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Discovering the structure underlying observed data is a recurring problem in machine
learning with important applications in neuroscience. It is also a primary function of the
brain. When data can be actively collected in the context of a closed action-perception
loop, behavior becomes a critical determinant of learning efficiency. Psychologists studying
exploration and curiosity in humans and animals have long argued that learning itself is a
primary motivator of behavior. However, the theoretical basis of learning-driven behavior
is not well understood. Previous computational studies of behavior have largely focused
on the control problem of maximizing acquisition of rewards and have treated learning the
structure of data as a secondary objective. Here, we study exploration in the absence of
external reward feedback. Instead, we take the quality of an agent’s learned internal model
to be the primary objective. In a simple probabilistic framework, we derive a Bayesian
estimate for the amount of information about the environment an agent can expect to
receive by taking an action, a measure we term the predicted information gain (PIG). We
develop exploration strategies that approximately maximize PIG. One strategy based on
value-iteration consistently learns faster than previously developed reward-free exploration
strategies across a diverse range of environments. Psychologists believe the evolutionary
advantage of learning-driven exploration lies in the generalized utility of an accurate internal
model. Consistent with this hypothesis, we demonstrate that agents which learn more
efficiently during exploration are later better able to accomplish a range of goal-directed
tasks. We will conclude by discussing how our work elucidates the explorative behaviors
of animals and humans, its relationship to other computational models of behavior, and
its potential application to experimental design, such as in closed-loop neurophysiology
studies.

Keywords: knowledge acquisition, information theory, control theory, machine learning, behavioral psychology,

computational neuroscience

1. INTRODUCTION
Computational models of exploratory behavior have largely
focused on the role of exploration in the acquisition of exter-
nal rewards (Thrun, 1992; Kaelbling et al., 1996; Sutton and
Barto, 1998; Kawato and Samejima, 2007). In contrast, a con-
sensus has emerged in behavioral psychology that learning repre-
sents the primary drive underlying explorative behaviors (Archer
and Birke, 1983; Loewenstein, 1994; Silvia, 2005; Pisula, 2009).
The computational principles underlying learning-driven explo-
ration, however, have received much less attention. To address
this gap, we introduce here a mathematical framework for study-
ing how behavior affects learning and develop a novel model of
learning-driven exploration.

Machine learning techniques for extracting the structure
underlying sensory signals have often focused on passive learning
systems that can not directly affect the sensory input. Exploration,
in contrast, requires actively pursuing useful information and
can only occur in the context of a closed action-perception loop.
Learning in closed action-perception loops differs from passive
learning both in terms of “what” is being learned as well as
“how” it is learned (Gordon et al., 2011). In particular, in closed
action-perception loops:

1. Sensorimotor contingencies must be learned.
2. Actions must be coordinated to direct the acquisition of data.

Sensorimotor contingencies refer to the causal role actions play
on the sensory inputs we receive, such as the way visual inputs
change as we shift our gaze or move our head. They must
be taken into account to properly attribute changes in sensory
signals to their causes. This tight interaction between actions
and sensation is reflected in the neuroanatomy where sensory-
motor integration has been reported at all levels of the brain
(Guillery, 2005; Guillery and Sherman, 2011). We often take
our implicit understanding of sensorimotor contingencies for
granted, but in fact they must be learned during the course of
development (the exception being contingencies for which we
are hard-wired by evolution). This is eloquently expressed in
the explorative behaviors of young infants (e.g., grasping and
manipulating objects during proprioceptive exploration and then
bringing them into visual view during intermodal exploration)
(Rochat, 1989; O’Regan and Noë, 2001; Noë, 2004).

Not only are actions part of “what” we learn during explo-
ration, they are also part of “how” we learn. To discover what is
inside an unfamiliar box, a curious child must open it. To learn
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about the world, scientists perform experiments. Directing the
acquisition of data is particularly important for embodied agents
whose actuators and sensors are physically confined. Since the
most informative data may not always be accessible to a phys-
ical sensor, embodiment may constrain an exploring agent and
require that it coordinates its actions to retrieve useful data.

In the model we propose here, an agent moving between dis-
crete states in a world has to learn how its actions influence
its state transitions. The underlying transition dynamics is gov-
erned by a Controllable Markov Chain (CMC). Within this sim-
ple framework, various utility functions for guiding exploratory
behaviors will be studied, as well as several methods for coordi-
nating actions over time. The different exploratory strategies are
compared in their rate of learning and how well they enable agents
to perform goal-directed tasks.

2. METHODS
2.1. MATHEMATICAL FRAMEWORK FOR EMBODIED ACTIVE LEARNING
CMCs are a simple extension of Markov chains that incorporate a
control variable for switching between different transition distri-
butions in each state, e.g., (Gimbert, 2007). Formally, a CMC is a
3-tuple (S ,A ,�) where:

• S is a finite set of states (here representing, the possible
locations of an agent in its world) N = |S |.

• A is a finite set of control values, or actions, an agent can
choose from M = |A |.

• � is a 3-dimensional CMC kernel describing the transition
probabilities between states for each action (for example, the
probability an agent moves from an originating state s to a
resultant state s′ when it chooses action a):

p(s′|a, s; �) = �ass′

�as· ∈ ΔN − 1 (1)

Here, ΔN−1 denotes the standard (N − 1)-simplex and is used to
constrain � to describing legitimate probability distributions:

ΔN − 1 := {(x0, x1, . . . , xN − 1) ∈ R
N |

N − 1∑
i = 0

xi = 1 and xi ≥ 0 ∀i}

CMCs provides a simple mathematical framework for modeling
exploration in embodied action-perception loops. At each time
step, an exploring agent is allowed to select any action a ∈ A .
This action, along with the agent’s current state, then determines
which transition distribution its next state is drawn from. For this
study, we will make the simplifying assumption that the states can
be directly observed by the agent, i.e., the system is not hidden.
Since we are interested in the role behavior plays in learning about
the world, we consider the exploration task of the agent to be the
formation of an accurate estimate, or internal model �̂, of the true
CMC kernel that describes its world �.

This framework captures the two important roles actions play
in embodied learning. First, transitions depend on actions, and
actions are thus a constituent part of “what” is being learned.
Second, an agent’s immediate ability to interact with and observe
the world is limited by its current state. This restriction models

the embodiment of the agent, and actions are “how” an agent
can overcome this constraint on accessing information. Our pri-
mary question will be how action policies can optimize the speed
and efficiency of learning in embodied action-perception loops as
modeled by CMCs.

2.2. INFORMATION-THEORETIC ASSESSMENT OF LEARNING
Following Pfaffelhuber (1972), we define missing information IM

as a measure of the inaccuracy of an agent’s internal model. To
compute IM, we first calculate the Kullback–Leibler (KL) diver-
gence of the internal model from the world for each transition
distribution:

DKL(�as·‖�̂as·) :=
N∑

s′ = 1

�ass′ log2

(
�ass′

�̂ass′

)
(2)

The KL-divergence is an information-theoretic measure of the
difference between two distributions. Specifically, Equation (2)
gives the expected number of bits that would be lost if observa-
tions (following the true distribution) were communicated using
an encoding scheme optimized for the estimated distribution
(Cover and Thomas, 1991). It is large when the two distri-
butions differ greatly and zero when they are identical. Next,
missing information is defined as the unweighted sum of the
KL-divergences:

IM(�‖�̂) :=
∑

s ∈ S , a ∈ A

DKL(�as·||�̂as·) (3)

We will use missing information to assess learning under differ-
ent explorative strategies. Steeper decreases in missing informa-
tion over time represent faster learning and thus more efficient
exploration. The definition of missing information and those of
several other relevant terms that will be introduced later in this
manuscript have been compiled into Table 1 for easy reference.

2.3. BAYESIAN INFERENCE LEARNING
As an agent acts in its world, it observes the state transitions
and can use these observations to update its internal model �̂.
Taking a Bayesian approach, we assume the agent models its
world � as a random variable Θ with an initial prior distribu-
tion f over the space of possible CMC structures, W = ΔNM

N−1.
There is no standard nomenclature for tensor random variables
and we will therefore use a bold upright theta Θ to denote the
random variable and a regular upright theta Θ to denote an arbi-
trary realization of this random variable. Thus, f (Θ) describes
the exploring agent’s initial belief that Θ accurately describes its
world, i.e., that Θ = �. By Bayes’ theorem, an agent can calculate
a posterior belief on the structure of its world from its prior and
any data it has collected, �d:

f (Θ|�d) = p(�d|Θ)f (Θ)

p(�d)
(4)

Bayes’ theorem decomposes the posterior distribution of the
CMC kernel into the likelihood function of the data, p(�d|Θ),
and the prior, f (Θ). The normalization factor is calculated by
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Table 1 | Table of measures.

Name used here, abbreviation (Equation) Name used in (References) Mathematical expression

Missing information, IM (3) Missing information (Pfaffelhuber, 1972)
∑

s, a DKL(�as·||�̂as·)

Information gain, IG (6) IM(�‖�̂) − IM(�‖�̂a, s→s∗
)

Predicted information gain, PIG (7) Information gain (Nelson, 2005)
∑

s∗ �̂ass∗DKL(�̂
a, s→s∗
as· ‖�̂as·)

Posterior expected information gain, PEIG (17) KL-divergence (Storck et al., 1995) DKL(�̂current
as· ‖�̂

past
as· )

Predicted mode change, PMC (11) Probability gain (Nelson, 2005)
∑

s∗ �̂ass∗
[
maxs′ �̂a, s→s∗

ass′ − maxs′ �̂ass′
]

Predicted L1 change, PLC (12) Impact (Nelson, 2005)
∑

s∗ �̂ass∗
[

1
N
∑

s′
∣∣∣�̂a, s→s∗

ass′ − �̂ass′
∣∣∣]

integrating the numerator over W :

p(�d) =
∫
W

p(�d|Θ)f (Θ)dΘ

We now formulate a Bayesian estimate by directly calculating
the posterior belief in transitioning to state s′ from state s under
action a:

�̂ass′ := p(s′|a, s, �d) =
∫
W

p(s′,Θ|a, s, �d)dΘ

=
∫
W

p(s′|a, s; Θ)f (Θ|�d)dΘ

=
∫
W

Θass′ f (Θ|�d)dΘ = E
Θ|�d[Θass′ ] (5)

For discrete priors the above integrals would be replaced with
summations. Equation (5) demonstrates that the Bayesian
estimate is simply the expectation of the random variable given
the data. While other estimates are possible for inferring world
structure, such as Maximum Likelihood, the Bayesian estimate
is often employed to avoid over-fitting (Manning et al., 2008).
Moreover, as the following theorem demonstrates, the Bayesian
estimate is optimal under our minimum missing information
objective function.

Theorem 1. Consider a CMC random variable Θ modeling the
ground truth environment � and drawn from a prior distribution
f . Given a history of observations �d, the expected missing informa-
tion between Θ and an agent’s internal model � is minimized by
the Bayesian estimate � = �̂. That is:

�̂ := E
Θ|�d[Θ] = arg min

�

E
Θ|�d [IM(Θ‖�)]

Proof. See Appendix A1

The exact analytical form for the Bayesian estimate will
depend on the prior distribution. We emphasize that the utility
of the Bayesian estimate rests on the accuracy of its prior. In
the discussion, we will address issues deriving from uncertain or
inaccurate prior beliefs, but for now will provide the agents with
priors that match the generative process by which we create new
worlds for the agents to explore.

2.4. THREE TEST ENVIRONMENTS FOR STUDYING EXPLORATION
In the course of exploration, the data an agent accumulates will
depend on both its behavioral strategy as well as the structure
of its world. We reasoned that studying diverse environments,
i.e., CMCs that differ greatly in structure, would allow us to
investigate how world structure effects the relative performance
of different exploratory strategies and to identify action poli-
cies that produce efficient learning under broad conditions. We
thus constructed and considered three classes of CMCs that dif-
fer greatly in structure: Dense Worlds, Mazes, and 1-2-3 Worlds.
Dense Worlds are randomly generated from a uniform distribu-
tion over all CMCs with N = 10 states and M = 4 actions (see
Figure A1 in Appendix). They therefore represent very unstruc-
tured worlds. Mazes, in contrast, are highly structured and model
moving between rooms of a 6-by-6 maze (see Figure 1). The
state space in mazes consist of the N = 36 rooms. The M = 4
actions correspond to the noisy translations in the four cardinal
directions. To make the task of learning in mazes harder, 30 trans-
porters are randomly distributed amongst the walls which lead to
a randomly chosen absorbing state (concentric rings in Figure 1).
While perhaps not typically abundant in mazes, absorbing states,
such as at the bottom of a gravity well, are common in real
world dynamics. Finally, 1-2-3 Worlds differ greatly from both
Dense Worlds and Mazes in that their transitions are drawn
from a discrete distribution rather than a continuous one (see
Figure A2 in Appendix). Since our work is heavily rooted in the
Bayesian approach, the consideration of worlds with a different
priors was an important addition to understanding the depen-
dency of an exploration strategy on these priors. 1-2-3 Worlds
consist of N = 10 states and M = 3 actions. In a given state,
action a = 1 moves the agent deterministically to a single tar-
get state, a = 2 moves the agent with probability 0.5 to one of
two target states, and a = 3 moves the agent with probability
0.333 to one of three potential target states. The Appendix con-
tains detailed information on the generative distributions used to
create examples from each class of environments and also pro-
vides the analytical form for the Bayesian estimate in each world
(see Appendix A2).

3. RESULTS
3.1. ASSESSING THE INFORMATION-THEORETIC VALUE OF PLANNED

ACTIONS
The central question to be addressed in this manuscript is
how behavior affects the learning process in embodied action-
perception loops. The fast reduction of missing information
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FIGURE 1 | Example maze. The 36 states correspond to rooms in a maze.
The four actions correspond to noisy translations in the cardinal directions.
Two transition distributions are depicted, each by a set of four arrows
emanating from their originating states. Flat-headed arrows represent
translations into walls, resulting in staying in the same room. Dashed
arrows represent translation into a portal (blue lines) leading to the
absorbing state (blue target). The shading of an arrow indicates the
probability of the transition (darker color represents higher probability).

is taken to be the agent’s objective during learning-driven
exploration (Equation 3). As discussed in section 2.3, the
Bayesian estimate minimizes the expected missing informa-
tion and thus solves the inference problem. The control prob-
lem of choosing actions to learn quickly nevertheless remains
to be solved. We now show that Bayesian inference can also
be used to predict how much missing information will be
removed by an action. We call the decrease in missing infor-
mation between two internal models the information gain
(IG). Letting �̂ be a current model derived from data �d and
�̂a, s→s∗ be an updated model after observing a transition
from s to s∗ under action a, the information gain for this
observation is:

IG(a, s, s∗) := IM(�‖�̂) − IM(�‖�̂a, s→s∗ )

=
∑

s′
�ass′ log2

�̂
a, s→s∗
ass′

�̂ass′
(6)

An exploring agent cannot compute IG directly because it
depends on the true CMC kernel �. It also cannot know the out-
come s∗ of an action until it has taken it. We therefore again take
the Bayesian approach introduced in section 2.3 and consider the
agent to treat � and s∗ as random variables. Then, by calculating
the expected value of IG, we show in Theorem 2 that an agent can
compute an estimate of information gain from its prior belief on
� and the data it has collected. We term this estimate the predicted
information gain (PIG).

Theorem 2. If an agent is in state s and has previously collected
data �d, then the expected information gain for taking action a is
given by:

PIG(a, s) := Es∗,Θ|�d[IG(a, s, s∗)]
=
∑

s∗
�̂ass∗ DKL(�̂

a, s→s∗
as· ‖�̂as·) (7)

Proof. See Appendix A3

PIG has an intuitive interpretation. In a sense the agent imag-
ines the possible outcomes s∗ of taking action a in state s. It
then determines how each of these results would hypotheti-
cally change its internal model �̂a, s→s∗ . It compares these new
hypothetical models to its current model by computing the KL-
divergence between them. The larger this difference the more
information the agent would likely gain if it indeed transitioned
to state s∗. Finally, it averages these hypothetical gains according
to the likelihood of observing s∗ under its current model.

For each class of environments, Figure 2 compares the aver-
age PIG with the average realized information gain as successive
observation are used to update a Bayesian estimate. In accordance
with Theorem 2, in all three environments PIG accurately predicts
the average information gain. Thus, theoretically and empirically,
PIG represents an accurate estimate of the improvement an agent
can expect in its internal model if it takes a planned action in a
particular state.

Interestingly, the expression on the RHS of Equation (7) has
been previously studied in the field of Psychology where it was
introduced ad hoc to describe human behavior during hypothe-
sis testing (Klayman and Ha, 1987; Oaksford and Chater, 1994;
Nelson, 2005). To our knowledge, its equality to the predicted
gain in information (Theorem 2) is novel. In a later section, we
will compare PIG to other measures proposed in the field of
Psychology.

3.2. CONTROL LEARNERS: UNEMBODIED AND RANDOM ACTION
Before introducing and assessing the performance of different
explorative strategies, we first develop positive and negative con-
trols. A naive strategy would be to select actions uniformly
randomly. Such random policies are often employed to encourage
exploration in reinforcement learning models. We will use a ran-
dom action strategy as a negative control exhibiting the baseline
learning rate of an undirected explorer.

An unembodied agent that achieves an upper bound on
expected performance serves as a positive control. Unlike an
embodied agent, the unembodied control is allowed, at every
time step, to relocate itself to any state it wishes. For such an
agent, optimization of learning decomposes into an independent
sampling problem (Pfaffelhuber, 1972). Since the PIG for each
transition distribution decreases monotonically over successive
observations (Figure 2), learning by an unembodied agent can
be optimized by always sampling from the state and action pair
with the highest PIG. Thus, learning can be optimized in a greedy
fashion:

(a, s)Unemb. := arg max
(a, s)

PIG(a, s) (8)
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Comparing the learning performances of the random action
and unembodied control (red and black curves, respectively in
Figure 3) we find a notable difference among the three classes of
environments. The performance margin between these two con-
trols is significant in Mazes and 1-2-3 Worlds (p < 0.001), but
not in Dense Worlds (p > 0.01). Despite using a naive strategy,
the random actor is essentially reaching maximum performance
in Dense Worlds, suggesting that exploration of this environment
is fairly easy. In contrast, in Mazes and 1-2-3 Worlds, a directed
exploration strategy may be necessary to reach learning speeds
closer to the unembodied upper bound.

3.3. EXPLORATION STRATEGIES BASED ON PIG
PIG represents a utility function that can be used to guide
exploration. Since greedy maximization of PIG is optimal for
the unembodied agent, one might expect a similar strategy to
be promising for an embodied agent. Unlike the unembodied

control, however, the embodied agent [PIG(greedy)] would only
be able to select its action, not its state:

aPIG(greedy) := arg max
a

PIG(a, s) (9)

The performance comparison between PIG(greedy) (Equation 9)
and the positive control (Equation 8) is of particular inter-
est because they differ only in that one is embodied while
the other is not. As shown in Figure 4 the performance dif-
ference is largest in Maze worlds, moderate though significant
in 1-2-3 Worlds and smallest in Dense Worlds (p < 0.001 for
Mazes and 1-2-3 Worlds, p > 0.001 for Dense Worlds). To quan-
tify the embodiment constraint faced in a world, we define an
embodiment index as the relative difference between the areas
under the learning curves for PIG(greedy) and the unembod-
ied control. The average embodiment indices for Dense Worlds,
Mazes, and 1-2-3 Worlds are 0.02, 2.59, and 1.27, respectively.

FIGURE 2 | Accuracy of predicted information gain. The average
predicted information gain is plotted against the average realized
information gain. Averages are taken over 200 CMCs, N × M
transition distributions, and 50 trials. Error bars depict standard

deviations (only plotted above the mean for 1-2-3 Worlds).
The arrow indicates the direction of increasing numbers of
observations (top-right = none, bottom-left = 19). The unity lines
are drawn in gray.

FIGURE 3 | Learning curves for control strategies. The average missing information is plotted over exploration time for the unembodied positive control and
random action baseline control. Standard errors are plotted as dotted lines above and below learning curves (n = 200).
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FIGURE 4 | Coordinating exploration using predicted information

gain. The average missing information is plotted over exploration
time for greedy and value-iterated (VI) maximization of PIG. The

standard control strategies and the VI+ positive control are also
depicted. Standard errors are plotted as dotted lines above and
below learning curves (n = 200). EC, embodiment constraint.

We also find that, whereas PIG(greedy) yielded no improvement
over random action in Dense Worlds and Mazes (p > 0.001),
it significantly improved learning in 1-2-3 Worlds (p < 0.001),
suggesting that this utility function was most beneficial in
1-2-3 Worlds.

Greedy maximization of PIG only accounts for the immedi-
ately available information gains and fails to account for the effect
an action can have on future utility. In particular, when the poten-
tial for information gain is concentrated at remote states in the
environment, it may be necessary to coordinate actions over time.
Forward estimation of total future PIG is intractable. We there-
fore employ a back-propagation approach previously developed
in the field of economics called value-iteration (VI) (Bellman,
1957). The estimation starts at a distant time point (initialized as
τ = 0) in the future with initial values equal to the PIG for each
state-action pair:

Q0(a, s) := PIG(a, s)

Then propagating backwards in time, we maintain a running total
of estimated future value:

Qτ − 1(a, s) := PIG(a, s) + γ
∑

s′ ∈ S

�̂ass′ · Vτ (s′) (10)

where Vτ (s) := max
a

Qτ (a, s)

Here, γ is a discount factor, set to 0.95. Such discount factors
are commonly employed in value-iteration algorithms to favor
more immediate gains over gains further in the future (Bellman,
1957). As discussed later, discounting may also help, in part, to
account for the decreasing return on information from successive
observations (see Figure 2).

Ideally, the true transition dynamics � would be used in
Equation (10), but since the agent must learn these dynamics, it
employs its internal model �̂ instead. Applying the VI algorithm
to PIG, we construct a behavioral policy PIG(VI) that coordi-
nates actions over several time steps toward the approximate

maximization of expected information gain:

aPIG(VI) := arg max
a

Q−10(a, s);

As shown in Figure 4, the use of VI to coordinate actions yielded
the greatest gains in Mazes, with moderate gains also seen in 1-2-
3 Worlds. Along with the embodiment indices introduced above,
these results support the hypothesis that worlds with high embod-
iment constraints require agents to coordinate their actions over
several time steps to achieve efficient exploration.

Bellman showed that VI accurately estimates future gains when
the true transition dynamics � is known and when the utility
function is stationary (Bellman, 1957). Neither of these are true
in our case, and PIG(VI) is therefore only an approximation of
future gains. Nevertheless, as we will show, its utility is validated
by its superior performance when compared to other previously
introduced exploration strategies.

While a learning agent cannot use the true dynamics for VI,
we can ascertain how much this impairs its exploration by con-
sidering a second positive-control PIG(VI+) which is given the
true dynamics for coordinating its actions. That is, this control
uses � instead of �̂ in Equation (10) above. The performance
of PIG(VI+) only differs from PIG(VI) in Mazes, and this dif-
ference is relatively small compared to the gains made over the
random or greedy behaviors (Figure 4). Altogether these results
suggest that PIG(VI) may be an effective strategy employable
by embodied agents for coordinating explorative actions toward
learning.

3.4. STRUCTURAL FEATURES OF THE THREE WORLDS
In the course of exploration, the data an agent accumulates will
depend on both its behavioral strategy as well as the dynami-
cal structure of its world. To elucidate this interaction, we next
consider how structural differences in the three classes of environ-
ments correlate with an agents ability to explore. In particular, we
consider three structural features of the worlds: their tendency to
draw agents into a biased distribution over states, the amount of
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control a single action provides an agent over its future states, and
the average distance between any two states.

3.4.1. State bias
To assess how strongly a world biases the state distribution of its
agents we quantify the unevenness of the equilibrium distribu-
tion under a random action policy. The equilibrium distribution
� quantifies the likelihood that an agent will be in a particular
state at a distant time-point in the future. To quantify the bias
of this distribution, we define a structure index (SI) as the rela-
tive difference between its entropy H(�) and the entropy of the
uniform distribution H(U):

SI(�) := H(U) − H(�)

H(U)

where:

H(s) := −
∑

s ∈ S

p(s) log2(p(s))

In Figure 5A, the structure indices for 200 worlds in each class of
environment are plotted against the embodiment index (defined
in section 3.3). As depicted, the embodiment index corre-
lates strongly with the structure index suggesting that state bias
represents a significant challenge embodied agents face during
exploration.

3.4.2. Controllability
To measure the capacity for an agent to control its state trajectory
we computed a control index as the mutual information between
a random action a0 and an agent’s state t time steps in the future
st averaged uniformly over possible starting states s0:

CI(t) =
∑

s0 ∈ S

1

N
MI[A0, St |s0]

=
∑

s0 ∈ S

1

N

⎛⎝ ∑
a0 ∈ A , st ∈ S

p(a0, st |s0) log2

(
p(st |a0, s0)

p(st |s0)

)⎞⎠
As shown in Figure 5B, an action in a Maze or 1-2-3 Worlds
has significantly more impact on future states than an action in
Dense Worlds. Controllability is required for effective coordina-
tion of actions, such as under PIG(VI). In Mazes, where actions
can significantly affect states far into the future, agents yielded
the largest gains from coordinated actions. 1-2-3 Worlds also
revealed high controllability, but only over the more immediate
future. Interestingly, 1-2-3 Worlds also showed moderate gains
from coordinating actions.

3.4.3. Mean path length
To assess the size of each CMC, we calculated the average mini-
mum expected path length between every two states. To do this,
we first determined the action policy that would minimize the
expected path length to any target state. We then calculated the
expected number of time-steps it would take an agent to navi-
gate to that target state while employing this optimal policy. The
average value of this expected path length taken across start and

FIGURE 5 | Quantifying the structure of the worlds. (A) The
embodiment index, defined in section 3.3, is plotted against the structure
index for each of 200 Dense Worlds, Mazes, and 1-2-3 Worlds. (B) For the
same CMCs, the average controllability is plotted as a function of the
number of time steps the state lies in the future. The error bars depict
standard deviations. (C) Again for the same CMCs, the learning
performance gap in between PIG(VI) and PIG(VI+) is plotted against the
mean path length between any two states.
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target states was used as a measure of the extent of the CMC (see
Appendix A4 for details). We had previously found that the three
classes of CMCs differed in the relative performance between
the PIG(VI) explorer and the PIG(VI+) control. Since these two
strategies differ only in that the former uses the agent’s internal
model to coordinate its actions while the latter is allowed to use
the true world dynamics, we wondered if the performance gap
between the two (the area between their two learning curves)
could be related to the path length to a potential source of infor-
mation. Indeed, comparing this performance gap to the mean
path length for each world, we found a strong correlation, as
shown in Figure 5C. This suggests that coordination of actions
may be more dependent on internal model accuracy for spatially
extended worlds. Finally, it is interesting to note that the Mean
Path Length is typically larger in mazes than 10 time steps, the
planning horizon used in Value Iteration. Ten was chosen simply
as a round number and it may be surprising that it works as well
as it does in such spatially extended worlds. We believe two factors
may contribute to this. First, it is likely that states of high informa-
tional value will be close together. Coordinating actions toward
a nearby state of high value will therefore likely bring the agent
closer to other states of potentially higher value. Second, and we
suspect more importantly, since the mean path length is an aver-
age, a VI planner can direct its action toward a high information
state under the possibility that it might reach that state within
10 time steps even if the expected path length to that location is
significantly longer.

3.5. COMPARISON TO PREVIOUS EXPLORATIVE STRATEGIES
Models of exploration have been previously developed in the
field of reinforcement learning (RL). Usually, these models focus
on the role of exploration in reward acquisition rather than its
direct role in learning world structure. Still, several of the prin-
ciples developed in the RL field can be implemented in our
framework. In this section, we compare these various meth-
ods to PIG(VI) under our learning objective. Since no rewards

are available, we consider only RL strategies that can be imple-
mented without rewards. Random action is perhaps the most
common exploration strategy in RL. As we have already seen,
random action is only efficient for exploring Dense Worlds.
The following directed exploration strategies have also been
developed in the RL literature (learning curves are plotted
in Figure 6):

Least Taken Action (LTA): Under LTA, an agent will always
choose the action that it has performed least often in the
current state (Sato et al., 1988; Barto and Singh, 1990; Si
et al., 2007). Like random action, LTA yields uniform sampling
of actions in each state. Across worlds, LTA fails to signifi-
cantly improve on the learning rates seen under random action
(p > 0.001 for all three environments).
Counter-Based Exploration (CB): Whereas LTA actively sam-
ples actions uniformly, CB attempts to induce a uniform
sampling across states. To do this, it maintains a count of the
occurrences of each state, and chooses its action to minimize
the expected count of the resultant state (Thrun, 1992). CB
performs even worse than random action in Dense Worlds and
1-2-3 Worlds (p < 0.001). It does outperform random actions
in Mazes but falls far short of the performance seen by PIG(VI)
(p < 0.001).
Q-learning on Surprise [PEIG(Q)]: Storck et al. (1995) devel-
oped Surprise as a measure to quantify past changes in
an agent’s internal model which they used to guide explo-
ration under a Q-learning algorithm (Sutton and Barto, 1998).
Interestingly, it can be shown that Surprise as employed by
Storck et al. is equivalent to the posterior expected informa-
tion gain (PEIG), a posterior analog to our PIG utility function
(see Appendix A5 and Table 1). Q-learning is a model-free
approach to maximizing long-term gains of a utility func-
tion (Sutton and Barto, 1998). Implementing this strategy, we
found that like CB, PEIG(Q) generally performed worse than
random action.

FIGURE 6 | Comparison to previous exploration strategies. The average
missing information is plotted over time for PIG(VI) agents along with three
exploration strategies from the literature: least taken action (LTA) (Sato
et al., 1988; Barto and Singh, 1990; Si et al., 2007), counter-based (CB)

(Thrun, 1992), and Q-Learning on posterior expected information gain
[PEIG(Q)] (Storck et al., 1995). The standard control strategies are also
shown. Standard errors are plotted as dotted lines above and below
learning curves (n = 200).
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The results in Figure 6 show that PIG(VI) outperforms the
previous explorative strategies at learning in structured worlds.
We note that all of these strategies were originally developed to
encourage exploration for the sake of improving reward acquisi-
tion, and their poor performance at our learning objective does
not conflict with their previously demonstrated utility under the
reinforcement learning framework.

3.6. COMPARISON TO UTILITY FUNCTIONS FROM PSYCHOLOGY
Independent findings in Psychology have suggested that the max-
imization of PIG can be used to predict human behavior during
hypothesis testing (Oaksford and Chater, 1994). Inspired by these
results, we investigated two other measures also developed in this
context. Like PIG, both are measures of the difference between the
current and hypothetical future internal models:

Predicted mode change (PMC) predicts the height difference
between the modes of the current and future internal models
(Baron, 2005; Nelson, 2005):

PMC(a, s) =
∑

s∗
�̂ass∗

[
max

s′
�̂

a, s→s∗
ass′ − max

s′
�̂ass′

]
(11)

Predicted L1 change (PLC) predicts the average L1 distance
between the current and future internal models (Klayman and
Ha, 1987):

PLC(a, s) =
∑

s∗
�̂ass∗

[
1

N

∑
s′

∣∣∣�̂a, s→s∗
ass′ − �̂ass′

∣∣∣] (12)

We tested agents that approximately maximize PMC or PLC using
VI. As Figure 7 reveals, PIG(VI) proved again to be the best
performer overall. In particular, PIG(VI) significantly outper-
forms PMC(VI) in all three environments, and PLC(VI) in 1-2-3
Worlds (p < 0.001). Nevertheless, PMC and PLC achieved sig-
nificant improvements over the baseline control in Mazes and
1-2-3 Worlds, highlighting the benefit of coordinated actions

across different utility functions. Interestingly, when performance
was measured by an L1 distance instead of missing informa-
tion, PIG(VI) still outperformed PMC(VI) and PLC(VI) in 1-2-3
Worlds (data not shown).

3.7. GENERALIZED UTILITY OF EXPLORATION
In considering the causes underlying a behavior such as explo-
ration, psychologists often distinguish between the proximate
(or behavioral) causes and the ultimate (or evolutionary) causes
(Mayr, 1961; Pisula, 2009). Proximate causes are those factors that
act directly on the individual in the control of behavior, while ulti-
mate causes are those factors that contribute to the survival value
of a behavior upon which natural selection can act. Thus far we
have focused on efficient learning as the major objective because
it has been identified by psychologists as the primary proximate
cause of exploration (Archer and Birke, 1983; Loewenstein, 1994).
We now, however, return to the question of the ultimate cause of
exploration, which must lie in improved survival or reproductive
fitness. The evolutionary advantage of learning-driven explo-
ration is thought to lie in the general usefulness of possessing an
accurate internal model of the world (Kaplan and Kaplan, 1983;
Renner, 1988, 1990; Pisula, 2003, 2008). Unlike many models
of reward-driven exploration, which focus on learning to opti-
mize reward acquisition in a single context, an accurate internal
model derived from learning-driven exploration may hold gen-
eral utility applicable across a wide range of contexts. To compare
the general utility of internal models gained through the various
exploration methods, we assessed the ability of our agents to apply
their internal models toward solving an array of goal-directed
tasks. We note that these studies were performed without any
changes to the exploration strategies employed by the agent. In
essence, we interrupt an agent’s exploration at several benchmark
time points. We then ask the agent how it would solve, given its
internal model, a particular task before allowing it to continue on
in its exploration. The agent does not actually perform the task.
It is simply asked to solve the task using it internal model. The
solution that it provides is then compared by us to the optimal

FIGURE 7 | Comparison between utility functions. The average missing information is plotted over time for agents that employ VI to maximize long-term
gains in the three objective function, PIG, PMC, or PLC. The standard control strategies are also shown (n = 200).
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solution. We considered two types of tasks, navigation and reward
acquisition:

Navigation: Given a starting state, the agent has to quickly
navigate to a target state.
Reward Acquisition: Given a starting state, the agent has to
gather as much reward as possible over 100 time steps. Reward
values are drawn from a normal distribution and randomly
assigned to every state in the CMC. The agent is given the
reward value of each state.

After various lengths of exploration, the agent’s internal model
is assessed for general utility. For each task, we derive the behav-
ioral policy that optimizes performance under the internal model.
As a positive control, we also derive an objective optimal policy
that maximizes performance given the true CMC kernel. The dif-
ference in realized performance between the agent’s policy and
the control is used as a measure of navigational or reward loss.
For detailed methods, please see Appendix A6.

Figure 8 depicts the average rank in the navigational and
reward tasks for the different explorative strategies. In all envi-
ronments, for both navigation and reward acquisition, PIG(VI)
always grouped with the top performers (p > 0.001), excepting
positive controls. PIG(VI) was the only strategy to do so. Thus,
the explorative strategy that optimized learning under the miss-
ing information objective function also prepared the agent for
accomplishing arbitrary goal-directed tasks.

Our test for generalized utility differs from the standard rein-
forcement learning paradigm in that it tests an agent across
multiple tasks. The agent therefore cannot simply learn habit-
ual sensorimotor responses specific to a single task. Though
most reinforcement learning studies consider only a stationary,
unchanging reward structure, we wanted to compare PIG(VI)

to reward-driven explorers. BOSS is a state-of-the-art model-
based reinforcement learning algorithm (Asmuth et al., 2009).
To implement reward-driven exploration we trained a BOSS
reinforcement-learner to navigate to internally chosen target-
states. After reaching its target, the BOSS agent would randomly
select a new target, updating its model reward structure accord-
ingly. We then assessed the internal model formed by a BOSS
explorer under the same navigational and reward acquisition
tasks. As can be seen in Figure 8, BOSS (black cross) was not as
good as PIG(VI) at either class of objectives despite being trained
specifically on the navigation task.

4. DISCUSSION
In this manuscript we introduced a parsimonious mathematical
framework for studying learning-driven exploration by embod-
ied agents based on information theory, Bayesian inference,
and CMCs. We compared agents that utilized different explo-
ration strategies toward optimizing learning. To understand how
learning performance depends on the structure of the world,
three classes of environments were considered that challenge the
learning agent in different ways. We found that fast learning
could be achieved in all environments by an exploration strat-
egy that coordinated actions toward long-term maximization
of PIG.

4.1. CAVEATS
The optimality of the Bayesian estimate (Theorem 1) and the esti-
mation of information gain (Theorem 2) both require an accurate
prior over the transition kernels. For biological agents, such pri-
ors could have been learned from earlier exploration of related
environments, or may represent hardwired beliefs optimized by
evolutionary pressures. Alternatively, an agent could attempt to
simultaneously learn a prior while exploring its environment.

FIGURE 8 | Demonstration of generalized utility. For each world
(n = 200), explorative strategies are ranked for average performance on the
navigational tasks (averaged across N start states and N target states)
and the reward tasks (averaged across N start states and 10 randomly
generated reward distributions). The average ranks are plotted with
standard deviations. PIG(VI) is depicted as a filled green circle. Strategies
lying outside the pair of horizontal green lines differ significantly from
PIG(VI) in navigational performance. Strategies lying outside the pair of

vertical green lines differ significantly from PIG(VI) in reward performance
(p < 0.0001). The different utility functions and heuristics are distinguished
by color: PIG(green), PEIG (magenta), PMC (dark-blue), PLC (cyan),
LTA (orange), and CB (yellow). The different coordination methods are
distinguished by symbol: Greedy (squares), VI (circles), VI+ (diamonds),
Heuristic Strategies (asterisks). The two standard controls are depicted
as points as follows: Unembodied (black), Random (red). The BOSS
reinforcement learner is depicted by a black cross.
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Indeed a simple maximum-likelihood estimation of the con-
centration parameter for Dense Worlds and Mazes is sufficient
for an agent to achieve efficient exploration (data not shown).
Nevertheless, biological agents may not always have access to an
accurate prior for an environment. For such cases, future work is
required to understand exploration under false priors and how
they could yield sub-optimal but perhaps biologically realistic
exploratory behaviors.

Another potential limitation of our approach occurs from the
fact that the VI algorithm is only optimal if the utility function
is stationary (i.e., unchanging) (Bellman, 1957). Any utility func-
tion, including PIG, that attempts to capture learning progress
will necessarily change over time. This caveat may be partially
alleviated by the fact that PIG changes only for the sampled dis-
tributions. Furthermore, PIG decreases in a monotonic fashion
(see Figure 2) which can potentially be captured by the discount
factor of VI. Interesting future work may lie in accounting for
the effect of such monotonic decreases in estimates of future
information gains either through direct estimation or through
better approximation by a different choice of discounting mech-
anism. The problem of accounting for diminishing returns on
utility has been previously approached in the field of optimal
foraging theory. Modeling the foraging behaviors of animals,
optimal foraging theory considers an animals decision of when
it should leave its present feeding area, or patch, in which it
has been consuming the available food and expend energy to
seek out a new, undiminished patch (MacArthur and Pianka,
1966). Charnov’s Marginal Value Theorem, a pivotal finding
in the field, suggests that the decision to transition should be
made once the expected utility of the current patch decreases
to the average expected utility across all patches accounting for
transition costs (Charnov, 1976). Extending this work to our
information-theoretic approach in CMCs may provide the nec-
essary insights to address the challenge of diminishing returns on
information gain.

Finally, the VI algorithm scales linearly with the size of the
state space, and the calculation of PIG can scale linearly with
the square of the size of the state space. This means that for
larger and larger CMCs, these approaches will become more
computationally expensive to perform. For large worlds, clever
methods for approximating these approaches or for sparsifying
their representation may be necessary. An explicit model of mem-
ory may also be necessary to fully capture the limitation on
computational complexity biological organisms face. A wealth of
literature from Reinforcement Learning and related fields may
offer insights in approaching these challenge which we reserve for
future work.

4.2. RELATED WORK IN REINFORCEMENT LEARNING
CMCs are closely related to Markov Decision Processes (MDPs)
commonly studied in Reinforcement Learning. MDPs differ from
CMCs in that they explicitly include a stationary reward func-
tion associated with each transition (Sutton and Barto, 1998;
Gimbert, 2007). RL research of exploration usually focusses on
its role in balancing exploitative behaviors during reward maxi-
mization. Several approaches for inducing exploratory behavior
in RL agents have been developed. One very common approach

is the use of heuristic strategies such as random action, least
taken action, and counter-based algorithms. While such strate-
gies may be useful in gathering unchanging external rewards, our
results show that they are inefficient for learning the dynamics of
structured worlds.

Other RL approaches involve reward-driven exploration. In
the absence of external rewards, exploration could still be induced
under reward-driven strategies by having the agent work through
a series of internally chosen reward problems. This is essen-
tially how the described BOSS agent operates. It was never-
theless insufficient to reach the performance accomplished by
PIG(VI).

In addition, several RL studies have investigated intrinsically
motivated learning. For example, Singh et al. (2010) have demon-
strated that RL guided by saliency, an intrinsic motivation derived
from changes in stimulus intensity, can promote the learning of
reusable skills. As described in section 3.5, Storck et al. introduced
the combination of Q-learning and PEIG as an intrinsic motivator
of learning (Storck et al., 1995). In their study, PEIG(Q) out-
performed random action only over long time scales. At shorter
time scales, random action performed better. Interestingly, we
found exactly the same trend, initially slow learning with even-
tual catching-up, when we applied PEIG(Q) to exploration in our
test environments (Figure 6).

4.3. BETWEEN LEARNING-DRIVEN AND REWARD-DRIVEN
EXPLORATION

While curiosity, as an intrinsic value for learning, is believed
to be the primary drive of explorative behaviors, other factors,
including external rewards, may play a role either in motivating
exploration directly or in shaping the development of curios-
ity (Archer and Birke, 1983; Loewenstein, 1994; Silvia, 2005;
Pisula, 2009). In this manuscript, we wished to focus on a pure
learning-based exploration strategy and therefore chose to take
an unweighted sum of missing information as a parsimonious
objective function (Equation 3). Two points, however, should
be noted in considering the relationship of this work to previ-
ous work in the literature. First, our objective function considers
only the learning of the transition dynamics governing a CMC
as this fully describes such a world. When we incorporate addi-
tional features into our framework, such as rewards in MDPs,
those features too could be learned and assessed under our
missing information objective function. Toward this goal, inter-
esting insights may come from comparing our work with the
multi-armed bandits literature. Multi-armed bandits are a spe-
cial class of single state MDPs (Gittins, 1979). By considering
only a single state, multi-armed bandits remove the embodi-
ment constraint of multi-state CMCs and MDPs. Thus, CMCs
and multi-armed bandits represent complimentary special cases
of MDPs. That is, a CMC is an MDP without reward structure,
while a multi-armed bandit is an MDP without transition ker-
nels. Recent research has attempted to decouple the exploration
and exploitation components of optimal control in multi-armed
bandits (Abbeel and Ng, 2005; Bubeck et al., 2009). These stud-
ies aim at minimizing, through exploration, a construct termed
regret, the expected reward forgone by a recommended strat-
egy. Regret is similar to the navigational and reward acquisition
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loss values we calculated for ranking our explorers under goal-
directed tasks. Importantly, while our work considered a wide
array of goal-directed tasks, these multi-armed bandit approaches
typically consider only learning a single fixed reward structure.
Understanding these difference will be important if one wishes
to shift attention from the unbiased information-theoretic view
we take to a directed task-dependent view. Identifying a means,
perhaps through information theory, of quantifying uncertainty
in which strategy will optimize a task, will be an important
extension bridging these two approaches. The idea of directed
information brings us to our second consideration in relating
our work to previous literature. Psychologists have found that
curiosity, or interest, can vary greatly both between and within
individuals (Silvia, 2001, 2006). While one should be careful
to not conflate the valuation of an extrinsic reward with the
emotion of interest, it is possible such valuations could act to
influence the development of interests. By transitioning away
from our non-selective measure of missing information toward
a weighted objective function that values certain information
over others, we may begin to bridge the learning-driven and
reward-driven approaches to exploration. One interesting pro-
posal, put forth by Vergassola et al. suggests that information
regarding a reward often falls off with distance as an organism
moves away from the source of the reward (Vergassola et al.,
2007). Accordingly, a greedy local maximization of informa-
tion regarding the reward may simultaneously bring the indi-
vidual closer to the desired reward. The resultant “infotaxis”
strategy is closely related to our PIG(greedy) strategy but is
applied only to a single question of where a particular reward is
located.

4.4. RELATED WORK IN PSYCHOLOGY
In the Psychology literature, PIG, as well as PMC and PLC,
were directly introduced as measures of the expected difference
between a current and future belief (Baron, 2005; Klayman and
Ha, 1987; Oaksford and Chater, 1994; Nelson, 2005). Here, we
showed that PIG equals the expected change in missing informa-
tion (Theorem 2). Analogous theorems do not hold for PMC or
PLC. For example, PLC is not equivalent to the expected change
in L1 distance with respect to the true world. This might explain
why PIG(VI) outperformed PLC(VI) even under an L1 measure
of learning.

We applied PIG, PMC, and PLC to the problem of learning
a full model of the world. In contrast, the mentioned psy-
chology studies focussed specifically on hypothesis testing and
did not consider sequences of actions or embodied action-
perception loops. These studies revealed that human behavior
during hypothesis testing can be modeled as maximizing PIG,
suggesting that PIG may have biological significance (Oaksford
and Chater, 1994; Nelson, 2005). However, those results could
not distinguish between the different utility functions (PIG, PMC,
and PLC) (Nelson, 2005). Our finding that 1-2-3 Worlds give rise
to large differences between the three utility functions may help
identify new behavioral tasks for disambiguating the role of these
measures in human behavior.

To model bottom–up visual saliency and predict gaze atten-
tion, Itti and Baldi recently developed an information-theoretic

measure closely related to PEIG (Itti and Baldi, 2006, 2009; Baldi
and Itti, 2010). In this model, a Bayesian learner maintains a prob-
abilistic belief structure over the low-level features of a video.
Attention is believed to be attracted to locations in the visual
scene that exhibit high Surprise. Several potential extensions of
this work are suggested by our results. First, it may be useful to
model the active nature of data acquisition during visual scene
analysis. In Itti and Baldi’s model, all features are updated for
all location of the visual scene regardless of current gaze loca-
tion or gaze trajectory. Differences in acuity between the fovea
and periphery, however, suggest that gaze location will have a sig-
nificant effect on which low-level features can be transmitted by
the retina (Wässle and Boycott, 1991). Second, our comparison
between PIG and PEIG (Figure 6) suggests that predicting future
changes may be more efficient than focusing attention only on
those locations where change has occurred in the past. A model
that anticipates Surprise, as PIG anticipates information gain,
may be better able to explain some aspects of human attention.
For example, if a moving object disappears behind an obstruc-
tion, viewers may anticipate the reemergence of the object and
attend that location. Incorporating these insights into new mod-
els of visual saliency and attention could be an interesting course
of future research.

4.5. INFORMATION-THEORETIC MODELS OF BEHAVIOR
Recently information-theoretic concepts have become more pop-
ular in computational models of behavior. These approaches
can be grouped under three guiding principles. The first prin-
ciple uses information theory to quantify the complexity of a
behavioral policy, with high complexity considered undesirable.
Tishby and Polani for example, considered RL maximization of
rewards under such complexity constraints (Tishby and Polani,
2011).

The second principle is to maximize a measure called pre-
dictive information which quantifies the amount of information
a known (or past) variable contains regarding an unknown (or
future) variable (Tishby et al., 1999; Ay et al., 2008; Still, 2009).
Predictive information has also been referred to as excess entropy
(Crutchfield and Feldman, 2003) and should not be confused
with PIG. When the controls of a simulated robot were adjusted
such that the predictive information between successive sensory
inputs was maximized, Ay et al. found that the robot began to
exhibit complex and interesting explorative behaviors (Ay et al.,
2008). This objective selects for behaviors that cause the sensory
inputs to change often but to remain predictable from previ-
ous inputs, and we therefore describe the resulting exploration
as stimulation-driven. Such exploration generally benefits from a
good internal model but on its own, does not drive fast learning.
It is therefore more suitable later in exploration, after a learning-
driven strategy, such as PIG(VI), has had a chance to form an
accurate model. PIG, in contrast, is most useful in the early stages
when the internal model is still deficient. These complimentary
properties of predictive information and PIG lead us to hypothe-
size that a simple additive combination of the two objectives may
naturally lead to a smooth transitioning from learning-driven
exploration to stimulation-driven exploration, a transition that
may indeed be present in human behavior (see section 4.6).
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Epsilon machines introduced by Crutchfield and Young (1989)
and the information bottleneck approach introduced by Tishby
et al. (1999) combine these first two principles of maximizing
predictive information and constraining complexity. In particu-
lar maximizing the information between a compressed internal
variable and the future state progression subject to a constraint
on the complexity of generating the internal variable from sen-
sory inputs. Recently, Still extended the information bottleneck
method to incorporate actions (Still, 2009).

Finally, the third information-theoretic principle of behavior
is to minimize of free-energy, an information-theoretic bound
on surprise. Friston put forth this Free-Energy (FE) hypothesis
as a unified variational principle for governing both the infer-
ence of an internal model and the control of actions (Friston,
2009). Under this principle, agents should act to minimize
the number of states they visit. This stands in stark contrast
to both learning-driven and stimulation-driven exploration. A
learning-driven explorer will seek out novel states where missing
information is high, while a stimulation-driven explorer actively
seek to maintain high variation in its sensory inputs. Still, reduced
state entropy may be valuable in dangerous environments where
few states permit survival. The balance between cautionary and
exploratory behaviors would be an interesting topic for future
research.

4.6. TOWARD A GENERAL THEORY OF EXPLORATION
With the work of Berlyne (1966), psychologists began to dis-
sect the different motivations that drive exploration. A distinc-
tion between play (or diversive exploration) and investigation
(or specific exploration) grew out of two competing theories of
exploration. As reviewed by Hutt (1970), “curiosity”-theory pro-
posed that exploration is a consummatory response to curiosity-
inducing stimuli (Berlyne, 1950; Montgomery, 1953). In contrast,
“boredom”-theory held that exploration was an instrumental
response for stimulus change (Myers and Miller, 1954; Glanzer,
1958). Hutt suggested that the two theories may be capturing
distinct behavioral modes, with “curiosity”-theory underlying
investigatory exploration and “boredom”-theory underlying play.
In children, exploration often occurs in two stages, inspection
to understand what is perceived, followed by play to main-
tain changing stimulation (Hutt and Bhavnani, 1972). These
distinctions nicely correspond to the differences between our
approach and the predictive information approach of Ay et al.
(2008) and Still (2009). In particular, we hypothesize that our
approach corresponds to curiosity-driven investigation, while
predictive information a la Ay et al. and Still may correspond
with play. Furthermore, the proposed method of additively
combining these two principles (section 4.4), may naturally
capture the transition between investigation and play seen in
children.

For curiosity-driven exploration, there are many varied theo-
ries (Loewenstein, 1994). Early theories viewed curiosity as a drive
to maintain a specific level of arousal. These were followed by
theories interpreting curiosity as a response to intermediate lev-
els of incongruence between expectations and perceptions, and
later by theories interpreting curiosity as a motivation to master

one’s environment. Loewenstein developed an Information Gap
Theory and suggested that curiosity is an aversive reaction
to missing information (Loewenstein, 1994). More recently,
Silvia proposed that curiosity comprises two traits, complex-
ity and comprehensibility (Silvia, 2005). For Silvia complexity
is broadly defined, and includes novelty, ambiguity, obscurity,
mystery, etc. Comprehensibility appraises whether something
can be understood. It is interesting how well these two traits
match information-theoretic concepts, complexity being cap-
tured by entropy, and comprehensibility by information gain
(Pfaffelhuber, 1972). Indeed, PIG might be able to explain the
dual aspects of curiosity-driven exploration proposed by Silvia.
PIG is bounded by entropy and thus high values require high
complexity. At the same time, PIG equals the expected decrease
in missing information and thus may be equivalent to expected
comprehensibility.

All told, our results add to a bigger picture of exploration in
which the theories for its different aspects fit together like pieces
of a puzzle. This invites future work for integrating these pieces
into a more comprehensive theory of exploration and ultimately
of autonomous behavior.

4.7. APPLICATION TOWARD EXPERIMENTAL DESIGN
In many ways, scientific research itself epitomizes learning-
driven exploration. Like our modeled agents, researchers design
experiments to maximize their expected gain in information.
Recently, there has been growing interest in automated experi-
mental design. While not every experimental paradigm will fit
neatly into our CMC framework, our explorative principles may
have direct application to closed-loop neurophysiology. Suppose,
for example, we are interested in how ongoing activity within
a population of neurons affects their receptive fields. To study
this, we would want to measure the neurons’ responses to dif-
ferent stimuli and determine how those responses are affected
by the activity of the neurons just prior to stimulus presenta-
tion. Specific sequences of priming stimuli may be necessary to
drive the neurons into a particular activation state of ongoing
activity in which their responses to a probe stimulus could be
measured. It may be difficult for a researcher to determine before
hand which sequences of stimuli are interesting, but PIG(VI)
might offer an automated way of choosing appropriate stim-
uli on the fly. The ongoing activity of a population of neurons
can be treated as the states of the system, and the choice of
stimuli as the actions. A closed-loop electrophysiology system
controlled by PIG(VI) could investigate not only how the neurons
responded to presented stimuli but also how to use the stimuli to
prime the neurons into interesting states of ongoing activity for
probing.
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APPENDIX A
A1 PROOF OF THEOREM 1
Claim. Consider a CMC random variable Θ modeling the ground
truth environment � and drawn from a prior distribution f .
Given a history of observations �d, the expected missing information
between Θ and an agent’s internal model � is minimized by the
Bayesian estimate � = �̂. That is:

�̂ := E
Θ|�d[Θ] = arg min

�

E
Θ|�d [IM(Θ‖�)]

Proof. Minimizing missing information is equivalent to indepen-
dently minimizing the KL-divergence of each transition kernel.

arg min
�as·

E
Θ|�d [DKL (Θas·‖�as·)]

= arg min
�as·

E
Θ|�d

[∑
s′

Θass′ log2

(
Θass′

�ass′

)]

= arg min
�as·

E
Θ|�d

[∑
s′

Θass′ log2 Θass′ − Θass′ log2 �ass′

]

= arg min
�as·

− E
Θ|�d

[∑
s′

Θass′ log2 �ass′

]

= arg min
�as·

−
∑

s′
E

Θ|�d [Θass′] log2 �ass′

= arg min
�as·

H
[

E
Θ|�d [Θas·] ;�as·

]

Here H denotes cross-entropy (Cover and Thomas, 1991). Finally,
by Gibb’s inequality (Cover and Thomas, 1991):

arg min
�as·

H
[

E
Θ|�d [Θas·] ; �as·

]
= E

Θ|�d [Θas·] = �̂as·

A2 GENERATIVE DISTRIBUTIONS AND BAYESIAN ESTIMATES FOR
THE 3 CLASSES OF ENVIRONMENTS

(1) Dense Worlds correspond to complete directed probability
graphs with N = 10 states and M = 4 actions. An example
is depicted in Figure A1. Each transition distribution is
independently drawn from a Dirichlet distribution over the
standard (N − 1)-simplex:

f (Θas·) = Dir(α) = 1

Z(α)
·
∏

s′
Θass′

αs′−1

The normalizing constant Z brings the area under the
distribution to 1:

FIGURE A1 | Example Dense World. Dense Worlds consist of 4
actions (separately depicted) and 10 states (depicted as nodes of the
graphs). The transition probabilities associated with taking a particular
action are depicted as arrows pointing from the current state to each
of the possible resultant states. Arrow color depicts the likelihood of
each transition.

Z(α) :=
∫

ΔN − 1

∏
s′

Θass′
αs′−1dΘas· =

∏
s′ �(αs′)

�(
∑

s′ αs′)

where �(x) :=
∞∫

0

tx − 1e−t dt

The mean of a Dirichlet distribution takes on a simple form:

∫
ΔN − 1

Θas·
∏

s′ Θass′αs′−1

Z(α)
dΘas· = α∑

s′ α
′
s

We will assume a symmetric prior setting αs′ equal to α for
all s′. The vector form of the Dirichlet distribution will nev-
ertheless still be useful in deriving the Bayesian estimate. The
parameter α determines how much probability weight is cen-
tered at the midpoint of the simplex and is known as the
concentration factor. For Dense Worlds, we use a concentra-
tion parameter α = 1 which results in a uniform distribution
over the simplex.
To derive an analytic form for the Bayesian estimate of Dense
Worlds, we define the matrix F such that Fass′ is a count
of the number of times a, s → s′ has occurred in the data.
Since each layer �̂as· of the CMC kernel is independently
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distributed, its posterior distribution can be computed as
follows:

f (Θ|F) =
∏

s′ Θ
Fass′
ass′ · ∏s′ Θass′α−1/Z(α)

p(F)

=
∏

s′ Θ
Fass′ + α−1
ass′

Z(α)p(F)
= Dir(F + α)

Thus, the posterior distribution is also Dirichlet and the
Bayesian estimate �̂ is simply the mean of the distribution:

�̂ass′ = Fass′ + α∑
s∗ Fass∗ + α

= Fass′ + 1∑
s∗ Fass∗ + 1

(13)

In this form, we find that the Bayesian estimate for Dense
Worlds is simply the relative frequencies of the observed data
with the addition of fictitious counts of size α to each bin.
The incorporation of this fictitious observation is referred
to as Laplace smoothing and is often performed to avoid
over-fitting (Manning et al., 2008). The derivation of Laplace
smoothing from Bayesian inference over a Dirichlet prior is a
well known result (MacKay and Peto, 1995).

(2) Mazes consist of N = 36 states corresponding to rooms in a
randomly generated 6 by 6 maze and M = 4 actions corre-
sponding to noisy translations, each biased toward one of the
four cardinal directions. An example is depicted in Figure 1.
Walking into a wall causes the agent to remain in its cur-
rent location. Thirty transporters are randomly distributed
amongst the walls which lead to a randomly chosen absorb-
ing state (concentric rings in Figure 1). States that are not one
step away from the originating state (either directly, through
a portal, or against a wall) are assumed to have zero prob-
ability of resulting from any action. Transition probabilities
for states that are one step away are drawn from a Dirichlet
distribution with concentration parameter α = 0.25, and the
highest probability is assigned to the state corresponding to
the preferred direction of the action. The small concentration
parameter distributes more probability weight in the corners
of the simplex resulting in less entropic transitions.
Letting Ns denote the number of states one-step away from
state s, the Bayesian estimate for maze transitions is given by:

�̂a, s, s′ = Fass′ + α

Ns · α +∑
s∗ Fass∗

(14)

As with Dense Worlds, the Bayesian estimate (Equation 14)
for mazes is a Laplace smoothed histogram.

(3) 1-2-3 Worlds consists of N = 20 states and M = 3 actions. In
a given state, action a = 1 moves the agent deterministically
to a single target state, a = 2 brings the agent with probability
0.5 to one of two possible target states, and a = 3 brings the
agent with probability 0.333 to one of three potential target
states. The target states are randomly and independently
selected for each transition distribution. An absorbing state

FIGURE A2 | Example 1-2-3 World. 1-2-3 Worlds consist of 3 actions
(separately depicted) and 20 states (depicted as nodes of the graphs).
The transition probabilities associated with taking a particular action are
depicted as arrows pointing from the current state to each of the possible
resultant states. Arrow color depicts the likelihood of each transition.
The absorbing state is depicted in gray.

is form by universally increasing the likelihood that state 1
is chosen as a target. Explicitly, letting �a be the set of all
admissible transition distributions for action a:

�a :=
{

Θ ∈ R
N |

∑
s′

Θs′ = 1 and Θs′ ∈
{

0,
1

a

}
∀s′

}

the transition distributions are drawn from the following
distribution:

p(Θas·) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if Θas· /∈ �a

1 − 0.75a(N − 1
a − 1

) else if Θas1 = 1
a

1 − (1 − 0.75a)(N − 1
a

) otherwise

(15)

Bayesian inference in 1-2-3 Worlds differs greatly from Mazes
and Dense Worlds because of its discrete prior. If a, s → s′
has been previously observed, then the Bayesian estimate for
�̂ass′ is given by:

�̂ass′ = 1

a
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If a, s → s′ has not been observed but a, s → 1 has, then the
Bayesian estimate is given by:

�̂ass′ = 1 − |S ∗|
a

N − T

Here T is the number of target states that have already been
observed. Finally, if neither a, s → s′ nor a, s → 1 have been
observed, then the Bayesian estimate is:

�̂ass′ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
a · 1 − 0.75a

1 +
((a − 1

T

)− 1
)

· 0.75a
if s′ = 1

1 −
(

T
a + �̂as1

)
N − T − 1

otherwise

A3 PROOF OF THEOREM 2
Claim. If an agent is in state s and has previously collected data �d,
then the expected information gain for taking action a is given by:

PIG(a, s) : = Es∗,Θ|�d[IG(a, s, s∗)]
=
∑

s∗
�̂ass∗DKL(�̂

a, s→s∗
as· ‖�̂as·) (16)

Proof.

Es∗,Θ|�d[IG(a, s, s∗)] = Es∗,Θ|�d

[∑
s′

Θass′ log2

(
�̂

a, s→s∗
ass′

�̂ass′

)]

= Es∗|�d

[∑
s′

E
Θ|�d, s∗ [Θass′] log2

(
�̂

a, s→s∗
ass′

�̂ass′

)]

= Es∗|�d

[∑
s′

�̂
a, s→s∗
ass′ log2

(
�̂

a, s→s∗
ass′

�̂ass′

)]

= Es∗|�d
[

DKL(�̂
a, s→s∗
as· ‖�̂as·)

]
=
∑

s∗
p(s∗|a, s, �d)DKL(�̂

a, s→s∗
as· ‖�̂as·) by (5)

=
∑

s∗
�̂ass∗DKL(�̂

a, s→s∗
as· ‖�̂as·)

A4 DERIVATION OF MEAN PATH LENGTH
To optimize navigation to a target state s∗, we consider modified
transition probabilities:

pnavigation(s′|a, s) =
⎧⎨⎩

�ass′ if s �= s∗
1 if s = s′ = s∗
0 otherwise

A navigational utility function is then defined as:

Unavigation(s) =
{−1 if s �= s∗

0 otherwise

An optimal policy π is derived through value-iteration as follows:

Q0(a, s) := Unavigation(s)

Qτ−1(a, s) := Unavigation(s) +
∑

s′ ∈ S

pnavigation(s′|a, s) · Vτ (s′)

where Vτ (s) := max
a

Qτ (a, s)

Value-iteration is continued until V converges, and the optimal
policy is then defined as:

π(s) = arg max
a

Qconvergence(a, s)

The expected path length to target s∗ is then calculated as:

E[steps to s∗] =
∑

s

− 1

N
Vconvergence(s)

The mean path length is then taken to be the average of the
expected path length over the N possible target states.

A5 DERIVATION OF PEIG
Claim. Surprise, as employed by Storck et al. (1995), is equal to
the posterior expected information gain. That is, if an agent is in
state s and has previously collected data �d, then the expected infor-
mation gain for taking action a and observing resultant state s∗ is
given by:

Surprise(a, s, s′) : = DKL(�̂
�d∪s∗
as· ‖�̂

�d
as·) = E

Θ|�d∪s∗ [IG(a, s, s∗)]
(17)

Proof.

E
Θ|�d∪s∗ [IG(a, s, s∗)] = E

Θ|�d∪s∗

[∑
s′

Θass′ log2

(
�̂

�d∪s∗
ass′

�̂
�d
ass′

)]

=
∑

s′
E

Θ|�d∪s∗ [Θass′] log2

(
�̂

�d∪s∗
ass′

�̂
�d
ass′

)

=
∑

s′
�̂

�d∪s∗
ass′ log2

(
�̂

a, s→s∗
ass′

�̂
�d
ass′

)

= DKL(�̂
�d∪s∗
as· ‖�̂

�d
as·)
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A6 METHODS FOR ASSESSING PERFORMANCE IN GOAL-DIRECTED
TASKS

To assess the general utility of an agent’s internal model, the
agent is first allowed to explore for a fixed number of times steps.
After exploring, the agent is asked, for each goal-directed task,
to choose a fixed policy that optimizes performance under its
learned model:

Navigation: To optimize navigation to a target state s∗ under
internal model �̂, we took an approach analogous to our
method for calculating the mean path length of a world
(see Appendix A4). We first consider modified transition
probabilities:

pnavigation(s′|a, s; �̂) =
⎧⎨⎩

�̂ass′ if s �= s∗
1 if s = s′ = s∗
0 otherwise

A navigational utility function is then defined as:

Unavigation(s) =
{−1 if s �= s∗

0 otherwise

An optimal policy π�̂ is derived through value-iteration as
follows:

Q0(a, s) := Unavigation(s)

Qτ−1(a, s) := Unavigation(s) +
∑

s′ ∈ S

pnavigation(s′|a, s; �̂) · Vτ (s′)

where Vτ (s) := max
a

Qτ (a, s)

This process is iterated a number a times, τconvergence > 1000,
sufficient to allow Q to converge to within a small fixed margin.
An optimal policy is then defined as:

π�̂(s) = arg max
a

Q−τconvergence(a, s)

The realized performance of π�̂ is assessed as the expected num-
ber of time steps, capped at 20, it would take an agent employing
π�̂ to reach the target state. A true optimal policy is calcu-
lated as above except using � instead of �̂. For each world and
each exploration strategy, navigation is assessed after t ∈ {25,
50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700,
800, 900, 1000, 1500, 2000, 2500, and 3000} exploration time
steps and compared to the true optimal strategy. Performance
difference from true optimal is calculated is averaged over the
tested exploration lengths, all starting states, and all target
states. The different explorative strategies are then ranked in
performance.
Reward Acquisition: Policies in reward acquisition tasks
are derived as above for navigational tasks except as
follows:

preward(s′|a, s; �̂) = �̂ass′

Ureward(s) ∼ Uniform([−1, 1])
π�̂(s) = arg max

a
Q−100(a, s)

Realized performance is assessed as the expected total rewards
accumulated by an agent employing π�̂ over 100 time
steps.
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