3 ms (effective range 4.5-7.5 ms; Mars et al., 2009);
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FIGURE 4 | Scatterplots of the t-values obtained for each spot with the
samplings of the 1Dl muscle alone plotted against the t-values
obtained with the samplings of the OP muscle alone. Each dot
represent data from a single spot of the scalp grid. The r-values refer to
Pearson'’s correlation test. All p-values are <0.0001.

and superior parietal lobule cTMS is effective at 6 ms ISIs with a
2-ms resolution (range < 7 ms — no ISIs below 6 ms were tested;
Ziluk et al., 2010). We chose therefore to use the 4 and 7-ms inter-
vals because they cover most of the effective ranges already known
in literature.

POSTERIOR DORSAL FRONTAL CORTEX

We found active foci located around the medial part of the pre-
central sulcus on the convexity of the frontal hemispheres. The
Talairach y coordinates ranging from —6 to —12 of the active
foci in our three participants are compatible with the known
location of the supplementary motor area (SMA)-proper found
in imaging studies, as summarized in (Picard and Strick, 1996).
We find significant effects of cTMS predominant in the 7-ms ISI,
but that are present in two participants also at the 4-ms ISI. The
inhibitory effects are not surprising considering that spontaneous
(Shibasaki and Hallett, 2005) or evoked (Rubboli et al., 2006) elec-
trical activity in the human SMA-proper is known to produce
negative myoclonus.

Several reports have demonstrated in the non-human pri-
mate the presence of direct connections between the SMA and
the ipsilateral M1 (Luppino et al., 1993; Tokuno and Tanyji,
1993; Dum and Strick, 2005) but no direct evidence in humans
has been provided up to now using the dual-coil technique.
The SMA-proper however gives rise to a considerable contin-
gent of corticospinal fibers (Lemon, 2008). It is therefore not
clear whether the inhibitory effects that we observe are due to
corticospinal or cortico-cortical pathways, considering also that
SMA corticospinal axons are slower than those arising from
M1 (Maier et al., 2002), which could account for the delay of
4-7 ms between cTMS and tTMS observed here. The fact that
in non-human primates the corticospinal projections from the
SMA-proper are excitatory (Maier et al.,, 2002) probably sug-
gests that the inhibitory effects are mediated by cortico-cortical
projections.

It has been stated that at present, examination of PMd-M1
connectivity within the same hemisphere is not feasible with dual-
coil TMS. This is because the physical size of figure-of-eight coils
precludes one to target PMd or SMA with one coil and M1

Table 3 | Side-by-side comparison of the values of t obtained in the mapping session and in the re-test session for representative active foci in

the three participants and for the two ISls.

ISI Participant #1 Participant #2 Participant #3
Active focus Test Re-test Active focus Test Re-test Active focus Test Re-test

7ms pdf2 -25 -3.16 pdf2 -3.79 —-2.76 pdf1 -3.15 -3.61
adf1 —4.17 -3.1 adf2 —2.87 -3.4 adf1 —4.1 —-3.54
vf2 —3.54 -2.9 vf2 —3.68 —4.07 vf1 -2.8 -3.23
pol -3.47 —-3.95 pol -3.34 -3.62 pol —2.61 -3.21
ip1 -3.6 —4.03 ip2 —4.95 —4 ip2 —4.18 —4.19
sp2 —-3.84 —2.96 sp2 —3.78 —4.14 sp1 —2.59 -3.03

4ms pdf2 —-2.7 -2.9 pdf2 —5.89 -3.21 - - -
adf4 —4.15 —-3.38 adf3 -3.77 —4.18 adfb —-3.63 -3.18
po2 —2.95 -3.9 pol —2.93 —4.1 po2 -3.81 —2.88
ip5 —4.64 —2.93 ip5 -3.72 —2.81 ip3 -3.04 -3.79
sp3 2.9 3.62 sp3 2.56 2.89 sp3 3.1 3.89
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7 ms ISI

t-values

t-values

t-values

as in Figure 3.

FIGURE 5 | Smoothed maps of the three participants in the 7 and 4 ms ISls. The color scale indicates the values of the statistical parameter t. Conventions

4 ms ISI

participant #1

participant #2

participant #3

with the other coil (Chouinard and Paus, 2011). In our experi-
ment the use of smaller coils allowed us to stimulate the scalp
sites overlying M1 and SMA-proper. Even with the small sized
coils we could not include the putative location of the ipsilat-
eral PMd within the scalp grid. The distal limb representation in
the human PMd is located, according to TMS studies, 2 cm ante-
rior to the hand “hot spot” (Schluter et al., 1998; Johansen-Berg
et al., 2002), over the precentral sulcus (O’shea et al., 2007). Such
position could be marginally reached only in participant #3 but
not in participants #1 and #2 (Figure 2). Indeed, all other works
that targeted this area with ¢cTMS with the twin-coil technique
applied cTMS on the contralateral M1, for obvious volumetric
overlap of the two coils (for a review see Chouinard and Paus,
2011).

ANTERIOR DORSAL FRONTAL CORTEX

We found a clear active focus in the anterior dorsal/medial frontal
cortex in the 7 and 4-ms ISIs. A similar active focus was found in
other three investigations from two independent groups, with ISIs
of 6 ms but not at 4 ms (Civardi et al., 2001; Mars et al., 2009; Neu-
bert et al., 2010). In our data we do find a significant effect at the
4-ms ISI, and this discrepancy with the literature could be due to
the fact that active focus (a) at 4 ms ISI was located around 1.5 cm
posterior than its counterpart at 7 ms ISI and therefore that it has
not been stimulated in previous investigations. The anatomical
location of such focus has been attributed in previous papers (Mars
etal., 2009; Neubert et al., 2010) to the human pre-SMA. Another
possibility however is that this active focus could reflect instead
the stimulation of the anterior cingulate motor area (CMA).
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Several arguments can be proposed in favor or against both
hypotheses. The pre-SMA is a likely candidate because its loca-
tion is superficial and accessible to the TMS-induced electrical
field. However there is no evidence in the non-human primates of
direct projections of pre-SMA to M1 or even to the PMv and PMd.
Anatomical data in primates found few, if any, labeled neurons in
pre-SMA after tracer injections into the digit representations of
PMd, PMy, or M1 (Matelli et al., 1986; Kurata, 1991; Tokuno and
Tanji, 1993; Ghosh and Gattera, 1995; Picard and Strick, 1996;
Hatanaka et al., 2001; Dum and Strick, 2002; Luppino et al., 2003).
It has been indeed argued that pre-SMA should be assimilated
(Picard and Strick, 2001) or at least closely linked (Rizzolatti and
Luppino, 2001) to the prefrontal cortex than to other parcellations
of BA6. Additionally, in the present data the spot found at 7 ms
is at an average y value of Talairach coordinates of 32, which is
far too anterior to be overlying the rostral portion of area 6 in the
mesial wall, supposedly included between the y =0 and y = 25/30
in Talairach coordinates (Picard and Strick, 1996). In the two pre-
vious MRI-documented findings (Mars et al., 2009; Neubert et al.,
2010), the active focus was located at average Talairach y values
of 22 (converted from y =18 in MNI coordinates as shown in
Lacadie et al., 2008), and y =29 (converted from y =25 in MNI
coordinates).

On the contrary the CMA is another possible candidate because
itis known to have direct connections to the upper limb-associated
agranular frontal cortex (Dum and Strick, 2005). Another argu-
ment in favor of the CMA is that its rostro-caudal location is
correspondent with the y coordinate of the focus described here
(Picard and Strick, 1996). However, the CMA could be too deep
to be stimulated because its depth can be estimated at around
25 mm from the pial surface of the convexity. However one TMS
study showed the possibility to evoke MEPs from TMS of the
CME (Sohn et al., 2004) and studies on TMS over the inter-
hemispheric fissure show that the TMS-induced current can reach
very deep structures in the medial wall of the hemispheres com-
pared to the hemispheres’ convexity (Marg and Rudiak, 1994;
Terao et al., 1998). Also, it should be noted that the scalp—brain
distance along the midline reaches its minimum when mov-
ing toward the frontal pole (see Figure 7 of Okamoto et al,
2004).

VENTRAL FRONTAL CORTEX

We found a clear active focus only with the 7-ms ISI in the lateral
portion of the premotor cortex, overlying the precentral sulcus, in
correspondence and ventral to the conjunction with the inferior
frontal sulcus. This spot is unequivocally attributable to the ventral
premotor cortex representation of hand movements and confirms
the well-known anatomical data in monkeys of direct PMv-M1
connections (Tokuno and Tanji, 1993; Ghosh and Gattera, 1995;
Dum and Strick, 2005) as well as physiological evidence of such
connections (Cerri et al., 2003; Shimazu et al., 2004). In humans
functional connectivity between PMv and M1 has been clearly
demonstrated with dual-coil procedures (Davare et al., 2009; Koch
et al., 2010b) at ISIs comparable with the present finding at 7 ms
only and with clear inhibitory effects at rest, as the ones showed
here.

PARIETAL OPERCULUM

Perhaps the most interesting and novel finding of this work is the
identification at both the 4 and 7-ms ISI of an inhibitory active
focus in the parietal opercular region. The most obvious candidate
for this focus is the secondary somatosensory area (SII), that has
been reported to be connected directly to the hand representation
of M1 in the non-human primate (Tokuno and Tanji, 1993). In
humans, diffusion tensor imaging data show that the OP4 subdivi-
sion of the opercular region (Eickhoff et al., 2006) is preferentially
connected to the frontal motor areas, among which, M1 (Eickhoff
et al., 2010). The coordinates of the focus described by us indeed
match very closely those of the OP4 region, corresponding roughly
to BA43 (Eickhoff et al., 2006). To our knowledge the present data
are the first evidence in humans of a functional link connecting
directly SII and M1.

INFERIOR PARIETAL CORTEX

The inferior parietal cortex showed two different active foci
according to the different ISL. In the 7-ms ISI we found inhibitory
effects of cTMS from a focus located in the dorsal portion of the
angular gyrus. Its anatomical bases are puzzling, since in humans
no clear hand representation is evident in the dorsal angular gyrus
from imaging studies investigating the production of hand move-
ments (Culham and Valyear, 2006).Recent works however provide
a different explanation, as part of a parietal-premotor—-motor net-
work, trough white matter pathways of the superior longitudinal
fasciculus (Koch et al., 2010a) Indeed these authors found a spot
of short-latency (4 ms) effects of subthreshold cTMS from a spot
with average Talairach coordinates of —38, —68, 46 (converted
from MNI coordinates as shown in Lacadie et al., 2008) which
are comparable with the average coordinates of the active focus
described here (—48, —67, 30). However in the present data a clear
inhibitory effect was found in contrast with the facilitatory effects
of ¢cTMS reported by Koch et al. (2010a). Differences in cTMS
pulse waveform and in the task could account for this discrepancy,
as explained below.

In the 4-ms ISI we found a much more anterior focus, distrib-
uted along the postcentral sulcus and corresponding to the border
between BA40 and BA2. Again, a similar finding is described in
(Koch et al., 2010a) where cTMS applied to a spot located in —50,
—39, 52 (Talairach coordinates converted from MNI) exerted sig-
nificant excitatory effects at 4 ms ISI on tTMS applied over M1.
The effects of cTMS over this site in our experiment can be inter-
preted as the activation of the well-documented direct reciprocal
projections between M1 and the primary SII (Ghosh et al., 1987;
Tokuno and Tanji, 1993) or as the effects of supramarginal cortex
stimulation (BA40).

SUPERIOR PARIETAL CORTEX

Also the superior parietal cortex showed markedly different effects
according to the ISI employed. With the 7-ms ISI an inhibitory
focus was found above or at the intersection with the intrapari-
etal sulcus. In the upper parietal cortex the postcentral sulcus in
humans contains BA1 on its anterior bank, BA2 on the bottom, and
BA5 on the posterior bank (Geyer et al., 1999). In non-human pri-
mate brains a rich direct parieto-frontal circuit has been described
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between parietal area PEa (according to the definition of Pandya
and Seltzer, 1982) and M1 (Petrides and Pandya, 1984). In humans
one recent report using dual-coil TMS has investigated the con-
nectivity between BA5 and M1, showing short-latency effects of
¢TMS with an ISI of 6 ms (Ziluk et al., 2010). The authors found
no effects at rest but a clear facilitation when vibration was applied
to the contralateral hand, however, the spot that was considered as
the putative BAS5 is considerably posterior with respect to the one
the active focus that we describe in the present work.

In the 4-ms ISI condition one excitatory focus was found in the
caudal part of the superior parietal lobule. Also this focus is likely
to be part of a parietal-premotor—-motor network, trough white
matter pathways of the superior longitudinal fasciculus (Koch
et al., 2010a).

GENERAL CONSIDERATIONS

The present data show that a complex web of cortical areas are
involved in the control of the upper limb corticospinal pathway.
In the present experimental conditions we found a strong pre-
dominance of inhibitory modulations of corticospinal excitability
by ¢cTMS with respect to the data found in literature. Indeed only
in one focus in the superior parietal lobule and with only one ISI
did we find a facilitatory effect. The reasons for this predominance
are probably two, one methodological, and the other dependent
on the task employed here. From a methodological point of view
the use of parametric statistics to analyze data that are distrib-
uted from y =0 to y =+00 compared to an equilibrium point
of y =1 produces a bias toward excitatory effects. More interest-
ingly, from a physiological point of view, it should be clear that
what we tested here is the cortical connectivity during hand relax-
ation, while participants were assigned no specific task, i.e., during
the resting state. In a previous experiment (Davare et al., 2008) it
was clearly shown that the polarity of short-latency modulation
of corticospinal activity is task-dependent. Specifically the authors
showed that the effects of cTMS over the ipsilateral ventral pre-
motor cortex are inhibitory at rest and become facilitatory during
grasp. Our data show that, on a whole-hemisphere scale, the ipsi-
lateral hemisphere has a strongly inhibitory effect on corticospinal
function during the resting state.

We also think that the present data are of interest because we
describe a novel method consisting in statistical mapping over
the two-dimensional space of the scalp surface of the effects of
TMS. This method has two main advantages, compared to the
canonical a priori localization of coil position. It is explorative
in nature and therefore does not suffer from inter-participant
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