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While modulating neural activity through stimulation is an effective treatment for
neurological diseases such as Parkinson’s disease and essential tremor, an opportunity
for improving neuromodulation therapy remains in automatically adjusting therapy to
continuously optimize patient outcomes. Practical issues associated with achieving this
include the paucity of human data related to disease states, poorly validated estimators
of patient state, and unknown dynamic mappings of optimal stimulation parameters
based on estimated states. To overcome these challenges, we present an investigational
platform including: an implanted sensing and stimulation device to collect data and
run automated closed-loop algorithms; an external tool to prototype classifier and
control-policy algorithms; and real-time telemetry to update the implanted device firmware
and monitor its state. The prototyping system was demonstrated in a chronic large animal
model studying hippocampal dynamics. We used the platform to find biomarkers of the
observed states and transfer functions of different stimulation amplitudes. Data showed
that moderate levels of stimulation suppress hippocampal beta activity, while high levels
of stimulation produce seizure-like after-discharge activity. The biomarker and transfer
function observations were mapped into classifier and control-policy algorithms, which
were downloaded to the implanted device to continuously titrate stimulation amplitude
for the desired network effect. The platform is designed to be a flexible prototyping tool
and could be used to develop improved mechanistic models and automated closed-loop
systems for a variety of neurological disorders.
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INTRODUCTION
Neuromodulation devices for deep brain stimulation (DBS)
deliver targeted electrical stimulation to treat symptoms of dis-
eases such as Parkinson’s disease, essential tremor, and dystonia.
To ensure benefit, these therapies require not only accurate place-
ment of the stimulating electrode within neural tissue, but also
proper selection of stimulation parameters (e.g., amplitude, pulse
width, and frequency). These parameters can be used to mitigate
side effects including hemiballism, gait and speech disturbances,
and dyskinesias (Limousin et al., 1996, 1998; Hamani et al.,
2005; Yu and Neimat, 2008; Bronstein et al., 2011). While many
patients benefit from DBS, the parameter selection process is
largely heuristic, and reprogramming sessions may be weeks or
months apart.

Effort has been applied for more than a decade to build auto-
mated systems (Figure 1) that use patient state to adjust stimula-
tion parameters, thereby reducing the delay between stimulation
updates by many orders of magnitude compared to human inter-
vention. Realizing these systems requires development of sensors
to measure patient data and algorithms to translate the data
to the appropriate stimulation parameters (Priori et al., 2012).
Complexity in the nervous system motivates partitioning the
algorithm into two components: one that translates sensor data

into estimates of state (i.e., a classifier algorithm) and another that
translates the state estimate into a stimulation parameter update
(i.e., a control-policy algorithm). In this work, state is left inten-
tionally ambiguous because its meaning depends on the appli-
cation: examples include seizure versus non-seizure; Parkinson’s
ON versus OFF; asleep versus awake; or others. Regardless of
the application, dividing the algorithm provides the following
benefits:

• Matches clinical workflow: clinical practice often separates a
patient assessment (“classification”), which translates clinical
data into a diagnosis, and a treatment plan (“control policy”),
which translates a diagnosis into a therapy. Designing the sys-
tem to match this separation enables physicians to more easily
validate and improve algorithms according to their existing
workflow.

• Partitions complexity: algorithms can involve significant com-
putational load, which is difficult for implantable systems due
to power constraints (Lee Kyong et al., 2012). Partitioning the
algorithm should enable more modular testing and prototyp-
ing; this is particularly useful when algorithm components can
be externalized to allow greater computational freedom than
the implanted device can provide. Once vetted, algorithms with
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the desired trade-offs between performance, latency, and power
consumption can be committed to embedded firmware for
untethered operation.

The “agent-environment” model from artificial intelligence
research is one model for describing the relationship between
the physician and the automated neuromodulation system in
learning and implementing algorithms (Figure 2). The goal of
the agent is to develop a performance element (i.e., algorithm)
to model the relationship between environmental percepts and
actions taken by effectors. The informed critic (i.e., clinician-
researcher) updates the performance element by learning from
its input data (sensors) and intermediate processing (knowledge)

FIGURE 1 | Simplified model of a closed-loop neuromodulation

system.

to develop new problems or hypotheses regarding the algorithm.
Iterative testing allows the critic to simultaneously learn about
the environment and develop the best performance element to
modulate it.

The agent-environment model is suitable for the development
of neuromodulation systems for several reasons. The model:

• Includes the physician-researcher’s involvement to capture
subject behavior to validate the algorithm.

• Describes the role of the performance element not only as a
key element of the automated closed-loop.system, but also as
the mechanism for the physician-researcher to learn about the
nervous system.

• Captures the importance of developing better sensors and
effectors to improve the ability to monitor and modulate the
nervous system.

• Captures the iterative learning process needed to develop a
first-principles understanding of the neurological diseases.

• Leaves the nature of the algorithm open, keeping free the choice
of machine-learning techniques (e.g., support vector machine,
Kalman filter) and data types (e.g., accelerometer, gyroscope,
biopotential).

The translation of automated closed-loop systems has been
helped by the development of more sophisticated neural sen-
sors as well as improved understanding of the neural signals that
underlie disease. Neurochip-2 (Zanos et al., 2011) and Hermes-D
(Miranda et al., 2010) are two examples of technology to mea-
sure from the network. Neurochip-2 provides three channels of
sensing and stimulation and allows for fast response loop clo-
sure to explore concepts like neural plasticity. The Hermes-D
system allows for wireless, larger scale measurement (32 channels)
of activity, but lacks stimulation capability. Both systems have
the advantage of higher bandwidth, which allows for measure-
ment of single unit activity, but draw greater than 1000× more

FIGURE 2 | Generalized framework for a learning agent (reproduced with permission; WikiCommons).
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power for operation than a typical DBS implant, giving them
longevity of at most a few days between recharges. Moreover,
the limited biomarkers and control variables currently known
for neurological diseases motivate the development of platform
technologies to enable improved first-principles understanding,
which may lead to more rapid clinical translation. A critical
step in developing this understanding is the ability to pro-
vide simultaneous neural recording and therapeutic stimulation,
which is lacking in many research tools today. This capabil-
ity is needed to understand the system transfer function, which
we define as the relationship between stimulation and network
behavior.

The study of biopotential biomarkers has shown spectral
power in local field potentials (LFP) to be a disease-relevant indi-
cator in a variety of settings (Schnitzler and Gross, 2005; Uhlhaas
and Singer, 2006). In particular, these signals are useful in study-
ing networks of thalamo-cortical structures and their dynamic
inter-relationships, where abnormal neural synchrony is believed
to be a hallmark of disease states (Llinas and Ribary, 2001; Siegel
et al., 2012). Furthermore, quantified differences in neural syn-
chrony, which can be measured by calculating power (uV/rtHz)2

in a particular frequency band (for example, “beta”), have been
shown to correlate with symptom severity. For instance, power
in the beta band (15–30 Hz) has been found to be related to
cardinal Parkinson’s symptoms such as bradykinesia and rigid-
ity (Hammond et al., 2007; Eusebio and Brown, 2009; Kühn
et al., 2009; Priori et al., 2012). Characteristic changes in power
at the theta tremor frequency (Hellwig et al., 2001) and coher-
ent activity in the 6–15 Hz frequency band (Raethjen et al.,

2002) have also been found in essential tremor. Synchronization
in even lower frequencies (alpha and theta range) has been
found in dystonia (Liu et al., 2002; Silberstein et al., 2003;
Kühn et al., 2009; Sharott et al., 2008; Singh et al., 2011).
Correlations between power in frequency bands as low as alpha
(Zumsteg et al., 2006) and as high as 500 Hz (Blanco et al., 2011)
have been reported in patients with epilepsy. Equally impor-
tantly, it has been shown that the effect of therapy can be
correlated with LFP signals both in DBS (Eusebio et al., 2012;
Priori et al., 2012) and levodopa therapy (Rossi et al., 2008). In
aggregate, these studies suggest that LFP is a promising sensor
input for automated systems treating a variety of neurological
disorders.

In this work, we describe a platform for investigating these
neural signals toward the development of an automated, closed-
loop bioelectronic neuromodulation system. The platform com-
prises tools and a process flow to map the general learning agent
to neuromodulation research and enables rapid prototyping of
these tools in an implantable neuromodulation device. We use
a preclinical, in vivo nervous system model to demonstrate the
functional components of the system: collection of neural data,
identification of relevant features (i.e., biomarkers), development
of the algorithm, and consolidation of the algorithm into an
implanted device.

SYSTEM STRATEGY AND INFRASTRUCTURE
To implement this system we mapped the general learning agent
functional blocks into the neuromodulation domain (Figure 3).
The interface is bi-directional, extracting measures of neural state

FIGURE 3 | Mapping a generalized learning model to the

neuromodulation system; the components that are implanted are

highlighted by the dashed box. The shaded boxes represent the implanted

components that interface with the environment. Algorithm prototyping
occurs in the agent where the physician and researcher can generate new
algorithms based on historical data and algorithm performance.
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through percepts and actuating states in the nervous system
through effectors. Percepts are received through a combination
of sensors that include bioelectrical sensing from electrodes (e.g.,
ECG, EMG, and LFP) and inertial sensing, (e.g., posture and
activity). The effector pathway is defined by electrical stimula-
tion pulse patterns, with parameters similar to approved therapy
devices.

The challenge in designing the performance element is that
characteristics of both percepts and effectors are still evolving.
The algorithm addresses this ambiguity through use of classi-
fier portion that maps sensed signals to estimates of state and a
control-policy portion that maps state estimates into a desired
stimulation.

We have implemented the learning system using an
implantable research device and external application tool
coupled with real-time telemetry; the system is illustrated in
Figure 4. We call this partition of external learning elements
that can be transferred to the implantable device performance
element a “hybrid” design approach. The goal is to construct
a complete platform (combining hardware, software, and
firmware) for the learning procedure. The learning protocol
includes four main steps from initial exploration to a chronic

prototype for validation: collection of sensed neural data; design
of the performance element’s classifiers based on biomark-
ers; development of the performance element control policy
based on measured neural system identification; and embed-
ding of the performance element into the device for chronic
validation.

To do this, we designed a system with the following features:

◦ Implantable device for delivering stimulation including the
following components:

• Bioelectric sensing with 4 bipolar sensing channels with
150 nV/rtHz noise floor without stimulation and 300
nV/rtHz noise floor with stimulation (nb: Stanslaski et al.,
2012 describes constraints of sensing during stimulation).

• Inertial sensing with a custom three-axis accelerometer with
a 10 mg-rms resolution floor drawing under 600 nW/axis
(Denison et al., 2007).

• Stimulation using a commercially available neural simulator
system with accepted therapy.

• Embedded algorithm with independently modifiable classi-
fier and control-policy algorithms.

FIGURE 4 | Functional flow diagram of the hybrid implantable system with the internal and external partitions denoted.
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◦ External tool for learning and prototyping classifiers to trans-
late sensor data to state estimates.

• Save, parse, and annotate data collected from implantable
device.

• Implement, prototype, and compare machine learning algo-
rithms.

• Develop and test classifiers for the implanted system.

◦ External tool for learning and prototyping control policies to
translate state to stimulation updates.

• Stream data directly from the implantable device to an
external processor with latency less than 1 s (0.5 s typical).

• Send stimulation parameter updates to the implantable
device with latency from command to stimulation at the
electrode in less than 1 s (0.5 s typical).

• Monitor state transitions in classifier and control-policy
algorithms.

◦ Telemetry system for retrieving data, modifying classifiers,
prototyping control policies, and rewriting device firmware.

The key for this system is to integrate all necessary elements to
provide a complete platform for an accelerated learning proce-
dure amenable to rapid-prototyping and clinical translation. The
details of these steps follow below.

COLLECTION OF SENSED NEURAL DATA
The design of the performance element starts with data collection.
While there are many methods to sense biopotential data, fully
implanted devices offer the advantage of higher signal fidelity
than fully external devices (e.g., EEG), reduced infection risk, and
improved chronic, ambulatory data collection capability com-
pared with implanted devices with external components (e.g.,
externalizing leads during DBS surgery or the Hermes-D system).
We have previously described the design and implementation of
our fully implanted, bi-directional neural interface (Rouse et al.,
2011). In brief, the device contains both sensing and stimulation
components. The stimulation feature embodies the capability of
a commercial DBS system. Biopotential sensing is enabled with
a custom-integrated interface chip that allows for measurements
of LFP generated from EMG, ECoG, LFP, and ECG (Avestruz
et al., 2008), with noise floor of 150 nV/rtHz without stimula-
tion and 300 nV/rtHz with stimulation (nb: Stanslaski et al., 2012,
gives details and constraints of sensing during stimulation). The
custom integrated circuit (IC) provides data analysis for up to
four bipolar channels, which are selectable between Nyquist-rate
waveforms (i.e., time channels) and spectral power at specific fre-
quency bands of interest (i.e., power channels). The time channels
provide complete spectral information; however, they incur the
penalty of much higher power consumption. Power channels, on
the other hand, extract a power envelope that is down-sampled
to 5 Hz prior to digital signal processing. The reduction of sig-
nal dynamic range prior to digitization is a common technique
for saving energy in micropower systems. The design model is
to use the time channels for neural system identification, includ-
ing identifying biomarkers and to transfer to the power channels
to optimize efficiency chronically. The inertial element uses a

micromachined three-axis accelerometer that transduces capac-
itive fluctuations to a voltage output. The resolution floor of the
inertial element is 10 mg rms, in a 20-Hz band of detection. The
sensor draws a total of 2 uW during normal operation, which
minimizes longevity impact in the device (Denison et al., 2007).
The sensor inputs from bioelectric and inertial sensors can be
fused together in the algorithm, if desired.

Data acquisition also provides an opportunity for optimiz-
ing efficiency. While the device supports streaming telemetry
for time and power channels, it is limited to environments in
which the subject is close to a telemetry system, and desired data
sampling frequency is low. Event triggered recordings allow for
timed segments of high sampling frequency data when the subject
is ambulatory. Triggers include user programmable, timer-driven
intervals; embedded classifiers; external subject button presses; or
combinations thereof. For a typical event structure like motion
or seizure onsets, an 8-s loop recording could be applied for two
recording channels. With a typical data rate of 422 Hz, approx-
imately 200 recordings can be stored by the embedded SRAM
until it needs to be downloaded and cleared. To organize and
manage the resulting number of files gathered over a longitudi-
nal study, a file system was developed to provide data structure
to researchers. Information such as event time stamps, parameter
settings, and event type is embedded in the data during record-
ing and automatically extracted as a companion file to the data.
The combination of the custom integrated hardware, signal pro-
cessing strategy, and data gathering infrastructure facilitates the
design of the performance element.

LEARNING → PERFORMANCE ELEMENT I: CLASSIFICATION
The first subsystem of the performance element is a classifier
to estimate the state of the nervous system from the sensed
LFP biopotentials. Following the hybrid approach of our plat-
form, we implement the classifier as both an internal function
of the implantable device and as an external tool for learning
and problem generation; the functional flow of the tool is illus-
trated in Figure 5. The external tool allows users to visualize time
domain and spectral data, graphically annotate biomarkers of
interest, and automatically generate classifiers using supervised
machine-learning algorithms. In addition, classifier sensitivity
and specificity can be adjusted manually to obtain the desired per-
formance. The resulting classifiers can be stored and compared
using automatically computed detection statistics. Beyond data
manipulation, the key value of the tool is its relationship with the
implanted device; the tool:

1. Serves as a data repository for grouping and sorting data files
from different recording sessions.

2. Parses data collected from the implanted device, automati-
cally accounting for differences in formatting and recording
settings.

3. Creates algorithms that can be uploaded directly into the
implantable device.

The default on-board classifier algorithm is a linear-discriminant
using a modified Fischer-discriminant approach; it is a linear
decision boundary in a user-selectable feature space that identifies

Frontiers in Neural Circuits www.frontiersin.org January 2013 | Volume 6 | Article 117 | 5

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Afshar et al. Translational neuromodulation prototyping platform

FIGURE 5 | Functional flow for data annotation and classification using the external software tool.

an event signal sample from other samples. The algorithm was
designed using reduced set methods as described in (Shoeb et al.,
2009). The use of the multi-dimensional linear boundary was
found to optimize trade-offs in power consumption, latency, sen-
sitivity, and specificity. Recent work by Lee describes a similar
trade-off calculation and supports our design choices (Lee Kyong
et al., 2012). The on-board algorithm can be used for detecting
events, which are time-stamped and used to trigger recordings
while the subject is ambulatory, thereby reducing current drain
nearly 100-fold and reducing classification latency 5-fold, from
∼1 s to ∼200 ms. If the biomarker’s characteristics warrant a
more complex classifier or shorter latency, the algorithm can be
updated, trading off power consumption.

LEARNING → PERFORMANCE ELEMENT II: CONTROL POLICY
The second algorithm subsystem is the control policy that maps
the state estimate into an optimal stimulation sequence. Like
the classifier algorithm, we implemented the control-policy algo-
rithm both internal to the device and as an external system
for learning and problem generation. Non-linearities in network
dynamics heighten the need to sample many input–output pairs
for system identification. This can be accomplished in two ways:

First, the external tool may be used to sweep any stimulation
parameter (e.g., amplitude or frequency) while the implantable

device senses and saves biopotential data to the internal memory.
Once retrieved from the device, system identification is per-
formed by measuring the relationship between the stimulation
parameters and biopotentials.

Second, the control policy may be adjusted in real-time on a
researcher’s device using an external device to wirelessly trans-
fer data: sensed data is passed to the researcher’s device and
control-policy output is passed to the implantable device. This
capability enables prototyping algorithms including the use of
tapped-delay lines and time synchronizing with other sensors and
hardware, and deriving a variety of signal features (e.g., phase
amplitude coupling). The external device ensures data integrity
in both directions through cyclic-redundancy checks and ensures
patient safety by returning the device to safe, pre-programmed
stimulation state should the researcher’s control policy behave
unexpectedly. Additional safety is ensured by allowing the control
policy to select only among stimulation parameter boundaries
that have been predetermined by the researcher.

For the platform design, particular attention was paid to
the latency in the telemetry links, which is a key factor to
effectively study the dynamics. In the first generation of devel-
opment, we required that total latency through the channel
be constrained to 1 s or less, and typically under 0.5 s. This
degree of latency is suitable for many closed-loop algorithms that
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operate on timescales of seconds, hours, or days. The inherent
latency of the links was dominated by two factors: the first is
the data packet format and error correction handshakes using
the 175 kHz ISM band, and the second is the internal packet
transfer within the bioelectronic device, which, for safety reasons,
are secondary interrupt priorities compared to the therapeu-
tic stimulation. Although the latency can be much improved
by running in the device, it limits flexibility during the initial
learning phase. Therefore, for most cases, the new stimulation
parameters are generated externally, where algorithms can be
made arbitrarily complex and rapidly evaluated to see if they
capture the desired behavior of the neural system. It is highly
desirable to validate the behavior prior to committing to verifi-
cation of embedded firmware due to regulatory constraints and
requirements. For example, the platform can implement arbi-
trary control paradigms such as simple bang–bang controllers
(modeled from early cardiac defibrillators) or more sophisticated
proportional-integral-derivative and linear-quadratic-Gaussian
controllers for achieving the optimal path to the desired state
maintenance.

COMMITTING THE PERFORMANCE ELEMENT TO THE EMBEDDED
DEVICE FOR VALIDATION
After learning and prototyping the classifier and control pol-
icy, the algorithm can be validated by embedding onto the
implantable device firmware using telemetry. The firmware uses
a dedicated boot loader that allows for a new series of code
to be flashed to non-volatile memory inside the device in a
few minutes. The firmware in the device is partitioned such
that the classifier and control policy can be updated indepen-
dently of the therapy code, thereby keeping the interaction
to that necessary for real-time classification and closed-loop
operation. To assist in validation, the firmware is capable of
streaming out the classifier and control-policy states in addi-
tion to sensed signals in real-time, so that the user has visi-
bility into the algorithm operation. For chronic operation, the
state transition information is included in the data log for
validation.

METHODS: DEMONSTRATION OF THE LEARNING AGENT
ARCHITECTURE
As demonstration of the capabilities of our method and tools,
we used the system to investigate, characterize and dynamically
modulate the hippocampal dynamics within the circuit of Papez.
The circuit of Papez is a thalamo-cortical circuit implicated in
temporal lobe epilepsy and involves a reentrant loop involving
the hippocampus (HC) and thalamus. The goal was to design
from first principles a demonstrative “homeostatic” feedback
loop, which would titrate stimulation dynamically to maintain
network activity reflected in the field potentials; the intention
was to show the capabilities of the technology, as opposed to
demonstrate or claim a therapeutic algorithm per se. Design of the
loop required that we address many issues of neuromodulation
design: testing in an awake and freely moving subject, considera-
tion for reliability and repeatability, and chronic implant stability
and safety. Methods are detailed from the physiological prepa-
ration and technology points of view. The focus of this effort

was on exploring the bioelectrical properties of the network and
building up a closed-loop system; the conceptual schema for
developing inertial-based systems, classifiers and control policies
was previously demonstrated with this architecture (Schultz et al.,
2012).

PHYSIOLOGICAL METHODS
The in vivo device was chronically implanted in an ovine
animal model conducted under an IACUC-approved protocol
(Stypulkowski et al., 2011) and is summarized here. Following
anesthesia, 1.5T MRIs were collected and transferred to a surgi-
cal planning station. Trajectories for a unilateral anterior nucleus
(AN) DBS lead (Medtronic model 3389) and unilateral HC lead
(Medtronic model 3387) were planned, and leads implanted using
a frameless stereotactic system (NexFrame from Medtronic, Inc.).
Once lead placement was confirmed based upon electrophysio-
logical measures, Medtronic model 37083 extensions were con-
nected to the DBS leads, tunneled to a post-scapular pocket, and
connected to the prototype chronic implantable device. Figure 6
illustrates the overall system placement and setup. Following clo-
sure of all incisions, anesthesia was discontinued, and the animal
was transferred to surgical recovery.

All sensing and stimulation documented here were conducted
in a single, awake sheep resting in a sling. In this particular work,
all reported data were recorded from the HC with bipolar mon-
tage using contacts surrounding a monopolar stimulation contact
(square, biphasic 300 µs pulse width on E1 with far-field return)
to mitigate artifacts via common-mode rejection during stim-
ulation (Stanslaski et al., 2012); functional network data from
thalamic stimulation and sensing are not shown, but can be found
in Stypulkowski et al. (2011). Neural data, stimulus trains and
classifier detections were recorded and saved by PC software via
wireless telemetry. Data were gathered over 15 months and rep-
resents over 18 months of operation with the device completely
implanted.

As background to the analysis that follows, our physiologi-
cal system relies on three qualitatively discernible states in the
biological system:

1. Resting: defined as the state before any stimulation/
neuromodulation has occurred.

2. After-discharge (AD): defined as the state of high-energy LFP,
similar to a seizure event, and by characteristic head move-
ments of the subject. In our definition, the AD could occur at
any time, independent of stimulation delivery.

3. Suppression: defined as the state with activity that is below the
nominal resting state.

LEARNING FLOW METHODOLOGY
The system was deployed on the physiological preparation to
develop an embedded closed-loop algorithm using our tools and
processes. The technical methods applied the design flow outlined
in the system architecture to the physiological preparation:

• Collection of sensed neural data
Using the bi-directional telemetry link and embedded data
gathering capabilities, we gathered baseline training data on
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FIGURE 6 | Closed-loop neuromodulation system implanted in an ovine model. The figure is reproduced from Stanslaski et al. (2012) with permissions
from the IEEE.

background network activity. We also used the stimulator
and sensing functionality to identify useful biomarkers and
understand system transfer functions required for closing the
feedback loop.

• Learning → Performance element I: design of classifier
algorithm
The software algorithm tool was used to develop classifiers to
support the after-discharge detection and verify suppression
levels, which were validated using the real-time telemetry link.

• Learning → Performance element II: development of the
control policy
After development of the classifiers, the auto-detection of after-
discharges and therapy titration was validated using off-line,
real-time processing with the bi-directional telemetry link. Key
parameters were verified to be acceptable for timing latency. An
additional algorithm (data not shown) was tested to show the
system could automatically search the parameter space to find
acceptable suppression behavior.

• Committing the performance element to the embedded
device for validation
The final embedded algorithm implemented three sub-
algorithms into a single-state machine: AD detection and mit-
igation; suppression detector; and parameter search. The code
was then downloaded to the device through wireless teleme-
try, error checked for complete flash writes, and the implant
was then activated with the closed-loop algorithm. All states
were exercised in the algorithm routine to validate operation.
State transitions were also recorded in the device data records
for automated annotation of files, allowing for observational
validation and algorithm refinement.

RESULTS
COLLECTION OF SENSED NEURAL DATA: IDENTIFICATION
OF BIOMARKERS AND ALGORITHMS
We aimed to explore the states of the system to find
relevant control-variable biomarkers in vivo. Analysis of the
post-stimulation data showed decreasing mean beta band power

with increasing stimulation amplitude, suggesting suppression of
activity, at least locally to the HC (Figure 8, right). To deter-
mine whether the network was truly suppressed, we performed
a second series of transfer function experiments which measured
the pre-stimulation baseline beta band power level followed with
a high amplitude delivery (≥1.50 V) “probe pulse” capable of
inducing AD. Because our experimental setup was not a seizure
model, we used the post-stimulation AD duration as the desired
output for assessment of network effect. Through spectral anal-
ysis of the data, we observed a potential control variable in the
20 ± 2.5 Hz band (approximately the beta band) that seemed
correlated to the qualitatively observed states:

1. Resting state corresponded to relatively constant beta band
power (approximately 2.7 uVrms).

2. AD state corresponded to increased beta band power (approx-
imately 30 uVrms).

3. Suppression state corresponded to decreased beta band power
(approximately 1.5 uVrms).

We characterized the biomarker over 15 months of data collec-
tion. For data shown, the units of spectral power in all data
figures are (uV/rtHz)2, with an arbitrary scale referred to as least
significant bit (LSB). Results showed that AD generation was
a probabilistic function of stimulation amplitude; stimulation
below 1.5 V did not result in any AD, stimulation between 1.5
and 1.7 V resulted in occasional ADs, and stimulation above 1.7 V
always resulted in ADs (data not shown). Furthermore, AD dura-
tion appeared to be a function of the beta band pre-stimulation
state; the greater the pre-stimulation beta band power above the
defined suppressed state, the greater the AD duration (Figure 7).
Furthermore, these observations were robust: the suppressed state
beta band power varied by less than 2LSB over the entire duration
of the experiment. These results imply that spectral beta band
power could be a control variable of interest when modulating
network state.
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To further understand the dynamic state of the system, we
aimed to characterize the transfer function between our proposed
biomarker—spectral beta band power—and stimulation patterns.
To characterize the response of the biomarker to stimulation,
we ran several titration sweeps. The recorded biomarker signals
were captured at rest, during AD events, and during delivery of
stimulation at several amplitudes (0.75–1.7 V) and frequencies
(50, 120 Hz) in order to determine a reference value to discrim-
inate both suppression and ADs. Figure 8 shows the network
response during stimulation (25 s, red) and between stimulation
periods (25 s, blue). Importantly, the detection of AD induction
required sensing neural activity in the presence of stimulation
(Stanslaski et al., 2012) and would have been lost if channel
blanking were employed.

FIGURE 7 | After-discharge duration as a function of beta band

power increase from suppressed baseline. High amplitude stimulation
parameters were kept constant in a given session and were always
determined to be sufficient to initiate an AD.

The titration sweep for determining network-state response to
stimulation is a critical step in designing the neural control algo-
rithm. The data suggest that stimulation can have different effects
on the network: while low and moderate stimulation amplitude
appears to suppress the network excitability, high stimulation
amplitude can induce an AD. Based on these results, we wanted
to use our platform to implement a performance element to have
two key features: (1) change stimulation amplitude to keep the
network at the balance point of suppression and induction of AD
and (2) due to the probabilistic nature of AD induction, allow for
the detection of AD in real-time to abort stimulation and adjust
the stimulation levels lower. To do this, we designed the per-
formance element in two parts: states classification and control
policy implementation.

LEARNING PERFORMANCE ELEMENT I: DESIGN OF CLASSIFIER
ALGORITHMS
To automate a control loop, we used the observed qualitative
correlations with a quantitative algorithm to detect the AD in
real-time with a classifier constructed with the external classifier
tool. To help mitigate stimulation artifact, we also used spec-
tral band (approximately 70 Hz) to capture stimulation energy
in the network without being confounded by observable changes
in neural physiology. To achieve this, we applied a measure
of stimulation artifact as a feature input within the algorithm
to distinguish stimulation result and non-stimulation result as
described in Stanslaski et al. (2012). We include the two power
channel outputs in Figure 9 for demonstration purposes, show-
ing correlation between the amplitude of beta band power and
AD in Figures 9A,B.

After annotation was supplied to the training data sets, we
used the tool to develop a linear, binary classifier to detect AD
with and without stimulation. The detection probability den-
sity plot, receiver operating characteristic (ROC) curves, and
detection cross-validation result, which are directly generated

FIGURE 8 | Determination of the hippocampal network transfer

function between stimulation and beta band spectral power.

There is an initial reduction in beta band power at low stimulation

amplitudes, followed by an increase in beta band power at higher
stimulation amplitudes, resulting in occasional AD during stimulation
at 1.5 V.
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FIGURE 9 | Training the classifier to detect the onset of

after-discharges in the presence of stimulation. (A) Is a dataset with
a representative AD. “Discard transient” periods refer to portions of
the signal that were not used in training. (B) Is a dataset for providing
stimulation artifact without an AD present. (C) Provides the histogram

of detection states versus distance from the classifier boundary.
(D) Estimates the true positive (TP) and false positive (FP) percentages
based on the classifier. (E) Shows the impact of onset and termination
constraint logic on detector specificity by overlaying the estimated
detector state with recorded data files.

by the software tool, are presented in Figures 9C,D, and E,
respectively. The detection probability histogram (C) represents
the magnitude of the state from the boundary, allowing for mul-
tiple dimensions of data to collapse to a single graph biomarker
separation. The detection probabilities graph (D) provides an
estimate of the true-positive and false-positive rates based on
the derived classifier. The filtered detection summary graph (E)
allows for the user to set onset and termination duration con-
straints (i.e., a minimum duration in a classified state before
detection is determined) to help improve specificity at the expense
of classifier latency. Graph (E) shows an overlay of the clas-
sification state over the data. We downloaded and embedded
into the implanted device the classifier that optimized sensitivity,
specificity, and latency trade-offs.

In addition, we used the tool to develop a separate classifier
that could detect the presence of the suppression state based on
the beta signal. This was also tested and similarly embedded in
the implanted device. Thus, with these classifiers, the state of

the neural system could be quantitatively classified on-line as
suppression, AD, or resting.

LEARNING PERFORMANCE ELEMENT II: DEVELOPMENT OF THE
CONTROL POLICY
With the classifier in place, we next determined the control
policy. Given the unknown neural dynamic requirements and
algorithm parameters, the control policy was first prototyped
using the hybrid development partition to determine the stim-
ulation amplitudes and changes that would be used for each
state. Figure 10 illustrates an example of this testing to show
that stimulation can induce both the AD state and the suppres-
sion state. In this test, the controller logic uses two stimula-
tion programs. In the cycle stim (CS) program, high amplitude
stimulation (1.50 V) capable of inducing an AD is cycled on
and off, while spectral power in critical bands and classifier
state is continuously telemetered out of the device. If the clas-
sifier does not detect an AD, stimulation continues to cycle.
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FIGURE 10 | Hybrid system validation of the auto-shutoff algorithm for preventing sustained after-discharges in the hippocampus.

When the AD state is detected, stimulation is stopped and an
alternate setting is applied. The decreased network excitabil-
ity (DNE) program delivers a lower stimulation level (1.25 V)
after a programmed delay for one cycle, then returns to the CS
program.

Figure 10 (bottom) shows typical results achieved with
the hybrid algorithm. We ensured no false-positive detections
occurred in both open-loop and closed-loop cases by examining
the time-domain data. Our results demonstrate that open-loop
stimulation leads to sustained ADs post-stimulation roughly 50%
of the time when the cycle stimulation is applied without the algo-
rithm enabled, whereas with the algorithm enabled, the sustained
AD probability drops to 0% [N = 12, three monitor sessions,
15 months].

COMMITTING THE PERFORMANCE ELEMENT TO THE EMBEDDED
DEVICE FOR VALIDATION
As a final prototyping phase, we desired a system capable of
embedded operation to enable chronic, ambulatory data col-
lection for long-term validation as well as improved response
latency compared to subjects or other observers (e.g., researches,
caregivers).

Based on findings with the hybrid system, the device was
enabled to run a multi-branch algorithm for hippocampal net-
work dynamics. The algorithms developed for the embedded
detector were merged into a common state machine. As shown in
Figure 11, this included the three critical loops for the algorithm
corresponding to the states of the system, all of which share a
common stimulation sequence forward loop. The beta band power
threshold for determining the state classification was determined
using the classifier. In addition, we prescribed an increment of
0.05 V and decrement of 0.1 V for stimulation controllers—i.e.,
slow attack, fast recovery for attempting to maximize safe searches
of the parameter space.

• Suppression loop—detects suppression after stimulation and
maintains defined suppression in the HC based on network
activity within a broad beta band (10–30 Hz); the detector
gates when stimulation pulses would occur based on measured
spectral power.

• After-discharge loop—detects after-discharge and aborts stim-
ulation, decrements stimulation amplitude, and sets a new
“ceiling” on the stimulation level for future excitation patterns
to avoid future AD events.
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FIGURE 11 | The embedded control policy for modulating hippocampal network dynamics. Color codes at the top will be used to mark states in the
resulting data summary.

• Resting loop—detects resting state and increments stimulation
amplitude to verify the ceiling is still valid; this loop is acti-
vated when suppression is no longer being achieved with the
suppression loop to counteract slowly changing behavior such
as circadian patterns, medication dosing, etc.

Note: Additional parameters such as initialization variables
and counters are also programmable through telemetry and could
be refined as needed.

The algorithm firmware was downloaded into the device and
validated with cyclic-redundancy checking.

The embedded algorithm was then evaluated with on-line
processing in the ovine model. Figure 12 presents a typical out-
come of the standalone implantable device with the algorithm
embedded; we demonstrate all possible states of the of the con-
trol policy in this data sample. We start by stimulating at an
amplitude known to generate AD, resulting in appropriate stimu-
lation shut-off. Then, stimulation is ON with reduced stimulation
amplitude (from 1.7 to 1.6 V). Stimulation at this level produces
suppression for one cycle, leading to maintenance of this stimu-
lation level for 1 cycle. On the next cycle, however, suppression is
not detected, resulting in stimulation increase to 1.65 V and then

again to 1.7 V. At 480 s, the 1.7 V stimulation again leads to an AD.
The stimulation is again turned off due to the AD detection and
the stimulation level is returned to 1.6 V. This testing showed that
the learning procedure could result in a fully embedded solution,
from initial identification of biomarkers and transfer functions to
a fully-embedded control policy operating in vivo.

Several practical points are also worth noting. First, the algo-
rithm is power efficient, because it runs reliably with total current
drain less than 20 µW with the addition of sensing and algo-
rithm control. This represents roughly 10% of the nominal ther-
apy power used in movement disorder neuromodulation system.
Second, the algorithm shows robustness because signal power
channel baseline is stable over 15 months with variation within
2 LSB, which is more than 20 times smaller than the AD detection
threshold. Finally, the control policy is restricted to a bounded
set of stimulation parameters with programmable inter-locks,
thereby helping to ensure tolerability and safety.

DISCUSSION
Automated closed-loop control systems may potentially improve
neuromodulation therapies by reducing latency for therapy
adjustments and personalizing therapies to improve patient
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FIGURE 12 | Data sample from embedded algorithm (Figure 11). The
sample demonstrates data associated with detection of seizure-like events
in the presence and absence of stimulation and change stimulation

parameters, resulting in no observed after-discharges. “Pre-detection”
refers to the period of time when the onset or termination constraint has
not yet been met.

health. These approaches rely on improved understanding of
the nervous system dynamics and how they drive the mech-
anisms of action for neuromodulation. Mapping these con-
cepts to a learning agent framework helps define key com-
ponents that can lead to better characterization of the sys-
tem: sensors for chronically collecting data; effectors for mod-
ulating the network; and algorithms for translating data into
stimulation parameters. The investigational platform described
here fills a gap in current technology by enabling a process
methodology for designing and prototyping these algorithms and
embedding them in an automated closed-loop neuromodulation
device.

In this work, we demonstrated a platform consisting of an
implantable device integrated with external tools for developing
classifier and control-policy algorithms. We tested the platform
in a system that exhibited contrasting behavior with respect to
stimulation amplitude, motivating our algorithm design to find
the fine balance point between over- and under stimulation.
One of our significant findings was a potentially non-monotonic

relationship between stimulation amplitude and system response:
beta band power was reduced from baseline at low stimulation
amplitudes, while it was increased at higher stimulation ampli-
tudes, resulting in occasional AD. These results imply that neural
feedback may be an important consideration in determining the
optimal stimulation amplitude.

While we performed our experiments in an in vivo ovine,
our investigational approach could be applied to the study
of other disease states, such as Parkinson’s disease, essential
tremor, epilepsy, or other neurological conditions. Preliminary
exploration of the automated algorithm supports the design of
other closed-loop systems using similar control policies to those
described here (Eusebio and Brown, 2009; Priori et al., 2012).
Furthermore, our system is not limited to neural biopotentials;
we can theoretically record any biopotential of sufficient ampli-
tude (e.g., EMG). These biopotentials, along with other sensor
data, may be useful in prototyping and validating algorithms
for future automated closed-loop systems (Yamamoto et al.,
2012).
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Our design involved several practical considerations. Perhaps
most importantly, we designed the generalized learning system
on a chassis that has received prior approval for select thera-
pies. Building off an established foundation helps to lower the
translational barriers to exploring advanced systems. An addi-
tional key design element is the ability to sense activity in the
presence of stimulation (also described in Priori et al., 2012).
Our results demonstrate the potential importance of network
phenomena that occur while the network is being modulated—
especially while characterizing transfer functions of the ner-
vous system that might underlie mechanisms of action. In this
work, this capability allowed us to monitor for evidence of
AD during the stimulation as well as dynamically adjusting the
stimulation ceiling as a function of suppression state. These
phenomena may be missed by neural sensing architectures that
blank out the signal chain during the stimulation (Sun et al.,
2008).

Another practical consideration is that the learning path-
way is amenable to chronic embedded algorithm operation,
particularly in light of the trade-offs between complexity and
performance versus simplicity and power consumption (Lee
Kyong et al., 2012). The offline analysis and hybrid design
approach allow for rapid prototyping of concepts before com-
mitment to embedded firmware. Once embedded, the power
draw with our system could be reduced to 20 uW, below
10% of existing nominal therapy power for Parkinson’s dis-
ease, and latency can be reduced to approximately 200 ms. In
the future, use of complementary sensors such as accelerom-
eters and patient feedback may enable algorithms to main-
tain simplicity and efficiency without sacrificing performance.
Ultimately, the ability to titrate stimulation to therapy using
responsive algorithms (such as the suppression loop) could
potentially yield a net energy savings of chronic respon-
sive systems.

Finally, the experiments allowed us to observe overall reliabil-
ity of the system. Observed signals of network states were stable
over the course of the 15-month experiment, providing evidence
of robustness in our detection algorithms (>20-fold margin) to
detect state changes. This finding, combined with other results
(Stypulkowski et al., 2011), provides initial confidence in the
reliability of the system in an in vivo environment. In addition,
our control-policy implementation used bounded stimulation
parameters to ensure tolerability and safety. The chronic reliabil-
ity and means of ensuring safety provide both a mechanism for
longitudinal learning to occur within one subject and chronic val-
idation of the methods, thereby greatly increasing the likelihood
of clinical translation.

The study does suffer from limitations, mostly tied to the
choice of animal model used for validation. First, the validation
is tied to physiology measures and not a true disease model. The
ultimate therapeutic utility of the algorithm will require addi-
tional testing in animal and clinical models which might drive
refinement of the algorithm. In addition, the hybrid system is
limited by telemetry latency. Future investigations characterizing
the latency of the feedback loop may be needed to better under-
stand this impact vis a vis neural dynamics. System latency may
be particularly relevant when stimulating multiple neural regions,
such as in stimulating pairs of neural targets or in functional elec-
trical stimulation of muscle in response to sensed neural signals.
Ultimately this latency is addressed when embedded in the sys-
tem, but might limit the broader application of the hybrid design
process.

In summary, we believe increased understanding of the ner-
vous system with such platform systems may lead to improved
technical capability to modulate the nervous system to address
pathophysiology. As these systems mature, they can be embedded
into devices to augment and potentially correct for a malfunc-
tioning nervous system.
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