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Divisive normalization models of covert attention commonly use spike rate modulations as
indicators of the effect of top-down attention. In addition, an increasing number of studies
have shown that top-down attention increases the synchronization of neuronal oscillations
as well, particularly in gamma-band frequencies (25–100 Hz). Although modulations of spike
rate and synchronous oscillations are not mutually exclusive as mechanisms of attention,
there has thus far been little effort to integrate these concepts into a single framework of
attention. Here, we aim to provide such a unified framework by expanding the normalization
model of attention with a multi-level hierarchical structure and a time dimension; allowing
the simulation of a recently reported backward progression of attentional effects along
the visual cortical hierarchy. A simple cascade of normalization models simulating different
cortical areas is shown to cause signal degradation and a loss of stimulus discriminability
over time.To negate this degradation and ensure stable neuronal stimulus representations,
we incorporate a kind of oscillatory phase entrainment into our model that has previously
been proposed as the “communication-through-coherence” (CTC) hypothesis. Our analy-
sis shows that divisive normalization and oscillation models can complement each other
in a unified account of the neural mechanisms of selective visual attention. The resulting
hierarchical normalization and oscillation (HNO) model reproduces several additional spatial
and temporal aspects of attentional modulation and predicts a latency effect on neuronal
responses as a result of cued attention.

Keywords: visual cortex, attention, divisive normalization, neuronal oscillations, phase-locking, communication-
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1. INTRODUCTION
When performing a demanding task, attention allows us to focus
on relevant aspects and ignore most peripheral distracting infor-
mation. By filtering out irrelevant sensory input in favor of relevant
information, attention facilitates an efficient use of the brain’s
limited processing capacity. There are many models that describe
the possible mechanisms of top-down attentional modulation at
a neuronal level, but two classes of recent models are especially
prominent. The first class encompasses a broad range of divisive
normalization models (e.g., Reynolds and Heeger, 2009; Lee and
Maunsell, 2009; Carandini and Heeger, 2011). Such models posit
that neuronal populations’ firing rates depend on bottom-up sen-
sory input, a competitive interaction (surround-inhibition) and
attentional modulation. The second class of models concerns the
role of oscillatory synchronizations of neuronal activity within
specific frequency bands and its association with attention (Fries
et al., 2001).

The normalization and neuronal synchronization models are
distinct theories, but they are not mutually exclusive. While the
normalization model focuses on a functional characterization
of the effects of attention, the neuronal synchronization model

describes a neural correlate of attention without extensively going
into the functional implications. Since these models are comple-
mentary in many respects, a combination of these theories into a
single framework might provide a more comprehensive descrip-
tion of attentional processes than may be obtained from either
model alone. Here, we unify these distinct attention models into a
single framework of selective visual attention. To this end, we first
describe the key aspects of both classes of models and highlight
where they complement each other. Next, we demonstrate how
a hierarchical normalization model that incorporates oscillation
theories of inter-neuronal communication can reproduce both
spatial and temporal aspects of attention that have been established
experimentally.

2. NEURAL CORRELATES OF ATTENTION
Ever since the 1970s, numerous studies have found attentional
modulation of neuronal responses in the visual cortex (e.g., Moran
and Desimone, 1985; Sato, 1988; Motter, 1993; Luck et al., 1997;
Recanzone and Wurtz, 2000; for a review, see Posner and Gilbert,
1999). Early studies measured neural activity in the parietal lobe
of alert monkeys (e.g., Lynch et al., 1977; Bushnell et al., 1981;
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for a review, see Bisley and Goldberg, 2010), while later research
has confirmed that attentional modulation is ubiquitous all over
the visual cortex (for a review, see Treue, 2003). Areas higher in
the cortical hierarchy, such as middle superior temporal cortex
(MST) or ventral intraparietal cortex (VIP), show more atten-
tional modulation than lower areas, such as primary visual cortex
(V1) or middle temporal cortex (MT; Figure 1). However, it has
recently been suggested that top-down attentional modulation,
however small, can already be observed in areas as synaptically
close to the retina as the lateral geniculate nucleus (LGN; McAlo-
nan et al., 2008). Furthermore, it is now well-established that the
increases in firing rates due to attention are highly correlated
with behavioral performance (e.g., Bushnell et al., 1981; Treue
and Maunsell, 1996; Cohen and Maunsell, 2010). Inspired by the
wealth of neurophysiological data that has become available in
recent years, several distinct computational mechanisms have been
proposed to explain different effects of attention on neuronal firing
rates (Itti and Koch, 2001; Hamker, 2003; Spratling and Johnson,
2004; Deco and Rolls, 2005; Maunsell and Treue, 2006). Examples
of such mechanisms are response gain (McAdams and Maun-
sell, 1999; Treue and Martínez-Trujillo, 1999) and contrast-gain
enhancement (Martínez-Trujillo and Treue, 2002), sharpening of
neuronal tuning curves (Womelsdorf et al., 2006a), and com-
petitive interactions between multiple simultaneously presented
stimuli (Desimone and Duncan, 1995; Reynolds et al., 1999; Zhang
et al., 2011).

Response gain enhancement is the most straightforward mod-
ulation of a neuron’s firing rate as a function of stimulus contrast:
when attention is directed to a visual stimulus, the neuron simply
fires more than when attention is directed away (McAdams and
Maunsell, 1999; Treue and Martínez-Trujillo, 1999; Treue, 2001).
On the other hand, some studies have also found that attention
can lead to a contrast-gain enhancement (Martínez-Trujillo and
Treue, 2002). With contrast-gain enhancement, a neuron responds
to an attended visual stimulus as if the stimulus’ contrast is higher
than it actually is rather than by simply increasing its firing rate to
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FIGURE 1 |The strength of attentional modulation increases with level

of cortical hierarchy (extended version of Figure 12 in Cook and

Maunsell, 2002). The different symbols represent the different studies
used in the meta analysis. Lines between two symbols indicate that these
data are from the same study.

any attended stimulus. The distinction between response gain and
contrast-gain mechanisms of attention essentially comes down to
whether attention multiplies a neuron’s contrast-response func-
tion by a particular factor (response gain) or whether it shifts it
horizontally (contrast-gain).

Evidence for competitive interactions has been reported by
Reynolds et al. (1999) in a study where two visual stimuli were pre-
sented either in isolation or simultaneously as a pair. When the two
stimuli were presented simultaneously and attention was directed
away from the stimuli, the recorded neuronal response magnitude
was in-between the responses to either stimulus alone. However,
when attention was directed toward one of the two simultane-
ously presented stimuli, the neuronal response closely resembled
the response that was evoked by the attended stimulus in isolation
(Figure 2). A more recent study reports similar results on a neu-
ronal population level in the inferior temporal cortex (Zhang et al.,
2011). These authors observed that information about an object’s
identity and location is greatly reduced when the object is simul-
taneously presented with other stimuli, compared to when that
object is presented in isolation. Directing attention toward the
object, however, effectively restored its neuronal representation.
While the idea that competitive interactions within the visual cor-
tex are involved in attention has been around for a while (Anderson
and Van Essen, 1987), it has recently regained a lot of interest due to
its implementation in several attention models (i.e., Spratling and
Johnson, 2004; Deco and Rolls, 2005). Mutual inhibition between
neuronal populations, for instance, is a core concept in the influ-
ential normalization model of attention published by Reynolds
and Heeger (2009).

While changes in response magnitude are often observed as a
result of directed attention, there are many other ways in which
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FIGURE 2 | When presented with two visual stimuli simultaneously,

attention can lead to changes in firing rates that can be explained with

competitive interactions between the neuronal populations coding for

either stimulus. Responses of one neuron in area V2 are plotted as a
function of time (ms) after stimulus onset. The solid lines show the neuron’s
response to either stimulus alone when attention is directed away (Att
Away), with the black line representing the neuron’s response to the probe
(horizontally oriented, non-preferred stimulus) and the green line
representing the response to the reference (vertically oriented, preferred
stimulus). When both stimuli are presented simultaneously (dotted lines),
the neuron’s response magnitude is intermediate. Directing attention
(indicated by the cone symbol) to the reference stimulus (Att Ref, in red)
shifts the neuron’s response toward to reference-only response (green)
compared to when attention is directed away (blue). After Figures 6A,B

from Reynolds et al. (1999).
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attention can enhance stimulus processing. Mitchell et al. (2009)
observed that the response variability of neurons that repre-
sented an attended stimulus was lower than of neurons coding
for unattended stimuli. Moreover, simultaneous recordings from
pairs of neurons demonstrated that attention not only increased
a neuron’s firing rate, but also dramatically decreased the spike-
to-spike coherence. With the total information entropy (defined
as the maximum amount of information in the system) within a
neuronal population staying constant, a decrease in noise corre-
lation will typically increase the amount of information available
to encode the stimulus (see Averbeck et al., 2006; for a review
on information theory and neural correlations). Comparing the
effects of attention on increased firing rate and decreased cor-
relations Mitchell et al. (2009) found that the rate increase due
to attention would raise the signal-to-noise ratio (SNR) by 10%,
while the attention-driven decrease in correlation increased the
SNR by 39%.

Beside the aforementioned effects of attention on neuronal
spiking, research in the last decade has revealed that top-down
attention is also highly correlated with an increased power of neu-
ronal oscillations in the gamma frequency band (Fries et al., 2001;
Salinas and Sejnowski, 2001; Lakatos et al., 2008; Van Elswijk et al.,
2010; Womelsdorf et al., 2006b, 2007). In one of these studies,
local field potentials and multi-unit activity in monkey visual
area V4 were simultaneously recorded while monkeys detected
a subtle color change in one of two visual stimuli (Womelsdorf
et al., 2006b). Importantly, the monkey directed its attention either
toward the stimulus that changed or toward the other stimulus that
did not change in color. With this paradigm, the authors observed
large effects of attention on the extent to which spiking events
occurred in coherence with gamma-band (40–72 Hz) oscillations
of the local field potential. Moreover, when spike-field coherences
were compared between the 25% of trials with the fastest behav-
ioral responses and the 25% of trials with the slowest responses
it became clear that when the target stimulus was in the neu-
ron’s receptive field, fast responses were generally accompanied
by stronger spike-field coherence in the gamma-band than slow
responses. This pattern was reversed when it was the distractor
stimulus that evoked the neuron’s response. These observations
strongly indicate a relationship between behavior and the extent
to which stimulus-evoked action potentials are synchronized with
neural oscillations.

In the next two sections we will first describe some key aspects
of both the normalization and the neural synchronization models
of attention. Finally, we will demonstrate where the two types of
models are complementary and how they can be combined into
a unified framework of visual cortical attention mechanisms that
reproduces both spatial and temporal aspects of attention.

3. THE NORMALIZATION MODEL OF ATTENTION
Recently, both Reynolds and Heeger (2009) and Lee and Maunsell
(2009) independently published sophisticated models of visual
attention, based on the notion that attention modulates the
strength of normalization processes. Computationally and con-
ceptually their models are rather similar. However, the Lee and
Maunsell model only predicts response gain changes with atten-
tion and not contrast-gain changes, whereas the Reynolds and

Heeger model predicts both. We will therefore conform to the
conventions used in the Reynolds and Heeger model and dis-
cuss only this model in detail for the remainder of this paper.
The Reynolds and Heeger normalization model can simultane-
ously describe neuronal population responses for the entire retinal
space and a range of different stimulus characteristics. This way
the model incorporates both spatial and feature-based attention,
but in an abstract way that does not directly relate to neurophys-
iological correlates. While this approach has some disadvantages
for the neuronal interpretation of the computational operations, it
comes with the great advantage of having an intuitive and simple
computational model that can explain a host of neurophysiolog-
ical observations remarkably well on a phenomenological level.
For explanatory purposes, we limit our current description of the
model to comprise a single spatial and a single feature preference
dimension (orientation).

The divisive normalization model of attention (Reynolds and
Heeger, 2009) posits an initial bottom-up activation or “stimu-
lus drive” of neuronal populations that is modulated by atten-
tional processes (represented by the “attention field”) to produce
an “excitatory drive” so that attending a stimulus enhances the
response of the neurons that are tuned to that stimulus. Simul-
taneously, an inhibitory competitive interaction, or “suppressive
drive,” arises from a combination of the excitatory drive with a
“suppressive field” that simulates lateral inhibition (Figure 3). The
final neuronal population response depends on the orientation
preferences and the receptive field (RF) center locations and is cal-
culated by dividing the excitatory drive by the suppressive drive.
This division effectively normalizes the response magnitude of
individual neurons to that of the population as a whole, hence the
name “normalization model.”

To summarize, the normalization model explicitly splits the
population response in three components: (1) a stimulus drive
or bottom-up activation from sensory stimulation; (2) an atten-
tion field or gain modulation that is selective for certain ranges of
stimulus features, such as spatial location or stimulus orientation;
and (3) a suppressive drive or surround-inhibition through neu-
rons that are similarly tuned for a particular feature, e.g., neurons
that have overlapping RF locations. Note however, that the sup-
pressive drive is essentially a multiplication of the attention field
and stimulus drive. It could therefore be argued that the output
of the normalization model depends solely on the attention field
and the stimulus drive, and that the suppressive drive represents
an internal process. Mathematically, the normalization model can
be expressed as the following equation:

R(x , θ) = |[A(x , θ)E(x , θ)]/[S(x , θ) + σ]|T (1)

In this equation, R(x, θ) is the population firing rate as a func-
tion of x (the receptive field (RF) center) and of θ (the orientation
preference); the RF center and orientation preference are the two
dimensions along which the neuronal populations are described.
The firing rate R depends on the stimulus drive E(x, θ) multiplied
by the attention field A(x, θ). The attention field has a value of one
everywhere except for a small region at the site of directed atten-
tion, where the gain is larger than one. The firing rate also depends
inversely on the suppressive drive S(x, θ) and on a constant σ that
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FIGURE 3 |The divisive normalization model of attention (Reynolds and

Heeger, 2009). When two stimuli are presented and one is attended (dotted
red circle), this leads to an activation of neurons that have an appropriate
receptive field (RF) and are tuned to the orientation that corresponds with the
stimulus. This bottom-up activation (Stimulus Drive) is depicted along the two
stimulus properties, with each pixel representing a single neuron and
brightness representing the strength of activation. Paying attention to a
certain spatial location (corresponding to the red circle in the left panel)

creates an Attention Field that is selective for the RF center dimension, but
not for the orientation preference dimension. Multiplying the Attention Field
point-by-point with the Stimulus Drive yields an Excitatory Drive, which is
then convolved with a Suppressive Field (a Gaussian representing the lateral
inhibition) to produce the Suppressive Drive, or surround-inhibition. Finally,
dividing the Excitatory Drive by the Suppressive Drive yields a normalized
Population Response, with the attended stimulus having a larger output than
the unattended stimulus. Figure adapted from Reynolds and Heeger (2009).

determines the neuron’s contrast-gain. To simulate spiking behav-
ior, |.|T performs a rectification with respect to spiking threshold
T. While the attention field and stimulus drive both depend on
input variables of the model, σ and T are constants. The sup-
pressive drive S(x, θ) simulates a competitive interaction between
neurons that are similar in RF center and orientation preference
by averaging over these dimensions with a convolution of the sup-
pressive field s(x, θ) and the stimulus drive modulated by attention
(A(x, θ)E(x, θ)). It is expressed as

S(x , θ) = s(x , θ) ∗ [A(x , θ)E(x , θ)] (2)

Here, s(x, θ) is the suppressive field, i.e., the extent of pooling
over RF center (x) and stimulus preference (θ). A(x, θ)E(x, θ) is
the neuronal activity (E(x, θ)) modulated by attention (A(x, θ)) –
or excitatory drive in Figure 3 – and ∗ is the convolution. The
suppressive field s(x, θ) can be made arbitrarily large to simulate
general inhibition without spatial specificity, or arbitrarily small to
remove inhibitory effects. An intermediate value (as is used in all
simulations) allows for spatially selective inhibitory interactions.

In addition to its dependencies on x and θ, the response can be
described in terms of stimulus contrast c. Adding this additional
variable to the original equation; the calculation of the population
response becomes:

R(c ; x , θ) = |[A(x , θ; c)E(x , θ; c)]/[S(x , θ; c) + σ]|T (3)

In this equation, the contrast-response function of any sin-
gle neuron within this simulated population (i.e., the population
response at a single point (x ; θ)) is given by

r(c) = α · c/(c + σ), (4)

where α is a response gain constant that determines the neu-
ron’s response at saturating contrast (r(c) ≈ α when c � σ). This
response gain constant is predominantly determined by the dis-
tance between the neuron’s preferred location and orientation
and the actual location and orientation of the stimulus. A neu-
ron whose preferred orientation is orthogonal to the stimulus’
orientation will have a small α, while a neuron whose preferred
orientation perfectly matches the stimulus’ orientation will have a
large α.

Reynolds and Heeger note that the rectification (|.|T ) can
approximate a power law to produce a contrast-response function
that more closely resembles contrast-response functions observed
from electrophysiological recordings. In this case, the contrast c
gets an exponent (cn); however, the original authors also state that
they performed all simulations with an exponent of 1. For sim-
plicity, and to remain more truthful to the original description of
the normalization model, we will also use an exponent of 1 in all
further descriptions and simulations.

Simulations with the normalization model show that it can
accurately simulate a range of observed phenomena (Reynolds and
Heeger, 2009). Figure 2, for instance, demonstrates how attend-
ing to one of two stimuli changes the activity pattern of neurons
selective to such a stimulus in a way that resembles the activity pat-
terns that are observed when the attended stimulus is presented in
isolation. Apart from this simulation of competitive interactions,
the normalization model can also reproduce the experimentally
demonstrated shifts and shrinkages in the tuning curves of visual
neurons (Womelsdorf et al., 2006a; for another computational
model that also reproduces shifts and shrinkages in RF size in
V4, see Hamker and Zirnsak, 2006). A remarkable property of the
normalization model is that it offers a possible explanation for
why attentional effects on contrast-response functions sometimes
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show a contrast-gain enhancement, and sometimes a response gain
enhancement. Simulations with the normalization model suggest
that this is due to the relative sizes of the stimulus and attention
field. When the attention field is large compared to the stimulus
size, the modulation is predominantly a contrast-gain enhance-
ment. If, however, the attention field is small compared to the
stimulus size, the effect seems to be predominantly response gain.
These specific predictions have recently been confirmed with a par-
adigm that used the spatial certainty of visual stimuli to modulate
the size of the attention field (Herrmann et al., 2010).

The concept of an attention field is reminiscent of previously
proposed theoretical constructs like a saliency map (Itti and Koch,
2001) or a priority map (Bisley and Goldberg, 2010) and their
neurophysiological representations in parietal and prefrontal cor-
tex (Gottlieb et al., 1998; Bisley and Goldberg, 2010; Bisley, 2011).
A saliency map represents the relative strength of bottom-up stim-
ulus features that are used to guide attention (Koch and Ullman,
1985; Itti and Koch, 2001). A priority map, on the other hand,
combines the bottom-up saliency map with top-down endoge-
nous factors for the selection of objects for eye movements or
attention (Serences and Yantis, 2006; Bisley and Goldberg, 2010).
The abstract concept of an attention field in the normalization
model can perhaps best be seen as the collection of these top-down
influences in the priority map. As such it more or less constitutes a
top-down counterpart to the bottom-up saliency map. Since their
initial reception, the concepts of saliency and priority maps have
become common practice in guided visual search models (Itti and
Koch, 2001; Bisley and Goldberg, 2010; Bisley, 2011). Enhanced
salience of certain objects prioritizes these objects in serial search
tasks so that the object that is most likely to be the target will
be attended first. In a similar way, an attention field can enhance
the firing rate of neurons corresponding to certain object features
(orientation) and cause an early bias in neuronal activation in
favor of stimuli that correspond to the template represented in the
attention field.

In conclusion, the normalization model offers a useful tool
to describe a range of attentional effects and their dependence on
stimulus contrast and spatial attention. The normalization model’s
versatility in this regard is unequaled by other models of attention
and its conceptual simplicity makes it appealingly elegant. How-
ever, the fairly abstract nature of an “attention field” limits its use
to a mainly theoretical framework. Another trade-off in favor of
simplicity is the model’s inability to produce attentional effects
that change over time (unlike for example Deco and Rolls, 2005;
Hamker, 2005; Hamker and Zirnsak, 2006). This means that while
the normalization model may be a step in the right direction of
explaining multiple attentional effects with a single framework, the
synthesis is clearly not completed yet. A final issue is that the model
only describes attentional effects in terms of neuronal firing rate,
while an increasing amount of neurophysiological evidence sug-
gests that synchronization of oscillatory activity is very important
for attentional processes as well.

4. NEURONAL SYNCHRONIZATION MODELS OF ATTENTION
Strong correlations have been found between attention and
enhanced gamma-band synchronization (Fell et al., 2003; Bichot
et al., 2005; Womelsdorf and Fries, 2007). Gamma-band

synchronizations are also known to be modulated by oscillations in
other frequency ranges, such as the theta-cycle oscillations that are
implicated in the shifting of attention (Fries, 2009), and delta-wave
oscillations (Lakatos et al., 2008). The underlying network dynam-
ics of gamma oscillations can be simplified by supposing a local
neural network that contains both excitatory and inhibitory neu-
rons, a common scenario in many areas of human cortex. In this
network, excitatory pyramidal cells will have axons that go both to
distant output regions and to local inhibitory interneurons. When
the excitatory neurons are activated, these interneurons get acti-
vated and in turn inhibit the pyramidal cells until they fall almost
silent. Because of this inhibition of the excitatory cells, the ini-
tial drive on the interneurons is also reduced and their inhibition
becomes weaker. As a result, the pyramidal neurons are again free
to fire action potentials and begin driving the inhibitory neurons,
initiating a new cycle (Tiesinga et al., 2004; Fries et al., 2007). One
important effect of this oscillatory behavior is that information
coded by spike rates is converted to information coded by spike
times. Under the assumption that all excitatory neurons receive a
similar amount of inhibition, the excitatory neurons that receive
the strongest depolarizing input will be the first to fire action
potentials during the cycle when inhibition from the interneurons
starts to weaken. Consequently, the extent of an excitatory neu-
ron’s depolarizing drive is converted into the moment of spiking
relative to the phase of the cycle period. This means that as the exci-
tatory drive of a neuron increases, so does its ability to overcome
inhibition earlier in the cycle (Fries et al., 2007).

Support for this hypothesis comes from measurements in the
visual cortex of anesthetized cats (König et al., 1995). If the acti-
vation strength of a neuron determines the phase at which a
neuron fires in a gamma cycle, then the relative activation strengths
between two neurons should determine the relative phases at
which they fire. König and colleagues recorded multi-unit activity
(MUA) from the primary visual cortex. Pyramidal cells possess
asymmetric dendritic trees and are more numerous and bigger
than inhibitory interneurons. As a consequence, they produce
larger extracellular potentials and they will dominate the activity
that is recorded in studies such as the one of König and col-
leagues. The electrodes were placed close enough to each other
to allow the receptive fields of different MUAs to overlap, yet dis-
tant enough for each MUA have a slightly different selectivity to
stimulus features such as orientation. Neurons at both electrodes
were thus driven by the same stimulus, but their degree of acti-
vation depended on the stimulus orientation (König et al., 1995).
Both MUAs showed rhythmic gamma-band synchronization, but
the phase difference between the two populations depended on
the stimulus orientation. When a certain orientation activated one
population morethan the other, the population with the stronger
excitatory drive would fire earlier in the gamma cycle.

One may ask whether it is really relevant that spike rate cod-
ing gets transformed into a temporal-position coding. After all,
strongly depolarized neurons will still have higher spiking rates
than weakly depolarized neurons, whether they are synchronized
to a gamma cycle or not. Recent studies, however, indicate that
the timing of spikes is indeed important. It gives rise to the well-
known spike-timing dependent Hebbian plasticity rule (Bi and
Poo, 1998); and forms the basis of a more recently suggested
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learning rule based on covariance, formulated to better correspond
to observations of in vivo spike-timing dependent plasticity in V1
(Frégnac et al., 2010).

Moreover, the gamma cycle might provide a way in which pyra-
midal cells engage in winner-take-all processes (Olufsen et al.,
2003; Börgers et al., 2005). Whenever a pyramidal cell fires, it acti-
vates local interneurons that send inhibitory signals back to the
whole population of excitatory neurons. Because of this process,
when the first few pyramidal cells have started firing action poten-
tials, inhibition of all excitatory cells will start to increase. This
makes it harder for pyramidal cells that have not yet fired to pro-
duce any spikes at all. Consequently, the phase position of spikes
relative to their cycle period is an important indication of the
amount of information they carry. In fact, it has been shown
that the first 1–5% of the spikes that encode a stimulus contain
most information and that the other 95% provide relatively lit-
tle additional information (VanRullen and Thorpe, 2002). In this
framework, attention could then control the extent with which
rate-codes are transformed into time codes. Since the gamma cycle
can convert a neuron’s depolarizing drive into the moment of spik-
ing relative to the phase of the cycle period, an increase of the
amplitude of oscillations (as is observed during directed atten-
tion) could increase the extent to which rate-coded information is
transformed to temporally coded information.

Another possible function of neural oscillations is formu-
lated in the communication-through-coherence (CTC) hypothesis
(Fries, 2005). This hypothesis states that neuronal communica-
tion between populations is only efficient if these populations are
oscillating in synchrony and prevented if their oscillatory cycles are
asynchronous. This hypothesis is based on two observations. First,
as we have seen in the preceding paragraph neuronal populations
have the intrinsic property to produce oscillatory activity (Kopell
et al., 2000; Tiesinga et al., 2001). Second, as a neuronal popu-
lation goes through an oscillatory cycle, its excitability changes
drastically. While small excitatory inputs might be enough to acti-
vate a neuron when its corresponding interneurons are silent, the
same neuron may require an extremely large amount of excita-
tory input when it is receiving large hyperpolarizing currents from
the interneuron population. Accordingly, every oscillation period
has a limited temporal window for effective communication that
opens and closes with the phases of the oscillatory cycle. This
means that only phase-locked neuronal populations are able to
influence each other’s firing patterns effectively; a hypothesis that
has been verified with neural network modeling (Kremkow et al.,
2010).

The CTC hypothesis is depicted in Figure 4 with three oscil-
lating neuronal populations. While two of these populations are
phase-locked, the third is not oscillating coherently with the other
two. Effective communication is ensured by mutual activation of
populations 1 and 2 (red and blue) during their peak excitabil-
ity, while population 3 (green) is excluded from influencing that
communication because of its misaligned oscillatory cycle. Exper-
iments have shown that the probability of spike generation is
indeed dependent on the relative phase in an oscillatory cycle when
current is injected (Volgushev et al., 1998). Other recent studies
provide additional support for the CTC hypothesis. The interac-
tion strength of two neuronal groups, for instance, has been shown
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{

{
{
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peak excitability
Spike missing 
peak excitability
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FIGURE 4 | A schematic representation of the CTC hypothesis and its

implications.This illustration shows three neuronal populations (red, green,
and blue). There are two populations (red and green) that each connect to
the third (blue), but only one (red) is synchronized to it via neuronal
oscillations (middle right), while the other (green) is out-of-phase. Spikes
from the synchronized population (red) arrive at their target population
(blue) within the peak of excitability, while signals from the out-of-phase
population (green) have no effect. Such phase-locking process could explain
why higher cortical areas show larger attention effects. When two stimuli
are simultaneously presented, the corresponding retinotopic regions in
lower level visual cortex (e.g., V1) will overlap less than in higher level visual
cortex (e.g., V4). Neurons in subsequent cortical areas that can in principle
respond to either stimulus can only be phase-locked to input from one of
the stimuli, leading to competitive interactions in the region of overlap.

to depend on the phase and precision of their rhythmic synchro-
nization (Womelsdorf et al., 2007). Furthermore, the modulation
strength of a TMS pulse has been shown to depend on the beta
oscillation phase of the stimulated neural tissue, which suggests
that beta band synchronization (and possibly also gamma-band
synchronization) entails a rhythmic gain modulation of neuronal
input (Van Elswijk et al., 2010). Such a process could very well be
the underlying mechanism of winner-takes-all mechanisms that
have recently been found in posterior parietal cortex (Oleksiak
et al., 2011).

Neuronal oscillations thus appear to be important binding
mechanisms in neural networks. One could hypothesize that the
activity of neurons that are tuned to (features of) an attended stim-
ulus is modulated by attention through increased coherence of the
neurons with their local gamma cycles. These gamma cycles can
then translate the rate-coded information into temporally coded
information and relay it from one neuronal assembly to another
through phase-locked oscillations. The CTC hypothesis states that
such process increases the likelihood of spikes arriving at the tar-
get population’s peak excitability, resulting in a higher efficiency
of information transfer. Enhanced synchronization and conver-
sion of a rate code to a temporal code also ensures a more stable
signal propagation with higher fidelity through several groups
of neurons in feedforward networks (Kumar et al., 2010). Con-
sequently, in later cortical areas attended stimuli will be more
strongly represented than unattended stimuli, because the latter
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do not receive the enhancement in spike rate and thereby a weaker
conversion of rate code to temporal code. Furthermore, oscilla-
tions of neurons that encode unattended stimuli are misaligned
with oscillating target populations, making it harder to get the
signal registered at its destination. In the next section, we will
develop a general framework in which normalization and oscil-
lation mechanisms complement each other in explaining a broad
range of experimentally demonstrated effects of visual attention.

5. A HIERARCHICAL NORMALIZATION AND OSCILLATION
MODEL OF VISUAL ATTENTION

In the preceding paragraphs we have highlighted some of
the key aspects of synchronization processes and normaliza-
tion models of attention. The normalization model describes a
wide range of attention-based phenomena, but its neural corre-
lates remain relatively undefined. It also fails to reproduce any
time-resolved attentional modulations and it does not describe
the attention-based relationship between different visual cortical
areas. Where the descriptive power of the normalization model
ends, that of phase-locked oscillations begins. Gamma oscillations
on the other hand cannot readily explain changes in contrast-
response functions or receptive field structures, but they are an
excellent candidate for the neural correlate of dynamic attentional
processes. Moreover, expanding the normalization model with
oscillation based functionality reproduces dynamic attentional
effects over time and cortical areas. Not only are the synchro-
nization framework and normalization model of attention not
mutually exclusive, they are in fact surprisingly complementary.
A unified framework that includes both theories can account for
aspects of attention that neither model can account for by itself.

Neurons can be highly sensitive to changes in the correla-
tions of their input, even when the input magnitudes remain
constant (Salinas and Sejnowski, 2001). Synchronization processes
can directly alter spike rates through such a mechanism, mak-
ing it a potential candidate for the observed spike rate increases
with attention. Synchronous oscillations also occur in sponta-
neous ongoing activity. When the appearance of a predictable
stimulus is expected, the synchronization in ongoing oscillations
can be enhanced by a top-down anticipatory signal, without any
notable changes in firing rate (Riehle et al., 1997; for a review,
see Engel et al., 2001; or Salinas and Sejnowski, 2001). This top-
down enhancement of synchronization in the absence of stimuli
strongly suggests that enhanced synchronization in the pres-
ence of stimuli truly represents an effect of directing attention
toward the stimulus and is not merely a consequence of increased
firing rates.

Since the normalization model does not describe attentional
effects over time or different cortical areas it cannot directly
account for the recent observation that an attentional enhance-
ment in firing rates progresses backward along the visual cortical
hierarchy from V4 via V2 to V1 (Buffalo et al., 2010). The atten-
tional effects in this study were strongest and arose earliest in
higher cortical areas (V4), less strong and slightly later in mid-
dle cortical areas (V2), and weakest and latest in primary visual
cortex (V1). We will first expand the normalization model to
enable the simulation of attentional effects over time and corti-
cal areas without any reference to oscillatory mechanisms. This

initial expansion will illustrate why it is necessary to also include
the synchronization framework for our model to reproduce the
experimental data.

Our model implements multiple cortical stages of visual
processing that each contain a standard normalization model
(Reynolds and Heeger, 2009). When two stimuli are presented
simultaneously, information from both stimuli is propagated from
the retina to LGN to V1 to V2 to V4. It is possible to model this
information propagation using the normalization model by tak-
ing the population response of one area as input into the stimulus
drive of another area. Using such a hierarchical cascade of four
normalization models with their inputs and outputs linked to the
outputs and inputs of their lower and higher cortical areas, it
is possible to elicit a backward propagation of attentional mod-
ulation, similar to what was observed by Buffalo et al. (2010).
For this to work, we also need a point of origin for the atten-
tional effects. The frontal eye fields (FEF) are a good candidate
for such a starting point, since stimulation of the FEF leads to
enhancements in firing rates of neurons in V4 with correspond-
ing retinal RF locations (Moore and Armstrong, 2003; Hamker
and Zirnsak, 2006; Ekstrom et al., 2008). It has also been observed
that attention increases spike-field coherence in the gamma-band
frequency range (∼50 Hz) between FEF and V4, where Granger
causality analysis suggests that the FEF are the origin for this
long distance gamma-band phase-locking (Gregoriou et al., 2009).
Finally, response properties of FEF neurons have been shown to
resemble the characteristics of a priority map (Bichot and Schall,
1999). Together, these observations strongly suggest that the FEF
are contributing to the process of directing attention, and might
be of critical importance for attentional modulation in lower cor-
tical areas. Since the aim here is not to explain how, why, or where
attentional effects emerge, but rather to describe how attentional
effects can evolve over time and cortical space, it should suffice
to take the FEF as the arbitrary point of origin for an attention
field in V4.

The input to any simulated cortical area in our model is an
element-wise average of the output from its connected areas pro-
duced on the previous time step. Specifically, for LGN, V1, and V2,
the input consists of a combination of the output from the Retina
and V1; LGN and V2; and V1 and V4 respectively (Figure 5).
Although it has been suggested that attention can increase stimu-
lus discrimination by reducing noise correlations between neurons
through a reduction of naturally occurring spike-spike coherences
(Mitchell et al., 2009), we chose not to implement any sponta-
neous activity in our model in favor of simplicity. This means that
the initial population response of any area at time t depends on
the output of its hierarchically surrounding (input) areas at t − 1.
At all time steps, the only area in our model that receives a fixed
activation input map is the retina (representing a visual stimulus).
All activity at higher level areas results from feedforward input
from lower level areas and, slightly later, from feedback input from
higher level areas. Because it takes one time step for feedforward
input to travel to the next cortical level, the only area that shows
activation at t = 1 is the LGN while bottom-up input first reaches
V4 at t = 4. This temporal profile is in agreement with neurophys-
iological data (Schmolesky et al., 1998) showing that the earliest
response to visual stimulation in any of the four areas in our model
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FIGURE 5 | A schematic representation of the hierarchical normalization

and oscillation (HNO) model of attention. The model consists of four
different layers that all contain a complete normalization model (right). The
stimulus drive of each area is formed by a combination of the population
responses from the neighboring areas during the previous iteration.
Calculation of the population response R(x, θ) from the stimulus drive occurs
within separate unaltered normalization models. The first step of the model
combines the input phase with the input drive, yielding a vector map with two
small non-zero areas centered on the stimulus locations. This map is then
convolved with a Gaussian and leads to activation in Stimulus Drive of LGN.

The normalization model (see Figure 3) then outputs a population response(
RLGN

1 (x , θ)
)

which spreads to higher areas on subsequent iterations. Only V4
has a non-uniform attention field, so attentional modulation only occurs after
bottom-up activation has reached V4. The biased output of V4 is then relayed
back to lower cortical areas where it creates attention-driven biases at each of
these areas. The connection diagram is shown in the lower right of the figure.
A more complete description of the Oscillatory Extension is given in the text.
Encircled x indicates multiplication; encircled ∗ indicates convolution;
encircled ÷ indicates division; and encircled Φ indicates the calculation of
vector means, as described in the text.

is seen in the LGN and the latest response in V4. Since top-down
attention is thought to feed back from higher-order areas down
to lower-order areas, we only provided the top level of our model
(V4) with a non-uniform attention field. The bias in population
response at V4 resulting from this non-uniform attention field
then induces a similar bias, although of lesser magnitude, in the
lower-order areas through feedback processes that again take time
to be established. To quantify the strength of attentional modula-
tion, we calculated the ratio between the population responses at
the location of stimulus 1 and stimulus 2:

Amod = R(xS1, θS1)/R(xS2, θS2) (5)

The magnitude of this attention effect is shown for the first fifty
time step iterations in Figure 6E. It is clear that the moment of
earliest attentional modulation occurs later at lower areas and that

this effect is also weaker there. After the initial onset, the attention
effect slowly increases for several more iterations. However, the
activation patterns (represented in Figures 6A,C as a horizontal
cross-section through the activity map) evoked by stimulus 1 are
indistinguishable from the activation patterns evoked by stimulus
2 because they blur together into a single activity blob at higher
cortical areas. This degeneration of stimulus discriminability gets
stronger over time. After the fourth iteration the activation pat-
tern in V2 still has two separable peaks (Figure 6C, dotted lines),
but at the fiftieth iteration only a single peak remains (Figure 6C,
solid lines). It would not be very useful for attention to enhance a
response at the cost of losing the discriminative power to distin-
guish between stimuli, suggesting that there must be an additional
mechanism that avoids signal degradation and keeps the activa-
tion patterns evoked by stimulus 1 separate from those evoked by
stimulus 2.
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FIGURE 6 | Output of the hierarchical normalization and oscillation

(HNO) model of attention. On the left-hand side (A,C,E) show the model’s
outputs when the phase maps are uniform (i.e., without phase-locking
effects), (A,C) show the activity maps (E (x, θ)) of V4 (A) and V2 (C) at iterations
4 and 50, where the line-plots represent a horizontal cross-section through
the activity map over preferred stimulus location (x Location) at the optimal
stimulus orientation (θ = 0). These activity patterns demonstrate that at t = 4
(dotted lines), when the attentional modulation only present in V4 has not yet
back-propagated to lower areas, there is a bimodal distribution of response
magnitude at V2, while the response at V4 has already degenerated into a
skewed unimodal distribution. At the steady-state (t = 50), this discriminability
is also lost at V2 [(C); solid line)]. (E) Shows the progression of the attention

effect over time for the four simulated cortical areas. When the same
simulation is run with randomized phase maps [0 − 2π] (B,D,F), a clear
bimodal distribution can be observed in both V4 (B) and V2 (D); and both in an
early phase of the simulation (t = 4; dotted lines) and at the steady-state
(t = 50; solid lines). Also visible is that the phase maps (P (x, θ)) can be highly
fragmented at the start of the simulation, but will converge to a highly
structured bimodal division; where one half of the phase map is dominated by
one stimulus, and the other half is dominated by the other. Note that adding a
randomized phase map to the cascading normalization model does not
qualitatively change the size, spread or temporal structure of the attentional
effect [compare (E,F)]. Colors in the phase map are calculated as follows:
R = (cos(P) + 1)/2; G = 1 − R; B = (sin(P) + 1)/2.

This is where the neuronal synchronization framework offers a
solution. Without phase maps that represent the phase of ongoing
oscillations to which a neuron’s activity is locked, each individual
neuron – depicted in our model with a single pixel – is driven
by input from both neuronal populations that respond to stimu-
lus 1 and populations coding for stimulus 2. Any neuron whose
selectivity is in-between these two populations in terms of recep-
tive field location and orientation preference will then receive
additive excitatory signals from both populations. In effect, the
resulting activity level of neurons as measured over the recep-
tive field location dimension will resemble the addition of two
Gaussian distributions centered at the locations of the two stim-
uli. However, when we introduce a phase map and assume that
the two populations code for the competing stimuli with oppo-
site phases, a neuron that is similarly driven by inputs from both
populations will show an activity close to zero. In other words,

the overlap between the two Gaussian distributions becomes sub-
tractive instead of additive, thereby reducing the activation level
for neurons that are in-between the two driving populations. The
amount to which the overlap resembles either subtraction or addi-
tion could then depend on the relative phase difference between
the two driving populations; a difference of 180˚ will result in pure
subtraction of overlap, while a difference of 0˚ will cause pure
addition.

We implemented this phase-locking extension in the following
computational way in our extended model. The input into each
normalization model (or hierarchical stage) does not only con-
tain a measure of response magnitude (E(x, θ); stimulus drive in
Figure 3), but also of the oscillatory phase of the activity (P(x,
θ)). Multiplying the phases in P(x, θ) point-by-point with the
activation levels in E(x, θ) yields a matrix of vectors, where E(x,
θ) gives the vector magnitude and P(x, θ) gives the vector angle.
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Therefore, for each iteration i, we can now define a phase-locked
stimulus drive as follows:

�Ei(x , θ) = Ei(x , θ) · Pi(x , θ) (6)

The activity at any cortical area depends partly on the area’s
own previous activation and its received input. Therefore, the
phase-locked stimulus drive is computed every iteration by tak-
ing the mean of the phase-locked population response from the
previous iteration

(�Ri−1(x , θ)
)

and the current phase-locked input(�E in
i (x , θ)

)
:

�Ei(x , θ) = Φ̄(�Ri−1(x , θ), �Ein
i (x , θ)) (7)

Since both �Ri−1(x , θ) and �Ein
i (x , θ) are matrices where each ele-

ment is a vector with a magnitude and an angle, a simple arithmetic
mean cannot be used. To compute the mean over the values in
circular angle dimension P(x, θ), the operator Φ̄ deconstructs the

elements in �R and �E in
into their mean sine and cosine components:

X̄(x , θ) = ((cos [Pi−1 (x , θ)] · Ri−1 (x , θ))

+
(

cos
[

Pin
i (x , θ)

]
· Ein

i (x , θ)
))

/2 (8)

Ȳ (x , θ) = ((sin [Pi−1 (x , θ)] · Ri−1 (x , θ))

+
(

sin
[

Pin
i (x , θ)

]
· Ein

i (x , θ)
))

/2 (9)

These mean horizontal (X̄) and mean vertical (Ȳ ) components
can then be transformed back to polar coordinates to get the mean
magnitude and mean angle:

Ē(x , θ) =
√

Ȳ (x , θ)2 + X̄(x , θ)2 (10)

P̄(x , θ) = atan2(Ȳ (x , θ), X̄(x , θ)), (11)

where

atan2(y , x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan
( y

x

)
if x > 0

arctan
( y

x

)
if y ≥ 0, x < 0

arctan
( y

x

)
if y < 0, x < 0

+π
2 if y > 0, x = 0

−π
2 if y < 0, x = 0

undefined if y = 0, x = 0

(12)

Furthermore, for any cortical area (i.e., V2) the mean input

matrix �Ein
i (x , θ) from Eq. 7 is a weighted mean of the phase-locked

population responses from its feedforward input (i.e., V1) and its
feedback input (i.e., V4). The mean input is therefore computed
using the same operator Φ̄ as previously described. Additionally,
to simulate the spreading of activation, a convolution on the sepa-
rate X and Y components for both input areas is computed using
a two-dimensional Gaussian filter (σx = 3˚; σθ = 10˚). To reduce
computation time of these convolutions, values lower than 5% of
the peak were removed from the Gaussian.

When these computations are completed, the resulting stim-
ulus drive (i.e., the vector magnitude map) is then inserted into
an unaltered normalization model (Figure 3). The resulting pop-
ulation response Ri(x, θ) is then multiplied by the phase map
Pi(x, θ), yielding a phase-locked population response �Ri(x , θ)
that will serve as input for the neighboring areas in the next
iteration.

Using this Hierarchical Normalization and Oscillation (HNO)
model, we ran the same simulation as described above and dis-
played in Figures 6A,C,E, but now we randomized the phase map
of the retinal input [0 − 2π]. As can be seen in Figures 6B,D,F;
Movies S1 and S2 in Supplementary Material, the phase maps
converge to a semi-stable steady-state, while the activation pat-
terns induced by stimulus 1 and stimulus 2 remain quite distinct
and easily separable. The first step of the HNO model (the lower
left part of the model in Figure 5) is the multiplication of the
phase map with the input drive at the level of the retina. This
multiplication increases the vector magnitude at the location of
the stimuli. When this map is convolved with a Gaussian to sim-
ulate the spreading of activation from the retina to LGN, the area
around the stimuli is heavily biased to phase-lock to the random
phases present at the locations of the stimuli. Since the left stimu-
lus happened to be combined with a “green phase,” and the right
stimulus with a “pinkish-red phase,” the activity map of LGN after
the first iteration already shows a greenish blob around stimulus
1 and a reddish blob around stimulus 2. The fact that the phase
map already shows a clear structure at this early point in time is an
indication of the rapid transition of our model from the random
initialization state to its steady-state.

Our HNO model does not change anything about the internal
mechanics of the normalization model as described by Reynolds
and Heeger (2009). Since we only couple the output of one level to
the input of another, all internal properties of the model, such as
its dependency on stimulus contrast and size of the attention field
for determining a response gain vs. contrast-gain response func-
tion, are expected to remain unaltered. We did however optimize
certain parameters to work with our extension such that its out-
put resembles observations from electrophysiological recordings
in terms of the size of attentional modulations at V1, V2, and V4
(Figure 1).

To validate that our HNO model indeed reproduces the same
effects of attention as originally demonstrated by Reynolds and
Heeger, we ran several additional simulations. First, we vali-
dated the contrast-gain vs. response gain dependency of the
normalization model as originally presented by Reynolds and
Heeger (2009; Figure 2). As can be seen in Figures 7A,B, the effect
of attention in area V4 of our model resembles a contrast-gain
mechanism for large attention fields (Figure 7A) and a response
gain mechanism for small attention fields (Figure 7B). Simulations
were run with the same parameters as in the previous simula-
tions apart from the parameters under investigation (i.e., stimulus
field; attention field and stimulus contrast). Stimulus contrast was
implemented as a multiplication of the standard input into each
cortical area by a stimulus contrast.

We also simulated the modulation of neuronal activity in the
presence of competitive interactions induced by the presence of
competing stimuli as reported by Reynolds et al. (1999; Figure 7C;
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FIGURE 7 | Simulations with the HNO model reproduce a broad range

of attention effects. (A,B) Contrast dependency of a neuron responsive to
a stimulus in V4 dependent on attention field size. (A) An attention field that
is large (width of 30) compared to the stimulus (width of 3) produces a
contrast-gain-like effect of attention similar to the original simulations by
Reynolds and Heeger (2009), Figure 2. The gray dotted line shows the
attentional modulation. (B) Identical to (A), but with an attention field that is
small (width of 3) compared to the stimulus (width of 5) yielding a primarily
response gain-like attention effect. (C) Simulation of a neuron’s response
over time as measured by Reynolds et al. (1999), Figure 6. Green: response
to the neuron’s preferred stimulus; red: response when presented a
stimulus pair and attention directed to the preferred stimulus; blue:
response when presented a stimulus pair and attention directed away;
black: response when presented with the neuron’s non-preferred stimulus.
(D,E,F) Simulation of progression of the attention effect as measured by
Buffalo et al. (2010). Blue: response without attention; red: response with
attention to the neuron’s preferred stimulus. The attentional modulation
increases from V1 (D) via V2 (E) to V4 (F).

compare with the original results in Figure 2); and the neuronal
activity over time in V1, V2, and V4 as reported by Buffalo
et al.(2010; Figures 7D,E,F). For these simulations we again used
the same default model parameters used in all other simulations
except for the crucial parameters under study (i.e., the presence
and location of stimuli, and the location of attention). These
simulations confirm that the HNO model reproduces the activity

modulations for different experimental conditions as well as the
evolution of neurophysiologically reported activity patterns over
time.

Our HNO model incorporates feedback in an additive opera-
tion. While this is computationally straightforward, it is unclear
whether this additive feedback is present in the brain. On the
contrary, there is some evidence in favor of a more complex gain-
control mechanism of feedback modulation (Hupé et al., 2001;
Hamker, 2003, 2005; Hamker and Zirnsak, 2006). While the main
aim of this paper is to present a proof of concept incorporating
neuronal oscillations in a normalization model framework, it is
important to validate that the simulation results do not depend
on the specific type of feedback mechanism we used in the model.
In addition to our simulation with additive feedback, we therefore
ran all simulations again with a gain-control feedback mechanism
that we implemented as:

dE(x , θ)/dt = Ein
Eff (x , θ) − E(x , θ) · Cinh , (13)

where Cinh is an inhibitory constant and

Ein
Eff (x , θ) = Ein(x , θ) · Pdiff (x , θ). (14)

In other words, the change in activity (dE(x, θ)/dt ) depends
on an effector-map Ein

Eff (x , θ) minus the current activation level

(E(x,θ)) multiplied by an inhibitory constant Cinh. This inhibitory
factor ensures that the neuronal activity will return to baseline
levels in the absence of input, while the effector-map describes
the extent to which inputs drive the neuronal population. The
effector-map depends on the excitatory input Ein(x, θ) and the
difference in oscillatory phase Pdiff(x, θ) between the input and the
target neurons. This phase difference map is calculated by taking
the normalized cosine of the angular difference between the target
and the input:

Pdiff (x , θ) = (cos(Pin(x , θ) − P(x , θ)) + 1)/2. (15)

The new phase map is then calculated by taking the angle out-
put of the vector means operator Φ̄ over the input weighted by the
effector-map and the vector map of the previous iteration:

Pi(x , θ) = Φ̄(Ein
Eff (x , θ) · Pin(x , θ), �Ri−1(x , θ)) (16)

The repeated simulations with this alternative gain-control
feedback implementation yielded no qualitative differences com-
pared to the results obtained with the additive feedback mecha-
nism (Figure A1 in Appendix). This validation demonstrates that
the integration of neuronal oscillations in a normalization frame-
work is robust under different feedback implementation regimes
and does not critically depend on the details of the mechanism by
which top-down signals influence lower level processing.

Finally,we performed a novel simulation to predict the effects of
spatially cued attention. To this end we incorporated spontaneous
activity into our model and observed that spatially cued attention
creates a stable field of low activity at the attended site that induces
multi-area phase-locking in the absence of stimuli. This pre-
stimulus phase-locking results in a quicker build-up of response to
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the attended stimulus compared to when attention is only directed
to the stimulus after it appears (Figure 8; Movies S3 and S4 in Sup-
plementary Material). Neurophysiologically, this would translate
to a reduction of response latency with spatially cued attention,
an effect that is in line with the typically reported shortening of
reaction times as a result of spatial cueing (Posner, 1980).

6. DISCUSSION
While a change in spiking rate is an easy and straightforward
way to measure attentional modulation, it is becoming increas-
ingly evident that synchronization of neuronal oscillations in the
gamma-band might also play an important role in the attentional
modulation of information processing in visual cortex. Synchro-
nized oscillations cannot only modulate firing rates, but they may
also increase the fidelity and efficiency with which information
is transferred through different populations of neurons. The nor-
malization model of attention (Reynolds and Heeger, 2009) takes
a rather abstract approach and reproduces a wide range of experi-
mentally observed consequences of attention, such as contrast vs.
response gain enhancement, changes in receptive field structure,
altered tuning properties, and competitive interactions between
multiple simultaneously presented stimuli. The synchronization
framework complements the normalization model by providing a
possible neural correlate of attentional mechanisms and by sug-
gesting ways in which the normalization model could reproduce
the temporal and spatial evolution of attentional modulation.

We have shown that an expansion of the normalization model
to a multi-level hierarchical cortical network model increases its
descriptive power, but that this expansion is only functional when
a phase mapping mechanism is added. Incorporating a phase-
locking entrainment process that closely resembles the func-
tional mechanism previously proposed in the Communication-
Through-Coherence (CTC) hypothesis, it is possible to create
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FIGURE 8 | Simulations of the effect of cued attention performed with

the HNO model in the presence of spontaneous activity. The results
predict that the neuronal response to a stimulus presentation is faster and
accompanied by pre-stimulus inter-areal phase-locking when attention is
cued before the stimulus appears. Red line: neuronal activity in V4 at the
location of a stimulus when that location receives cued attention prior to
stimulus presentation at t = 28. Blue line: same situation, but without cued
attention. Attention now only influences neuronal activity after
stimulus-driven activity has reached V4. The gray dotted line indicates the
moment when stimulus-driven activity reaches V4.

a biologically plausible expanded model of attentional modula-
tion. The resulting Hierarchical Normalization and Oscillation
(HNO) model does not only explain the already impressive array
of phenomena that led to the inception of the original normal-
ization model, but it also reproduces the increased oscillatory
strength associated with attention, as well as the backward cortical
propagation of attentional modulation.

Another interesting implication of the way we implemented
the oscillatory extension within the normalization model frame-
work is that top-down attentional control (the attention field
in our model) might not entrain lower-area neuronal popula-
tions through direct phase-locking, but instead indirectly induces
entrainment between a cascade of areas. This prediction follows
from the observation that bottom-up input arriving at the V4
stage of our model carries a random oscillatory phase map that is
determined at lower processing levels (here the retina) and inde-
pendent of attentional modulation. While attention then serves to
increase the power of the neural oscillations (vector magnitude)
at the attended location, it does not determine the actual phase of
these oscillations (vector angle). In line with neurophysiological
evidence (Fries et al., 2001; Salinas and Sejnowski, 2001; Lakatos
et al.,2008;Van Elswijk et al.,2010;Womelsdorf et al.,2006b,2007),
this dissociation predicts an increase in gamma-band oscillations
in V4 during directed attention. It also predicts that top-down
attentional processes do not set a specific gamma-oscillatory phase
in lower visual areas, but merely enhance the power of oscilla-
tions that are already present. One possibility for how this could
be neurophysiologically implemented is a mechanism through
which feedback attention leads to a general enhancement of inter-
neuronal activity in lower cortical areas. Following the gamma
cycle hypothesis (Tiesinga et al., 2004; Fries et al., 2007), stronger
inhibition of principal cells will lead to increased competition
between pyramidal cells to fire action potentials early in the gamma
cycle. This will in turn lead to an enhancement of gamma cycle
phase-locking and induce an increase in observed gamma power.
Such a mechanism of inhibitory feedback has recently been pro-
posed to underlie attentional gain modulation in V1 of the mouse
visual cortex (Olsen et al., 2012).

Despite the increased descriptive power of the HNO model
compared to the standard normalization model, there are still a
few neurophysiological observations that are difficult to account
for. The attention field of the normalization model, for instance,
increases both the suppressive drive and the excitatory drive. In
neuronal terms, this would predict both an increase in firing rate
as well as stronger inhibition. Together these effects will lead to an
increase in gamma-band power by causing higher peaks and lower
troughs in the oscillatory signal. While this is in concordance with
data from V4 that shows an increase in gamma-band power as well
as in firing rates, it has recently been observed that in V1 atten-
tion actually decreases gamma-band power (Chalk et al., 2010).
A possible solution to this apparent contradiction could be that
attention reduces surround suppression and gamma oscillations
at a large spatial scale, while simultaneously increasing gamma
oscillations at a very local level (Chalk et al., 2010).

An interesting opportunity to directly test the role of gamma
oscillations in attentional modulation may result from the
observation that the frequency of synchronized oscillations in the
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hippocampus depends on the concentration of the neurotransmit-
ter acetylcholine (ACh; Fisahn et al., 1998; Fellous and Sejnowski,
2000; Tiesinga et al., 2001) and that injections of carbachol, an
ACh agonist, can induce gamma-band oscillations in slices of rat
visual cortex in vitro (Wespatat et al., 2004; Oke et al., 2010). The
artificial induction of neuronal oscillations would open up great
possibilities for the verification of oscillation based models.

However, some recent studies suggest that the role of gamma-
band oscillations in visual processing may be rather different for
lower and higher level areas of visual cortex and might depend on
the task that is performed (Lima et al., 2011; Bauer et al., 2012). In
one of these studies (Bauer et al., 2012), the administration of the
cholinergic agonist physostigmine prior to visual spatial attention
task was shown to enhance alpha/beta band attentional modu-
lation in human visual cortex, while leaving gamma-band oscil-
lations unaffected. The cholinergic agonist did however enhance
gamma-band oscillations in more frontal brain regions, leading to
the suggestion that cholinergic enhancement might be primarily
implicated in modulating activity in areas that provide feedback
to earlier cortical regions. In contrast with these findings (Lima
et al., 2011) reported that the expectation of a cued visual tar-
get enhanced widespread gamma-band oscillations throughout
monkey V1, while alpha-band oscillations were reduced. While
these conflicting observations make it clear that neuronal oscilla-
tions in the visual cortex are important for attentional processes,
it also shows that the precise role of these oscillations is still rela-
tively unknown. Replication of the aforementioned results with
a broader range of different parameters or behavioral tasks is
required to reveal the mechanisms that underlie the different
effects of gamma and alpha oscillations throughout visual cortex.

The HNO model of visual attention proposed in this paper may
be compatible with, and complementary to, several other recently
published computational models of attention. Some of these mod-
els accurately reproduce the timecourse of attentional modulation
of neuronal activity (Spratling and Johnson, 2004; Deco and Rolls,
2005), but it is unknown whether they also capture the disso-
ciation between response gain and contrast-gain transition as a
function of attention field size. To our knowledge, the HNO model
is the first model to combine response normalization and neuronal
oscillation theory. The still rather abstract nature of some of the
elements of the normalization components in our model could
however be complemented by two other existing models to yield
an even more detailed description of the neural mechanisms of
attention.

A neural network model of attention-driven perceptual organi-
zation (Mihalas et al., 2011) that was also inspired by the Reynolds
and Heeger normalization model describes a backward propaga-
tion of attentional effects with a more neuron-focused approach.
It incorporates object-based attention and higher-order feature
computation and produces similar results as the HNO model
(i.e., a backward propagation of attentional effects over time from
higher to lower cortical stages). It lacks neuronal oscillations but
instead uses highly specialized subtypes of neurons to establish the
feedback effect. A combination of the two models could provide
more insight into how neuronal oscillations relate to specific fea-
ture computations and their interactions with attention. It would
be interesting to see whether a single general phase map for all

functional neuronal subtypes used in the Mihalas model is suf-
ficient to modulate neuronal communication between functional
subgroups and enhance competitive interactions (i.e., if a single
frequency would suffice), or if different neuronal subtypes would
need individual phase maps (i.e., different oscillatory frequencies).
Combining feature-specific neurons with coherent oscillations at
different frequencies could yield interesting new hypotheses as to
why gamma-band oscillations appear to perform different roles in
V1 and V4/FEF.

The Reentry Hypothesis proposed by Hamker (2003) states
that attentional modulation of higher temporal stream areas (V4,
IT) mainly arises due to feedback from movement cells in FEF
(FEFm). Since FEFm cells receive relatively little input from visual
areas (V4, IT) compared to a much stronger input from pre-
frontal cortex (PFC), this top-down effect is assumed to arise from
a processing loop going through the PFC. This specific imple-
mentation of attentional modulation of V4 activity gives rise to
feature selection and receptive field modulations (Hamker, 2005;
Hamker and Zirnsak, 2006) and is conceptually similar to the
framework of attention used in the HNO model. However, by
establishing an attention field in V4 via feedback connections
from FEF, the reentry hypothesis appears to end at the process-
ing stage where the HNO model begins. The Reentry Hypothesis
and HNO model are thus complementary in the fact that the
HNO model describes the back propagation of attentional effects
in the early and middle visual areas (V1, V2, V4) evoked by an
attention field in V4, whose origin is described by the Reentry
Hypothesis.

The Reentry Hypothesis’ central idea of a prefrontal loop
required for directing visual attention is supported by a recent
rTMS study that demonstrated that rTMS applied to the inferior
frontal junction significantly impaired performance on a visual
memory task (Zanto et al., 2011). In addition, both attentional
modulation as indicated by the P1 amplitude and alpha-band
coherence between frontal cortex and posterior areas was reduced.
These observations are also in line with the CTC hypothesis and
suggest that long-range phase-locking in the alpha frequency band
between frontal and parietal/occipital regions may be crucial for
the top-down attentional modulation of neural responses in visual
areas like V1, V2, and V4.

In conclusion, our current work demonstrates that divisive nor-
malization and oscillation models are not mutually exclusive inter-
pretations of the neural mechanisms of selective visual attention.
Instead, they can be combined into a single unified framework
that allows the prediction of both spatial and temporal aspects
of selective attention. The synthesis of these two frameworks in
our Hierarchical Normalization and Oscillation model is com-
plementary to other existing models of attention and yields new
predictions about the neural mechanisms of visual perception that
may be directly addressed in future experiments.
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SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at http://www.frontiersin.org/Neural_Circuits/10.3389/
fncir.2012.00022/abstract

Movie S1 | Time-lapse simulation of phase map and activity map progression
with uniform initial phase maps. Shown here are the outputs of every area
(LGN; V1; V2 and V4) at each time step of the simulation. At t = 1, only LGN
shows activity. This activity spreads upwards to V1, V2, and V4. At t = 4 the
bottom-up activation reaches V4, where the attention field is centered on the
right-hand side stimulus. This creates a bias in activation between stimuli 1 and
2; and this bias is back-propagated to V2, V1, and LGN. As time progresses,
especially V4 and V2 are subject to signal degradation. Where V2 initially had
clearly separable Gaussian activation curves for the two different stimuli, at later
time steps this activation has merged into a single blob.

Movie S2 | Time-lapse simulation of phase map and activity map progression
with random phase maps. As Movie S1 in Supplementary Material, this movie
shows the output of the HNO model for each cortical layer, but now with
randomized initial phase maps. At t = 1, the input drive is multiplied by the
randomized input phase (see also Figure 5). Since the activity in the input drive
is highly localized, this multiplication creates strong bias for surrounding pixels
(i.e., neurons) to phase-lock to this oscillatory phase when the input vector map
is convolved with a two-dimensional Gaussian. In this particular simulation the
left-hand side stimulus happened to be combined with a greenish phase; while
the right-hand side was combined with a pinkish-red phase. Therefore the phase

map at LGN at t = 1 already shows a slightly extended greenish blob around
stimulus 1; and a slightly extended pinkish-red blob around stimulus 2. This bias
continues to reinforce itself over subsequent iterations causing the expansion
of the green phase over one half of the phase map and the expansion of the red
phase over the other half. Note that in the activity maps the activation spots due
to stimulus 1 and stimulus 2 remain easily dissociable.

Movie S3 | Time-lapse simulation of phase map and activity map progression
with no cued attention prior to the stimulus presentation. As Movie S1 in
Supplementary Material, this movie shows the output of the HNO model for
each cortical layer. Until t = 28, no attention and no stimulus-driven activity is
present. This period shows random activity that appears to converge to a
steady-state. At t = 28, stimulus-driven activity reaches V4, and attention is
directed to the right-hand stimulus. Over time, the right-hand stimulus becomes
more salient than the left-hand stimulus.

Movie S4 | Time-lapse simulation of phase map and activity map progression
with cued attention prior to the stimulus presentation. As Movie S3 in
Supplementary Material, this movie shows the output of the HNO model for
each cortical layer. As early as t = 1, attention is directed toward the cued
location where a stimulus will appear. Over the course of several iterations,
attention builds up at the cued location and causes inter-areal phase-locking at
that location. At t = 28, stimulus-driven activity reaches V4, and the already
present activation bias allows the right-hand stimulus to rapidly become more
salient than the left-hand stimulus. While the steady-state of the activity level is
identical to the non-cued attention simulation, this steady is reached more
quickly due to the cued attention.
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FIGURE A1 | Simulations with the HNO model using a gain-control

implementation of feedback modulation rather than an additive

mechanism. All simulations show results that are qualitatively similar to
those obtained with additive feedback (Figure 7). (A,B) Contrast
dependency of a neuron responsive to a stimulus in V4 dependent on
attention field size. (A) An attention field that is large (width of 30)
compared to the stimulus (width of 3). (B) Identical to (A), but with an
attention field that is small (width of 3) compared to the stimulus (width of
5). (C) Simulation of a neuron’s response over time as measured by
Reynolds et al. (1999), Figure 6. (D,E,F) Simulation of progression of the
attention effect as measured by Buffalo et al. (2010). Progression of
attentional modulation over V1 (D), V2 (E), and V4 (F). All lines and colors
are identical to the ones used in Figure 7.
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