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We present a system to artificially correlate the spike timing between sets of arbitrary
neurons that were interfaced to a complementary metal–oxide–semiconductor (CMOS)
high-density microelectrode array (MEA). The system features a novel reprogrammable
and flexible event engine unit to detect arbitrary spatio-temporal patterns of recorded
action potentials and is capable of delivering sub-millisecond closed-loop feedback of
electrical stimulation upon trigger events in real-time. The relative timing between action
potentials of individual neurons as well as the temporal pattern among multiple neurons,
or neuronal assemblies, is considered an important factor governing memory and learning
in the brain. Artificially changing timings between arbitrary sets of spiking neurons with
our system could provide a “knob” to tune information processing in the network.
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INTRODUCTION
Different theories describing learning and memory in the brain
have been developed, and converging evidence shows that the pre-
cise activity timing of individual or groups of neurons may play a
paramount role in plasticity of neuronal circuits. The well-known
spike timing dependent plasticity (STDP) rule states that if two
synaptically connected neurons fire within tens of milliseconds
of each other, the connectivity strength of the involved synapses
gets potentiated or depressed depending on the firing order. In
pioneering studies, STDP rules were discovered (Markram et al.,
1997) and further characterized (Bi and Poo, 1998; Song et al.,
2000) by observing the effect of correlated firing of two neurons
either artificially induced by stimulating a pre-and a post-synaptic
neuron with two patch-clamps or by applying trains of paired-
pulse stimuli to one neuron in the network (Bi and Poo, 1999).
Furthermore, computation in a network is likely due not only to
the relative timing of two individual neurons but also to the cor-
related activity of different neurons forming an associated group,
i.e., assembly (Chang et al., 2000; Izhikevich, 2006). In this vein,
different studies reported the existence of precise time-locked
activity patterns of multiple neurons, both in vivo and in vitro
(Abeles and Gerstein, 1988; Bienenstock, 1995; Ikegaya et al.,
2004; Rolston et al., 2007). Having a system to generate feedback
stimulation quickly and accurately to interact with such activity
patterns would expand such studies beyond finding rules govern-
ing the plasticity between two cells toward finding rules governing
the spatio-temporal dynamics of whole networks or assemblies
(Froemke and Dan, 2002; Izhikevich et al., 2004).

In recent years, different systems to artificially control such
feedback stimulation in a closed-loop manner, and thus study
neuronal plasticity, have been developed for both in vivo (Jackson
et al., 2006b; Bontorin et al., 2007; Venkatraman et al., 2009)
and in vitro applications (Bontorin et al., 2007; Hafizovic et al.,
2007; Novellino et al., 2007; Rolston et al., 2010; Zrenner et al.,
2010; Wallach et al., 2011). In turn, activity-dependent feedback

stimulation was shown to modify the functional connectivity
of neuronal networks, both in vivo and in vitro, as done by
reprogramming the motor output of freely behaving primates
(Jackson et al., 2006a), changing the functional connectivity in
rat forelimb sensorimotor cortex (Rebesco et al., 2010), or shap-
ing in vitro neocortical networks into predefined activity states
(Bakkum et al., 2008b). In vivo systems usually record from nee-
dles inserted into a certain location of the brain and subsequently
stimulate the same or another site upon the detection of activ-
ity. These systems usually comprise the implanted needles, a head
stage to amplify the signals, and some means to transmit the
acquired signals to a PC. In the case of closed-loop feedback
stimulation, these systems usually feature a dedicated very-large-
scale-integrated application-specific circuit (VLSI ASIC) (Chen
et al., 2009; Rizk et al., 2009; Lee et al., 2010; Azin et al., 2011),
or use a general-purpose microcontroller to achieve the respec-
tive goals (Mavoori et al., 2005; Zanos et al., 2011). Most in vitro
systems, on the other hand, use a data acquisition card (DAQ) to
sample data for analysis on a PC; feedback stimulation is typically
returned through a DAQ card as well.

In order to accurately control the timing of feedback stimu-
lation loops within the timescales relevant for STDP to occur,
the delays introduced by a system must be understood. A generic
description is given in Figure 1. Different system implemen-
tations will have different sources for and values of delays.
Signal-processing algorithms introduce an inherent delay in the
processing itself. Systems, which rely on general-purpose com-
puters, might introduce latencies and jitter through the presence
of data buffers, interrupts, shared resources, or user interactions,
etc. In Figure 1, the time points t0−3 and tS specify the occur-
rence of important events. At t0 = 0, the trigger neuron emits
an action potential, which is recorded by the acquisition sys-
tem. After entering the signal-processing stages, it is ready to be
detected as a spike event at time t1. From there, the system emits a
stimulation pulse hitting the electrode at time t2. Conventionally,
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A B

FIGURE 1 | Schematic overview of latencies in feedback stimulation

systems. (A) The different components making up a closed-loop feedback
stimulation system are shown. The green circle represents the “trigger
neuron” whose action potential initiates the start of the loop. The green line
represents an axon connecting to synapses of the elicited neuron drawn in
yellow. The black dashed arrow shows the closed-loop feedback stimulation
path. Between data acquisition and stimulation feedback, different
components, over which the feedback-loop can be closed, are possible,

including digital signal-processing hardware, a real-time host PC, or a general
purpose host PC. The time points t0−3 and tS correspond to different events
as listed in (B), such as the occurrence of the spike; its detection after
signal-processing; the stimulation feedback; and the antidromic propagation
of an action potential back into the soma of the elicited neuron. At time tS,
the synapse activates due to pre-synaptic activity of the trigger neuron. The
color of the traces corresponds to the color of the timings of t0−3, S and
schematically shows the timeline of the respective signals.

the loop is considered “closed” at this point. The stimulation
pulse evokes neuronal activity, frequently activating nearby axons
(Bakkum et al., 2008a) whose signals propagate antidromically
toward the soma until eliciting an action potential at time t3. In
the case depicted in Figure 1, where the trigger neuron is synap-
tically connected to the elicited neuron, an additional biological
time, tS, denotes the duration of an action potential propagation
through the axon of the trigger neuron until synaptic activa-
tion of the elicited neuron. In case where t0 − t1 − t2 is faster
than t0 − tS, that is when the signal propagates faster through
the artificial feedback-loop than down the axon toward the bio-
logical synapse, acausal stimulation, and thus the introduction
of long-term depression (LTD) according to the STDP rule, is
possible.

In order to apply closed-loop stimulation feedback pre-
cise and fast enough to study plasticity at the timescales of
STDP or acausal stimulation, and flexible enough to interact
with cell assemblies, we developed a field-programmable gate
array (FPGA)-based system, interfaced with a complementary
metal–oxide–semiconductor high-density microelectrode array
(CMOS-MEA). The CMOS-MEA features a total of 126 read-
out and 42 stimulation channels, which can be connected to an
almost arbitrary subset of 11,011 5 × 7 µm2 electrodes, arranged
in a 2 × 1.75 mm2 array. The feedback stimulation loop is closed
around the CMOS-MEA using an FPGA that performs signal-
processing, such as spike-detection and feedback generation. The
system functionality was verified using cultured networks of cor-
tical neurons and glia. The minimum programmable latency of
the closed-loop stimulation feedback (t0 − t1 − t2) was 400 µs
with jitter below 50 µs, suitable to induce STDP. This is faster than
many axonal propagation delays (t0 − tS), rendering it possible to

conduct acausal stimulation experiments. An “event engine” was
designed and implemented to trigger feedback stimulation at the
occurrence of activity patterns, such as those described in Ikegaya
et al. (2004) and Rolston et al. (2007). Patterns could be of almost
arbitrary length and could consist of up to 1000’s of individual
elements, only limited by the available resources of the FPGA.
Configurations for the event engine could be (re)loaded within
milliseconds. Unique to this system is the possibility to enable
low-latency, high-throughput, STDP-like experiments as well as
acausal stimulations across many individual neurons, or neu-
ronal assemblies in parallel through the simultaneous application
of many feedback stimulation loops. To infer changes in synap-
tic strengths, correlations between putative mono-synaptically
connected neurons (Fujisawa et al., 2008) can be monitored
using extracellular spikes. In the future, high-throughput STDP
experiments will be possible by adding a patch electrode to the
system in order to monitor changes in intracellular post-synaptic
currents.

METHODS
SYSTEM ARCHITECTURE
The main design goals were to implement (1) multiple feed-
back stimulation loops (2) to match arbitrary spike patterns with
(3) short latencies (<1 ms) and (4) high accuracy (<50 µs) (5)
while still recording from all available 126 channels. A main
component of the presented system is an FPGA, used to hijack
signals traveling between the analog-to-digital converter on the
CMOS device and the host PC. Due to the inherent parallel nature
of FPGAs, signal-processing and feedback generation using data
from additional recording channels can be done without intro-
ducing additional delays or jitter.
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The system consists of three main parts as shown in
Figure 2. The first is a high-density CMOS-MEA device featuring
on chip signal-conditioning, stimulation, and analog-to-digital
conversion (ADC) units (Frey et al., 2010), described in more
detail in the next section. It is plugged into a custom printed
circuit board (PCB) that provides reference voltages and clock
signals. The digital data as provided by the CMOS-MEA are trans-
mitted through a low-voltage differential link to reduce sensitivity
to electromagnetic interferences as caused, for example, by a
nearby incubator. The second part is an FPGA, which reads in the
differential signals and subsequently performs signal-processing,
spike-detection, and feedback stimulation, as well as compression
and framing of the data to be sent via TCP/IP over Ethernet to a
host PC, the third main part. On the host PC, further data analy-
sis can be performed online or offline. It is also used to program
and control the CMOS-MEA device during experimentation with
different settings, like amplifier gain or electrode-to-amplifier
routing, in order to be adopted for use in different experimental
sessions.

CMOS DEVICE
The CMOS-MEA includes 126 readout channels with pro-
grammable amplification (0 dB to 80 dB), on chip ADCs sampling
at 20 kHz, and stimulation capabilities (see below). It features
a sensor area of 2 × 1.75 mm2 with a total of 11,011 electrodes,
each with a size of 5 × 7 µm2 and a pitch of 18 µm. Beneath
the electrodes resides a sophisticated analog-switching matrix to
connect an almost arbitrary subset of the 11,011 electrodes to
the 126 readout channels. The readout electronics were placed

outside of the sensor array, instead of directly below the elec-
trodes as done in active-pixel sensor devices (APS) (Berdondini
et al., 2009), to provide space for larger circuitry elements that
produce less noise. This scheme also allows for reducing the pitch
of the electrodes below the spatial requirements of the readout
electronics. See Frey et al. (2010) for more details.

FPGA
A reprogrammable Virtex II pro FPGA (Xilinx Inc., San Jose,
USA) was used as an intermediate signal-processing device
between the CMOS-MEA and the host PC to perform real-time
signal-processing, decision-making and feedback generation. The
FPGA acquires digital data coming from the differential link
and forwards it to a PC over Ethernet. The Virtex II pro fea-
tures an embedded PowerPC microprocessor running at 300 MHz
that operates a Linux kernel with a Busybox operating sys-
tem. The TCP/IP stack of the Linux kernel handles the network
communication and data transfer. As the embedded PowerPC
microprocessor is relatively slow, compared to modern CPUs,
this provides a bottleneck for fast data transmission. We mea-
sured the latency between the TCP/IP stack of the FPGA and
the host PC to be 83 ± 21 ms (mean ± SD, N = 308) at full-
frame data transmission, which is larger than the STDP window
of up to tens of milliseconds. One solution to this problem might
be to stop streaming of the full data readout, while performing
a closed-loop experiment and to only route out the data chan-
nels strictly needed for the closed-loop feedback stimulation. This
would free some of the bandwidth of the Ethernet link and make
it available for faster feedback stimulation. Crucially, however,

FIGURE 2 | Overview of the presented closed-loop system, implemented

with a CMOS-MEA, an FPGA, and a host PC. (A) Micrograph of the
CMOS-MEA highlighting the electrode array, amplification and stimulation
units, and the digital core with an inset showing a close-up of the stimulation
buffer. (B) Photograph of the CMOS-MEA plugged into the custom
printed-circuit board, which is connected through an LVDS link to the Xilinx

Virtex II pro FPGA board from Digilent Inc., Pullman, USA. The host PC running
data acquisition and visualization software is connected to the FPGA through
Ethernet. (C) Schematic diagram of the setup. The diagram shows the
acquisition (upper part) and stimulation path (lower part). The feedback
stimulation loop is closed around the CMOS-MEA and the FPGA. The
components are described in detail in the text.
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we would lose the possibility to simultaneously monitor neural
activity elsewhere in the cultured network by applying such a
paradigm. Another option might be to bypass the Ethernet link
by streaming the data directly to a DAQ card, attached to the host
PC, and to send stimulation information back through a second
link to the FPGA. All these methods are less practical than using
the universal TCP/IP connection, which plugs into almost every
kind of host PC and does not require additional hardware. An
attractive alternative for achieving low latencies was to implement
all needed signal-processing and feedback generation directly on
the FPGA. The next paragraphs highlight the different building
blocks needed to implement such a scheme. Although the FPGA
can be reprogrammed at will, this is time-consuming and error
prone and, therefore, not suitable during an experimental session.
To accommodate reprogramming, a more flexible, module-based
design was developed in VHDL and programmed into the FPGA
logic together with a software interface to quickly reconfigure the
connectivity of the individual modules (see “Event Engine”).

SPIKE-DETECTION
One such signal-processing building block is spike-detection,
which extracts spiking events from the raw voltage traces,
recorded at the electrodes. Spike-detection is implemented as a
threshold crossing. The signals are first digitally band-pass filtered
with a two-tab Butterworth filter (500 Hz–3 kHz) to suppress DC
offset components and higher frequency noise; this will empha-
size the action potential frequency components. The detection
threshold level is user-programmable and typically set around 4.5
times the noise standard deviation. During experimentation, this
value can be determined by software running online on the host
PC. After an identified spike event, we set a programmable refrac-
tory period to 3 ms. After stimulation, detection was disabled for
3 ms as well, to avoid oscillating loops due to feedback stimulation
artifacts being falsely classified as spikes.

EVENT ENGINE
To avoid time-consuming reprogramming of the FPGA fabric,
a more flexible and modular event-based scheme for feedback
generation (Event Engine) was designed and implemented. The
event engine consists of small building blocks, called modules,
each of which implements a specific simple function. Each mod-
ule has one or more event sinks as inputs and one event source
as an output. By connecting the event sources to the appropri-
ate event sinks, different, almost arbitrary pattern matching, and
event handling algorithms can be achieved. Table 1 summarizes
the implemented modules. Figure 3 shows different basic con-
figurations to achieve defined pattern matching. In Figure 3A,
the simplest closed-loop configuration is depicted, where the
source of a spike-detection module gets connected to the sink of
a delay unit and from there to a stimulation function generator.
Whenever the source produces an event (i.e., in this case detects a
spike), the sink triggers a stimulation pulse after a defined time
delay. By means of software, the sources can be connected to
sinks dynamically and rapidly within milliseconds while running
an experiment such that pattern matching can adapt to ongoing
activity in the living culture. One notable property is the lack of
time binning. Each spike gets represented as a single pulse with a

temporal resolution set by the sampling frequency, i.e., 20 kHz. As
a consequence, certain desired operations might not make sense,
as the biological neurons have some inherent variability in when
they spike. For example, the user might want to match a pattern,
where two neurons spike together (see Figure 3E). To achieve this,
a SPREADING module “spreads” the spike pulse in time in order
to compensate for jitter. This way, the subsequent AND mod-
ule can generate an output event whenever the two neurons fire
together within a specified range of time. As discussed in Ikegaya
et al. (2004) and Rolston et al. (2007), 2 ms is suitable for most
recurring patterns. Another module can be used to convert the
spread-out spike pulse back into a single one-shot event, which
then can be used, for example, to trigger the stimulation unit
only once per spread-out pulse. The particular selection of imple-
mented modules (as listed in Table 1) represents a minimal set,
which, if combined in the appropriate way, allows for matching
different kinds of events, such as specific spatio-temporal activ-
ity patterns, time sequences, network bursts, local bursts, etc. In
order to keep the event engine as flexible as possible and adapt-
able to different, possibly unforeseen pattern matching sequences,
the implementation of a minimal set of small building blocks has
been chosen over the approach, where each envisioned pattern
would require a single, but more complex, and less flexible build-
ing block. Thus, available modules can be combined together in
almost infinite different ways, limited only by the available FPGA
memory that keeps track of all source-sink associations.

STIMULATION/FUNCTION GENERATOR
The CMOS-MEA has 42 on-chip integrated stimulation units,
which are driven by two 10bit DACs. On the FPGA is a function
generator implemented to achieve arbitrary stimulation wave-
forms. A defined waveform has to be programmed at the start
of the experiment. We used biphasic, first positive then nega-
tive voltage pulses of 200 µs duration per phase and ±300 or
400 mV amplitude. The stimulation buffers can be chosen to
operate in voltage- or current mode (Livi et al., 2010). Whenever
the event engine outputs an event, the appropriate stimulation
buffer, located on the CMOS-MEA, gets connected, and the
function generator starts its operation. Stimulation artifacts on
the readout channels could result in falsely detected spikes and
cause a reverberation problem for low-latency feedback-loops.
Therefore, spike-detection is blanked during a time period of a
few milliseconds after stimulation onset.

CULTURES
The performance of the closed-loop system was tested with cor-
tical neurons and glia grown over the CMOS-MEA. Animal
handling protocols were approved by the Basel-Stadt Veterinary
office according to Swiss federal laws on animal welfare. Briefly, a
time-pregnant rat was anesthetized using isoflurane, then decap-
itated to gain E18 embryos. Cortices were extracted from the
embryos and dissociated enzymatically in trypsin (Invitrogen)
followed by mechanical trituration. A layer of laminin (Sigma)
over a layer of poly(ethyleneimine) (Sigma) was used to adhere
between 20 and 40 k cells. Plating media consisted of 850 µL
of Neurobasal, supplemented with 10% horse serum (HyClone),
0.5 mM GlutaMAX (Invitrogen), and 2% B27 (Invitrogen). After
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Table 1 | A minimal set of modules making up the event engine.

DELAY(t, A) Delays the event A by a defined amount of time t.

AND(A, B) Emits an event, when both of the two input events, A and B occurred simultaneously.

OR(A, B) Emits an event, when either of the two input events A or B occurred.

INH(t, A, B) Emits an event, when an event on A, however, no event on B occurred in a defined time

window, t, in order to create inhibitory feedback-loops.

RAND(p, A) Propagates the event A to the output or drops it after a Bernoulli-distributed pseudo-random

variable with a definable probability, p.

ACCU(n, A, B) Increments (event A) or decrements (event B) an internal accumulator and emits an event

after a definable threshold, n, has been reached, after which it is reset to zero.

SPREAD(t, A) Spreads the event A in time for a defined time, t.

SPREAD−1(A) Converts the onset of a spread-out event A back into a single event.

DETECTION(c) Emits an event, when the specified channel, c, detected a spike.

STIMULATION(c, A) Generates a stimulation pulse on the specified channel, c, whenever input event A happened.

START Single pulse after system start-up, which can be used to start repetitive stimulation protocols.

Configurable parameters are represented in italics (t, p, n, c), and input events are denoted in bold letters (A, B).

A

B

C

D

E

F

G

H

FIGURE 3 | Example configurations of the event engine. Stitching together
the appropriate set of modules allows the event engine to be configured to
match a variety of patterns in order to trigger feedback stimulation. Different
minimal examples are shown. (A) A DELAY element is inserted after a
DETECTION module to trigger STIMULATION after a programmable delay.
This configuration, with the delay set to zero, was used for the experiments
shown in Figures 5, 7. (B) Either an event on channel A OR an event on
channel B triggers stimulation. (C) In a programmable time window before
and after an event on channel A, there may not be any event on channel B in
order to trigger stimulation (trace C). (D) A RAND module propagates or
discards the events, in this case with a probability of ½. (E) Events on
channel A and channel B are fed through SPREAD modules into an AND
module, which outputs events (on trace C), when both inputs are active. The
intermediate trace C is fed into a SPREAD−1 module to trigger stimulation at

the onset of the event. (F) When the event on channel B happens
subsequently to an event on channel A, an event C is generated (G) An ACCU
module is set to increment, when either an event on channel A OR channel
B happened, and to decrement, when a delayed event from channel B

(trace C) arrived. In this example, the ACCU threshold is set to three events.
Once the threshold is reached, the internal counter gets reset to zero. When
the three input events happen shortly after each other, a stimulation event
gets emitted. As shown in the example, the delayed channel B (trace C)
decrements the accumulator and thus delays or prohibits crossing of the
threshold. (H) All modules can be combined together to achieve almost
arbitrarily complex pattern matching. For example, this configuration was
used to match the pattern of Figure 6. The formula describing this pattern is:
STIMULATION(1, SPREAD−1(AND(AND(SPREAD(2 ms, A), SPREAD(2 ms,
B)), SPREAD(2 ms, C)))).
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24 h, the plating media was changed to growth media: 850 µL
of DMEM (Invitrogen), supplemented with 10% horse serum,
0.5 mM GlutaMAX, and 1 mM sodium pyruvate (Invitrogen).
Cultures matured for 3–4 weeks prior to experimentation, and
experiments were conducted inside an incubator to control envi-
ronmental conditions (34.5◦C and 5% CO2). For further details
see Hales et al. (2010).

EVALUATION AND RESULTS
This section begins with data characterizing the suitability of
our setup to perform closed-loop feedback stimulation experi-
ments, using cultures of cortical neurons and glia for validation.
First, the process of identifying neurons to be used in closed-loop
feedback stimulation will be described. Then the system’s loop
speed and jitter performance will be quantified. An example event
engine was run to provide stimulation feedback, triggered by an
activity pattern. Preliminary data and techniques to analyze the
consequences of such stimulation on the functional connectiv-
ity between neurons will be presented and discussed. Finally, an
experimental session to induce LTD through acausal stimulation
will be sketched, and its implications discussed. Data in the figures
demonstrate proof-of-principle experiments from individual cul-
tures, the setup has, however, been successfully applied to many
tens of cultures.

RECORDING/STIMULATION SELECTIVITY
High-density CMOS-MEAs can potentially sample from com-
plete neuronal populations. Due to the high-density (18 µm
pitch) of the CMOS electrode array, every neuron lying on the
2 × 1.75 mm2 array can be bidirectionally addressed. On the
other hand, when stimulating one electrode, a defined subset of
neurons is often directly activated in response (Bakkum et al.,
2008a). Figure 4 shows such a scenario. In Figure 4A, one elec-
trode, marked with a black cross, was stimulated multiple times,
and the evoked activity was recorded during a window of 12 ms
after stimulation onset. The median calculated over all voltage
traces filters out noise and spontaneously spiking neurons/traces.
Reliable activity (usually with a jitter on the order of 100 µs or
below) is considered due to an antidromic action potential ini-
tiated at the neuron’s axon (Lipski, 1981). Since only a subset
of 126 out of the 11,011 electrodes can be readout simulta-
neously, the stimulation sequence was repeated multiple times,
each time with a different subset of electrodes, until all elec-
trodes were covered. After recording all sequences, the traces
of the individual recordings were aligned in time. To high-
light the electrodes that recorded elicited action potentials, the
negative peak of the recorded voltage level during 12 ms after
stimulation is color-coded and clipped at −100 µV. The red
circles around the exemplified 11 spots highlight neurons that
fired directly elicited action potentials. Their traces are indi-
vidually shown in Figure 4B, demonstrating that the elicited
action potentials were reliably and precisely fired after a given
time, and only in a few cases (traces 2, 4, 6, 9), activity with
different timing occurred. These could stem from a different
neuron that happened to sit near the same electrode and/or
from action potentials occurring within a coincident network
burst.

200 µm
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−100

0

FIGURE 4 | Identification of directly evocable action potentials.

(A) Data recorded in response to repeated stimulation of one electrode
(black cross) from the whole 2 × 1.75 mm2 sensor area of the CMOS-MEA
(each pixel is one electrode). Recording electrode configurations were
scanned across the array in sets of 126 electrodes at a time. For every
configuration, data were recorded for 12 ms after stimulation onset. The
amplitude of the negative voltage peak within these 12 ms is color-coded
and clipped at −100 µV. Blue indicates the detection of directly evoked
somatic action potentials. (B) Example traces from 11 somas and the
stimulation pulse are shown on the right. Traces from 30 stimulation trials
are overlaid, with the median trace highlighted in black. The stimulation
artifact was blanked prior to recording. Numbers are ordered by increasing
distance from the stimulation site.

As shown, recording and stimulation with the CMOS-MEA
feature high spatial resolution and, therefore, are locally very
confined. However, the facts that one electrode can detect signals
from more than one neuron, and that the stimulation through
one electrode can directly evoke action potentials of more than
one neuron have to be considered when planning closed-loop
feedback stimulation experiments. In this case, the feedback-
loop is not closed between two neurons, but includes two sets of
neurons.

FEEDBACK LATENCIES
According to the rules of STDP, the timing window to induce
long-term potentiation (LTP) at synapses is between less than a
few milliseconds and up to tens of milliseconds post-synaptic acti-
vation before and after pre-synaptic activity. Thus, even though
feedback cycles of 5–10 ms are fast enough to induce LTP, we
aimed at reaching cycle-times below 1 ms to enable the system
to perform acausal stimulations, as explained in the respective
section below.

Figure 5 shows the overlay of 128 traces of the feedback-loop.
Here, the event engine was configured to detect events on only
one channel and stimulate immediately after detection, i.e., with-
out any further delays in order to test the system performance
(cf. Figure 3A). The traces are aligned at the onset-time of the
stimulation pulse, and time zero is set to be at the negative peak
of the spike of the trigger neuron. In red are the traces from the
trigger neuron, and in black, the traces from the elicited neu-
ron. The timing between a trigger neuron spike and the onset
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FIGURE 5 | Feedback stimulation performance. One hundred and
twenty-eight traces from a closed-loop stimulation sequence are aligned at
the stimulation onset-time and overlaid. Traces in red show the trigger spikes
with the median over all trigger traces shown in bold red. The stimulation
artifact is grayed-out for better visual clarity. The traces in black show spikes,

elicited in all but four cases after stimulation. The median over all elicited
traces is shown in bold white. The antidromic propagation delay for the
elicited spikes was around 0.85 ms. The different timings, detection delay,
stimulation delay, and antidromic propagation delay sum up to the full loop
delay of 1.25 ms.

of the stimulation pulse was 200 µs, i.e., 4 sampling periods.
This delay arises as follows: 50 µs (1 sampling period) was used
to buffer the incoming data in the FPGA; 100 µs accounted for
the delay of the two-tab Butterworth filter and the last 50 µs
account for all other delays, such as synchronizing the stimula-
tion pulse with the recording sampling time. Delays for sending
digital data between the CMOS device and the FPGA were on
the order of nanoseconds and thus are negligible. When stimu-
lating with biphasic voltage pulses, the steep negative transition,
which injects negative current (I = C × dV/dt), is the time point,
when a cell is activated (Wagenaar et al., 2004; Bakkum et al.,
2008b). Thus, this time point was taken to measure the latency
between stimulation and an elicited spike. In the case depicted in
Figure 5, this timing is 0.85 ms, and the overall latency between
trigger neuron activity and a spike on the elicited neuron was
1.25 ms.

As can be seen in Figure 5, besides achieving short feedback
cycles, another advantage of using digital hardware (in this case
FPGAs) for feedback generation is that no additional jitter is
introduced, as such a system is fully deterministic. Sources of jitter
in other systems (Hafizovic et al., 2007; Rolston et al., 2010) that
close the feedback-loop around general-purpose or real-time per-
sonal computers are, for example, system interrupts that might
disrupt the data processing, or buffer sizes of the USB, TCP/IP,
or DAQ cards, which have to be set large enough in order to
guarantee full data throughput. Usually these buffers have a size
larger than one sample period. Depending on when an event hap-
pened inside this buffer, the latency could be larger or smaller and
thus introduce jitter. This can be avoided by using digital hard-
ware to hijack the data stream. In our case, the jitter was below

±50 µs and arose from the fact that neural activity is, of course,
not aligned to the sampling period of the CMOS-MEA (50 µs).
The exact time of the threshold crossing relative to the negative
spike peak depends, among other things, on the slope of the spike
waveform. Since the recorded signal was not interpolated between
samples, this was an unavoidable source for jitter.

PATTERN MATCHING
To demonstrate the event engine in operation, feedback
stimulation, triggered by an activity pattern, was performed. For
the dataset presented in Figure 6, the event engine was pro-
grammed according to Figure 3H and classified spontaneous
activity patterns as follows: A neuron recorded on electrode N2
fires an action potential; then an action potential is recorded from
a neuron on electrode N3 after 3 ms; finally an action potential
is recorded on electrode N1 after another 1.5 ms. Each individ-
ual event occurrence was allowed to have a jitter of ±1 ms. After
successful identification of such a pattern, a stimulation pulse
was emitted to elicit action potentials on a different neuron, NE.
The cell cultures under investigations typically expressed bursting
behavior, and this was when almost all of the patterns occurred.
During bursts, the cells usually fired more than once at an ele-
vated frequency, and this explains why the neurons on electrodes
N1–N3 showed additional spikes “outside” of the detected pat-
tern. Nevertheless, the pattern matching event engine identified
22 activity pattern occurrences during 12 min of recording.

CORRELATION ANALYSIS
To assess the connectivity between different neurons and
the efficacy of change, induced by the closed-loop feedback
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FIGURE 6 | Pattern-matching feedback stimulation. Electrode traces were
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performing pattern matching. The pattern was matched 22 times within
12 min, all overlaid and drawn in light-gray color. One arbitrary pattern is
highlighted with black traces. The 12 ms before and 4 ms after stimulation
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spread-out-windows set in the event engine. A yellow box of arbitrary width
is drawn around the elicited activity of neuron NE. Above the traces, negative
peak times are marked with black vertical bars, showing spikes clustered
within the colored boxes. The figure on the right shows electrode locations
and the timings making up the pattern to match as well as the antidromic
propagation delay of 2 ms to the elicited neuron.

stimulation, cross-correlation curves (Perkel et al., 1967) were
computed between spike trains of the trigger neuron and the
elicited neurons. When exceeding a 95% confidence interval
(Brillinger, 1976), correlation is considered significant. Figure 7
shows three descriptive cases, comparing the cross-correlation
curves from 1 h of spontaneous activity before and after closed-
loop feedback stimulation was applied for 1 h. To evaluate sig-
nificance of the change, a similar procedure as in Fujisawa et al.
(2008) was used. Briefly, the two times 1 h of spontaneous activity
recordings were divided into smaller bins of 10 min duration and
were randomly assigned to be before or after the closed-loop stim-
ulation. Cross-correlation from this shuffled data was computed
for both “before” and “after” and the difference was evaluated.
This procedure was repeated 1000 times to generate a surrogate
data set. Points on the x-axis, where the true difference is larger
than 95% of the surrogate data, were assigned to be significant
and are marked with an orange bar in Figure 7. Assessing the
true connectivity of neuronal networks by means of extracellu-
lar measurements is difficult, and using the cross-correlation to
that end is not ideal, as effects like common inputs or firing rate
changes cannot be easily explained. However, in our context of
evaluating the effect of feedback stimulation, we do not necessar-
ily seek to precisely explain the changes in network connectivity,
but to rather demonstrate that a change occurred at all and to
what extent.

ACAUSAL STIMULATION
One motivation for very short feedback cycles is to open the
possibility of acausal stimulation. If the closed-loop stimula-
tion (t0 − t2) is faster than the time it takes the action potential
to travel along the axon and hit the synapses (t0 − tS), acausal
stimulation and, therefore, induction of LTD by means of closed-
loop feedback stimulation is possible. The time that it takes for
an action potential, initiated at the axonal hillock, to propagate

down the axonal arbor to the synapses depends on the propa-
gation velocity of action potentials along axons and the length
of the axons. Action potential conduction velocities in unmyeli-
nated axons were reported around 0.2–0.4 ms−1 (Debanne et al.,
2011). As demonstrated in Figure 5, the closed-loop stimula-
tion (t0 − t2) can be as fast as 0.4 ms, meaning acausal stim-
ulation is possible for trigger neurons (t0) with unmyelinated
axons that synapse to an elicited neuron (t3/S) after a mini-
mum axial length of 80–160 µm. Figure 8 shows such an acausal
stimulation procedure. First, before applying a closed-loop, the
activity between different neurons was measured then evalu-
ated by computing the cross-correlation. In the example in
Figure 8, the firing activity of the second neuron B with respect
to the first neuron A was elevated around a delay of 2.5 ms,
implying neuron A has a functional connection with neuron B.
Integrating the cross-correlation curve, where it exceeds the con-
fidence intervals around 2–3 ms after the reference time zero,
reveals an integral probability of around 40% chance for neu-
ron B to spike 2–3 ms after neuron A had fired. Once two
such neurons could be identified, closed-loop stimulation can
be applied between them with a very short feedback cycle. In
the presented example, the delay from the trigger neuron to the
elicited spike was around 1 ms, smaller than the average delay
between the occurrence of their spontaneous action potentials.
The closed-loop feedback stimulation was applied for 20 min,
and, afterwards, the correlation was measured again. Now, the
correlation no longer exceeded the confidence intervals at around
2–3 ms after the trigger neuron. Note, however, that Bi and
Poo (1998) have shown that LTD can only be induced, if the
spontaneous synaptic efficiency is not strong enough to evoke
a post-synaptic action potential. Otherwise, the post-synaptic
Ca2+ influx dominates, and LTP will occur. For the experi-
ment shown in Figure 8, the elicited neuron spiked only a frac-
tion of the time, and provided an intermediary synapse; in all
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(A) Spontaneous activity before application of the closed-loop. Shown
spike traces are the median waveform of several spikes aligned at the
negative peak. Top: Spike trace of the trigger neuron, A, in green.
Middle: Example spike trace of a correlated neuron, B, drawn in yellow.
The time delay between the plotted spikes of neuron A and neuron B was
chosen to align with the maximum peak of the cross-correlation curve.
Bottom: Cross-correlation curve of spike-times of neuron B with respect to
neuron A. 95% confidence intervals are drawn with dotted red lines.
Cross-correlations were computed with trains having 2000–3000 spikes.
Significantly elevated correlated activity of neuron B can be detected
around 2.4 ± 0.4 ms after neuron A fired an action potential. (B) Same

situation as in (A) but with a closed-loop feedback stimulation applied. Due
to the low-latency loop, the time delay of the yellow spikes with respect
to the green ones was reduced by about 1.3 ms. For neuron A, the trace
was zeroed at the start of the stimulation pulse. (C) Same as (A)

but after the application of the closed-loop feedback stimulation. The
cross-correlation no longer shows a significant peak for latencies larger
than zero. The time delay between the plotted spikes of neuron A and
neuron B was again chosen to align with the maximum peak of the
cross-correlation. (D) Geometric sketch of the situation. The trigger neuron
A and its axon are shown in green and the elicited neuron B in yellow.
(E) Comparison of the two cross-correlation curves before (black) and after
(red) the acausal stimulation with their 95% confidence intervals.

other cases, evoked excitatory post-synaptic currents (EPSCs)
remained below the threshold. Further experiments are required
before drawing conclusions. Additionally, to explore LTD and
LTP in more depth, and advantageously, across many synapses

simultaneously, extracellular recordings targeted to many trig-
ger neurons, and an elicited neuron on the CMOS-MEA
could be combined with an intracellular patch-clamp, attached
to the elicited neuron and measuring the incoming EPSCs.
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DISCUSSION
With the presented system, capable of applying multiple flexible
feedback-loops simultaneously, many different experiments will
be possible. The dynamic clamp technique proved to be a valu-
able tool for investigating the membrane dynamics involved in
action potential generation (Destexhe and Bal, 2009; Economo
et al., 2010). In such systems, intracellularly applied closed-
loop-controlled voltage feedback enables the manipulation of cell
membrane functions. Similarly, extracellularly applied closed-
loop stimulation feedback, as presented in this work, might
provide a useful tool for investigating cellular and network level
plasticity and enable the manipulation of neuronal network func-
tions. Potential questions include how information processing
and the amount of memory that can be stored in a cultured
network are influenced by adding one or more feedback-loops.
Further experiments might involve more detailed studies of both
LTP and LTD of individual sets of neurons by implementing
causal and acausal feedback-loops between them. Using the pat-
tern matching capabilities of the event engine will allow for
extending plasticity studies to the network level. For example,
investigations of the temporal order and history of spike trains,
similar to those reported by Froemke and Dan (2002) and Ikegaya
et al. (2004), could be performed, however, in parallel on multiple
different neurons and pathways and, in addition, the respective
pathways could be dynamically altered by targeted closed-loop
feedback stimulations. Further rules governing plasticity beyond
the classical STDP could be investigated.

An inherent limitation of extracellular recording systems is
the inability to directly measure EPSCs. Conventional plastic-
ity studies rely on patch-clamp to directly measure the EPSC to
assess synaptic connectivity strength. Since these currents are not
accessible with extracellular measurement techniques, indirect
methods to assess synaptic connectivity have to be employed.
Although cross-correlation seems attractive and is commonly
used to assess connectivity, either between different brain regions
or networks, or even between individual cells, it remains to be
investigated to what extent correlation analysis unveils the direct
synaptic strength between neurons. A combination of patch-
clamp techniques and MEAs would provide a more direct way
to measure the EPSC than through the computation of cross-
correlation curves. By patching the post-synaptic neuron, EPSC
strengths can be directly measured and related to extracellu-
larly recorded pre-synaptic activity. Combining the advantages
of both techniques, i.e., the precise EPSC measurements through
patch-clamp, and the large-scale parallel, extracellular measure-
ments and stimulations through CMOS-MEAs with flexible
feedback-loops programmed by the event engine, would greatly
expand experimental horizons. One could study the plasticity

of hundreds of synapses in parallel. Furthermore, by hooking
up the patch-clamp system to the event engine through dedi-
cated spike-detection and stimulation modules, feedback-loops
could be applied through the patch-clamp between extracel-
lularly recorded and intracellularly stimulated (or vice versa)
neurons.

Although, due to the high-density of electrodes, potentially all
neurons can be read out individually, the recorded signals from
two different neurons, located close to each other, are sometimes
difficult to separate. A spike-sorting step, incorporated prior to
event detection, can help to sort, and separate even neurons
recorded from with the same electrodes. This holds in particu-
lar for using high-density electrode arrays (Franke et al., 2012).
The spike-sorting might enable the identification of neurons with
smaller spiking amplitudes, close to the noise level, and the identi-
fication of more neurons or cell assemblies. However, a drawback
of more sophisticated spike-sorting algorithms is an additional
time delay in the detection phase (t0 − t1). Spike-sorting, together
with intracellular stimulation through patch-clamp as described
above, could eliminate the aforementioned limitations in sec-
tion “Recording/stimulation selectivity”: Trigger spikes can be
assigned to an individual neuron through spike-sorting, and stim-
ulation pulses will only activate action potentials in the patched
neuron.

CONCLUSION
By using an FPGA to perform signal-processing, as well as feed-
back generation, fast, and flexible loop cycles have been real-
ized. Our approach using reconfigurable digital hardware to
perform computationally intensive tasks, such as signal filter-
ing, spike identification, decision-making, and feedback genera-
tion, is a compromise between traditionally employed methods
either using a general-purpose (micro-) processor, which intro-
duces additional latencies, and jitter, and the highly integrated
application-specific circuits (VLSI ASICs), which are much less
flexible in terms of adaptations to new experimental paradigms.
Our achieved closed-loop feedback latencies are lower than many
axonal propagation delays and thus enable acausal stimulation.
Due to the flexible event engine, high-throughput experiments
applying many feedback-loops in parallel are conceivable.
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