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The acquisition of olfactory information and its early processing in mammals are
modulated by brain states through sniffing behavior and neural feedback. We imaged
the spatiotemporal pattern of odor-evoked activity in a population of output neurons
(mitral/tufted cells, MTCs) in the olfactory bulb (OB) of head-restrained mice expressing a
genetically-encoded calcium indicator. The temporal dynamics of MTC population activity
were relatively simple in anesthetized animals, but were highly variable in awake animals.
However, the apparently irregular activity in awake animals could be predicted well using
sniff timing measured externally, or inferred through fluctuations in the global responses
of MTC population even without explicit knowledge of sniff times. The overall spatial
pattern of activity was conserved across states, but odor responses had a diffuse
spatial component in anesthetized mice that was less prominent during wakefulness.
Multi-photon microscopy indicated that MTC lateral dendrites were the likely source of
spatially disperse responses in the anesthetized animal. Our data demonstrate that the
temporal and spatial dynamics of MTCs can be significantly modulated by behavioral state,
and that the ensemble activity of MTCs can provide information about sniff timing to
downstream circuits to help decode odor responses.
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INTRODUCTION
Volatile odorants are sensed in mammals by olfactory sensory
neurons (OSNs), which converge on structures called glomeruli
in the olfactory bulb (OB) (Mombaerts, 2006; Sakano, 2010;
Murthy, 2011). Here, olfactory information is processed by an
intricate circuit of neurons, including several classes of interneu-
rons, and the processed output is carried by mitral/tufted cells
(MTCs) to a variety of cortical structures (Shepherd et al., 2004;
Mori and Sakano, 2011; Murthy, 2011; Wilson and Sullivan,
2011).

Neural recordings have offered ample evidence that odor rep-
resentation and processing in early neural circuits can be altered
by behavioral state (Kay and Laurent, 1999; Murakami et al., 2005;
Kiselycznyk et al., 2006; Rinberg et al., 2006; Doucette et al., 2007;
Doucette and Restrepo, 2008; Guerin et al., 2008; Tsuno et al.,
2008). The dynamics of inputs to glomeruli are altered in wak-
ing conditions, largely due to changes in sniffing and adaptation
(Kepecs et al., 2007; Verhagen et al., 2007; Carey and Wachowiak,
2011; Wachowiak, 2011). Postsynaptically, the spontaneous firing
of MTCs is much higher in awake animals compared to anes-
thetized ones (Rinberg et al., 2006). Interestingly, the activity of
MTCs is tightly modulated by sniffing, and odor-evoked changes
in MTC spiking often are apparent only when examined in the
context of sniffing, especially when animals are awake (Macrides
and Chorover, 1972; Cury and Uchida, 2010; Shusterman et al.,
2011). At least some of the changes observed in the activity of
MTCs in awake animals comes from altered sniff parameters

(Carey and Wachowiak, 2011), but additional effects due to top-
down circuit modulation remain to be investigated. There is
substantial feedback from olfactory cortical regions and mid-
brain neuromodulatory centers to the OB (Price and Powell,
1970; Davis and Macrides, 1981; Luskin and Price, 1983; Kay and
Laurent, 1999; Matsutani and Yamamoto, 2008), which are likely
to be modulated in a state-dependent manner.

To date, state-dependent changes in MTC activity have been
studied at a single neuron level using extracellular recordings
(Rinberg et al., 2006; Tsuno et al., 2008). With the exception of
a recent study (Kato et al., 2012), the modulation of population
dynamics of MTC activity as a function of behavioral state has
not been studied, although inputs to the OB have been imaged in
awake rodents (Verhagen et al., 2007; Vincis et al., 2012). Imaging
can also offer information not easily obtained with electrical
recordings—for example, the extent of propagation of activity
along the lateral dendrites of MTCs, which can influence and
be influenced by granule cell activity (Margrie et al., 2001; Chen
et al., 2002; Lowe, 2002). Indeed, a recent study noted that the
activity of mitral cells and granule cells were inversely related, but
the spatial and temporal dynamics were not examined (Kato et al.,
2012).

We sought to investigate how the population activity of out-
put neurons is different in anesthetized and awake conditions
using gene-targeted mice in which all principal neurons in the
OB express GCaMP2, a genetically-encoded calcium indicator
(Diez-Garcia et al., 2005; Fletcher et al., 2009). By imaging
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population activity in head-restrained animals and monitoring
their sniffing simultaneously, we directly compared the spa-
tiotemporal dynamics of postsynaptic activity in the awake and
anesthetized states.

MATERIALS AND METHODS
SUBJECTS
For most of our experiments, we used Kv3.1-GCaMP2 mice, in
which GCaMP2 expression is driven by a promoter fragment
from the Kv3.1 potassium channel (Diez-Garcia et al., 2005).
Previous studies have found that the expression of GCaMP2 in
these mice is confined largely to mitral and tufted cells (Fletcher
et al., 2009). Data from nine adult (50–120 days old) mice
were used for analysis (six for widefield, three for multipho-
ton). We also used four adult (p60) OMP-synaptopHluorin mice
(Bozza et al., 2004) for some experiments.

HEADPLATE AND SNIFF CANNULA IMPLANTATION SURGERY
The initial surgery consisted of two stages performed in one
session. The first was to implant the headplate and the second
to implant a cannula used for sniff measurements. Adult male
Kv3.1-GCaMP2 mice (50–120 days old) were anesthetized with
a Ketamine/Xylazine (100 mg/kg:10 mg/kg, i.p., Webster) mixture
and set on a stereotactic mouse holder. Body temperature was
monitored with an external probe placed under the abdomen
and maintained at 37◦C with a homeothermic heating blanket
(507220F, Harvard Apparatus). The scalp was retracted to expose
the skull. After thorough cleaning and drying of the skull, a thin
layer of cyanoacrylic adhesive (Vetbond, 3M) was applied to the
skull and surrounding skin. Finally, a custom cut titanium head-
plate (Wienisch et al., 2012) was attached using acrylic cement
(Jet Repair, Lang Dental). After the acrylic adhesive hardened
(approximately 20 min), the sniff cannula implantation surgery
was started. The area of the skull above the right nasal cavity and
immediately anterior to the head-plate was thinned and removed.
The epithelium was then punctured with a thin needle. After
widening the hole and drying the cavity by removing blood and
mucus, a short piece of medical tubing (#425415, BD Intramedic)
was placed on top of the skull, aligned over the hole, and fixed
with the acrylic cement.

HEAD-FIXATION TRAINING
To minimize motion artifacts during imaging sessions, animals
were trained to remain on a custom-built head-fixation setup.
Adapting the methods of Dombeck et al. (2007), animals were
placed on a styrofoam wheel (8′′ diameter, 4′′ wide, Smoothfoam,
Plasteel Corp). The center of the wheel was pierced with a 2 mm
diameter steel rod acting as an axle, and this axle was mounted
to posts damped by soft springs. This method offered the ani-
mals’ forward and backward freedom of motion while prevent-
ing uncontrolled lateral motion that a styrofoam ball may have
(Wienisch et al., 2012). Training was started 48 h after headplate
implantation surgery. Animals were acclimated to being placed
on the wheel for short periods of time for multiple sessions daily.
To further enhance animal place preference, animals were water
restricted when not on the wheel and given 10% sucrose water
ad libitum while on the wheel.

CRANIAL WINDOW SURGERY
Mice were acclimated on the wheel for a minimum of 1 week
before their craniotomy surgery and imaging sessions. The animal
was anesthetized as described above, and a craniotomy was made
over the left OB using a dental drill, ensuring that the dura was
not damaged. After removing a portion of the skull, the surface
of the brain was kept moist with artificial CSF (135 mM NaCl,
5.4 mM KCl, 5 mM HEPES, and 1.8 mM CaCl2, pH 7.4). The
cranial window was then covered with 1.2% agarose (in aCSF)
and closed with a 5 mm diameter glass coverslip. Mice were given
doses of the analgesic Buprenorphine HCl (0.5 mg/kg) as needed,
and imaging was conducted the same day, and up to 11 days
post-surgery.

ODOR DELIVERY
For all imaging experiments, odor was delivered through a
custom-built olfactometer controlled through custom-written
LabView code (National Instruments). Fresh air, odor, and again
fresh air were delivered for 10 s each, with a 60 s inter-trial
interval. In a few experiments, odor stimulus was on for only
5 s. Where applicable, these instances are noted in figures by
an appropriate time scalebar. The following odors and con-
centrations (% volume pure odor per volume of mineral oil)
were used: isopropyl tiglate (1:100), ethyl valerate (1:100), valer-
aldehyde (1:100), ethyl butyrate (1:100), 4-heptanone (1:100),
isoamylamine (1:100), methyl tiglate (1:100), heptanal (1:100),
thiazole (1:100), ethyl propionate (1:100), ethyl tiglate (1:1000),
ethyl tiglate (1:200), ethyl tiglate (1:100), ethyl tiglate (1:20), ethyl
tiglate (1:10), isoamyl acetate (1:1000), isoamyl acetate (1:200),
isoamyl acetate (1:100), isoamyl acetate (1:20), and isoamyl
acetate (1:10).

SNIFF MONITORING
Sniffing behavior was monitored with real-time measurement of
intranasal pressure (Verhagen et al., 2007). The medical tubing
attached to the surface of the skull was covered with another piece
of medical tubing (#427435, BD Intramedic) such that the con-
nection was airtight. This tubing was then coupled to a pressure
transducer (CPXL04GF, Honeywell Inc.) via an 18 gauge-to-luer
stub adapter and Tygon tubing (1/8′′ ID, 1/4′′OD, Saint-Gobain).
The signal was amplified (DAM50, World Precision Instruments,
Inc.) before being acquired with an analog-to-digital converter
(USB-6009, National Instruments). Data was recorded using cus-
tom software written in LabView (National Instruments).

WIDE-FIELD IMAGING
Ketamine-Xylazine (100 mg/kg: 10 mg/kg, i.p.) was used to anes-
thetize animals for the “anesthetized” imaging trials. The OB
was visualized using a custom-built microscope outfitted with
a 10X objective (UPLFLN 10X, Olympus America). GCaMP2
was imaged using excitation light from a blue LED (Luxeon
V Star, 470 nm, Philips Lumileds) and a fluorescence filter set
(HQ480/40×, Q505LP, HQ510LP, Chroma Technology Corp.).
A CCD camera (Sensicam HP, Cooke Corp.), binned 8 × 8, was
used to image the OB at 33 Hz. With the magnification and
binning, the image resolution was 6.2 μm per pixel, with an
overall image dimension of 990 × 790 μm. Image acquisition,
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synchronized to odor delivery, was performed through custom-
written LabView (National Instruments) software.

MULTI-PHOTON IMAGING
A custom-built two-photon (2P) microscope was used for multi-
photon imaging experiments. The OB was imaged with a
water immersion objective (20×, 0.95 NA, Olympus America)
at 910 nm using a Ti: Sapphire laser (Mai Tai, Newport
Corporation). Image acquisition, synchronized to odor deliv-
ery, was done through custom-written LabView (National
Instruments) software. For most experiments, images were
obtained with a pixel resolution of 1 μm, with frame rates of
4 Hz. For experiments that involved comparisons with sniffing
(Figure 5C, for example), higher frame rates of 8 Hz were used,
with a consequent loss in spatial resolution (2 μm).

OVERALL TIMELINE OF EXPERIMENTS
Day 0: Surgery for head implant and sniff cannula (adult mice
50–120 days old)
Day 2: Start of head restrained training on wheel
Day 9: Cranial window surgery for imaging
Day 9–20: Imaging. (We noticed no difference in the data
whether imaging occurred on day 9 or later).

DATA ANALYSIS
All data analysis was performed using custom scripts written in
Matlab (Mathworks). Sniffing signals were processed by mean
filtering the raw analog signal and finding the inhalation peaks
based on thresholding the slope and raw signal. Each trial was
individually examined, and false positives and negatives were
corrected. From the sniff peak data, frequency could be calcu-
lated as the inverse of the time between each peak. Raw image
data were aligned to sniff data using transistor-transistor logic
(TTL) signals of exposure times from the camera that was simul-
taneously collected with sniffing signals. The raw image stacks
were used to create �F (odor signal minus air signal) glomeru-
lar response maps. Time courses were extracted from the image
stacks by selecting responding glomeruli as regions of interest
(ROI) and computing the mean fluorescence of the ROI over
the course of the trial. Many of the anesthetized odor responses
contained spatially extensive signals, making it difficult to iden-
tify individual glomerular hotspots. To better isolate hotspots in
anesthetized animals (for visualization), we applied a Gaussian
spatial filter with a standard deviation of 50 μm to the response
image and subtracted this out. Such filtering was not done when
we specifically analyzed diffuse responses.

PREDICTION ANALYSIS
Each sniff-triggered response (STR) was found by taking the flu-
orescence time course data surrounding each inhalation peak. All
of the STRs were then averaged to derive the sniff-triggered aver-
age (STA), the shape of the generic response. This shape was then
scaled to match the amplitude of the first STR of the odor period.
This scaled STA became the predicted response evoked by a sniff,
and at every sniff peak, the STA was added to the prediction time
course. For added complexity of modeling, we added the decay in
response as an additional parameter. The actual amplitude of each

STR was divided by the amplitude of the first STR. This normal-
ized relative amplitude was then used as a lookup table to adjust
the individual STR amplitudes as a function of sniff number.
Beyond 40 sniffs, there was large variability due to small num-
ber of events for averaging and we used an extrapolated linear
regression as the decay function.

To compare the prediction algorithms, we used the Extra Sum
of Squares F-test (Motulsky and Christopoulos, 2004). We cal-
culated the mean sum of squares of the residuals for each trial.
The sum of all the mean values became the total sum of squares.
Degrees of freedom were calculated as the number of trials minus
the number of parameters used.

GLOBAL RESPONSE PATTERNS
Glomerular hotspots were chosen for each mouse if they
responded to any of the odors in either the anesthetized or awake
states. These hotspots were then used to create response vectors
for each odor, consisting of the �F values for each of the hotspots.
Whole-field correlation studies were done to more objectively
analyze global patterns. Images were filtered with a circular aver-
aging filter with a 5 μm radius. The mean �F images in both the
anesthetized and awake states were compared by linear correla-
tion. In order to account for misalignment of the images, 1600
different cuts were taken, representing 35 μm (20 pixel) shifts
in each direction, left, right, up, and down. The best correla-
tion was taken to be the best alignment. Positive controls were
calculated by finding the correlations between trials of the same
odor within the anesthetized and awake conditions. A negative
control was calculated by averaging the correlations between the
mean anesthetized �F image of a given odor and a mean awake
�F image of a random different odor. The mean correlation
coefficients from multiple experiments were compared using a
Komogorov–Smirnov test.

DIFFUSE RESPONSE
To examine spatially diffuse responses we drew concentric rings
of 1.7 μm thickness around the glomerular hotspot and calcu-
lated the �F within each annulus. Points in the concentric rings
that overlapped other hotspots were excluded. The average �F
was then plotted as a function of distance from the glomerulus.
For each trial, an exponential function was fitted, and the decay
constant, τ, was calculated. The average τ values for anesthetized
and awake were compared using the Kolmogorov–Smirnov test.
Diffuse responses were also assessed by taking a Fourier transform
of the �F images for each odorant and calculating the power as a
function of spatial frequency. The relative power in low frequen-
cies (0–2.5 mm−1) compared to high frequencies (25–35 mm−1)
was used as an index of diffuse responses in anesthetized and
awake conditions.

AWAKE TRIAL VARIABILITY
Responses for individual awake trials were calculated in the same
way as those for the analysis of global response patterns (see
above). Scatterplots were created by pairing every awake trial with
a different trial of the same odor. The �F values for each glomeru-
lus in the two trials were plotted against each other. Normalized
scatterplots adjusted �F values by either subtracting or dividing
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by the �F of the whole bulb. Correlations of the scatterplots
were compared using Fisher’s z-test. Individual fluorescence time
courses were adjusted by subtracting out the whole-bulb time
course. The trial-to-trial variability was first measured by calcu-
lating the average standard deviation between trials at each point
in the time course. The average standard deviations were com-
pared using the Kolmogorov–Smirnov test. Trial variability was
also compared by plotting the �F values of individual trials vs.
the mean �F value of the odor period across all trials.

Average data throughout the paper are reported as mean ± SD
unless otherwise noted. The sample number refers to number of
animals unless noted otherwise, often with data recorded from
multiple sessions.

RESULTS
We used the Kv3.1-GCaMP2 mice because it was the most
appropriate gene-targeted mouse line available at the time this
study was initiated. Previous studies indicated that expression of
GCaMP2 is largely confined to excitatory neurons—mitral and
tufted cells (Fletcher et al., 2009). In the glomerular layer, ET
cells are the main cell types expressing the indicator and none of
the GABAergic neurons (identified with GAD67 staining) express
GCaMP2 (Fletcher et al., 2009). Therefore, fluorescence signals
recorded in wide-field microscopy arises mainly from principal
cells in the olfactory bulb, with potentially some contamination
from GAD65-expressing (Kiyokage et al., 2010) or unidentified
non-GABAergic neuron in the glomerular layer.

DYNAMIC SNIFFING BEHAVIOR IN AWAKE MICE
We imaged post-synaptic neural responses and simultaneously
recorded respiratory behavior in anesthetized and awake head-
fixed GCaMP2 mice during passive odor delivery (Figure 1).
Mice were trained to tolerate the head-fixed setup (Wienisch
et al., 2012), but odors were not associated with a task or
reward. Anesthetized mice displayed slow and regular respi-
ration patterns accompanied by individually discernible flu-
orescence changes (Figure 1C). By contrast, awake mice had
rapid, irregular respirations with less distinct individual responses
(Figure 1D). In line with previous studies, we found that res-
piration in the anesthetized state was regular, with frequencies
falling within a narrow range (0.79 ± 0.81 Hz, n = 6 animals)
(Figure 1E).

Respiration in awake mice (sniffing) occurred at higher fre-
quencies than in anesthetized mice, and the distribution covered
a much larger range (Figure 1E; 2.81 ± 1.30 Hz, n = 6 animals).
Interestingly, awake mice displayed a bimodal distribution of
frequencies with peaks at 1.25 and 3.15 Hz. The faster sniffing fre-
quency in our head-restrained preparation was lower than those
seen in freely moving animals (Kepecs et al., 2007; Wesson et al.,
2008b), but similar to that reported in other studies of head-
restrained mice (Shusterman et al., 2011). We also noticed that
mice tended to display more vigorous sniffing behavior during
the first 2 s after the beginning and end of the odor presenta-
tion (Figure 1C, arrows), perhaps due to increased exploratory
behavior upon introduction or cessation of novel stimuli (Kepecs
et al., 2007; Wesson et al., 2008b). Indeed, while the distribu-
tion of sniffing behavior during the air period remained bimodal,

FIGURE 1 | Awake GCaMP2 mice display dynamic sniffing behavior

compared to anesthetized mice. (A) Average-intensity image of the
olfactory bulb in the absence of odor stimulation. A, anterior; L, lateral; M,
medial; P, posterior. (B) Schematic showing the expression of GCaMP2 in
M/T cells. (C) Fluorescence time course of a single glomerulus in an
anesthetized mouse with the corresponding nasal air pressure tracing. Gray
shaded area represents the period of odor stimulation. (D) Fluorescence
time course and sniff tracing for an awake mouse. Arrows indicate sniff
bursts immediately after odor onset and offset. (E) Distribution of sniff
frequencies in anesthetized (blue) and awake (red) mice. Inset depicts the
same histogram normalized to the peak frequencies. (F) Normalized
distribution of sniff frequencies in awake mice during the air period (black),
odor onset period (green), and odor offset period (yellow).

respiratory patterns during the onset and offset were shifted
toward higher frequencies (Figure 1F). In addition, although we
were unable to compare absolute sniff amplitudes due to mea-
surement variability, we were able to look for patterns in the
relative changes in sniff amplitude. We found that the sniff ampli-
tude was larger at odor onset (1.24 ± 0.51 relative increase versus
air period, n = 6 animals, p < 0.001, two-sample t-test) and off-
set (1.27 ± 0.49 vs. clean air period, p < 0.001, two-sample t-test)
in awake animals. Not surprisingly, respiration amplitude was
not modulated systematically in anesthetized animals, and sniff
amplitude was more variable in awake animals (standard devia-
tion of 0.21 and 0.41 for anesthetized and awake mice respectively,
p < 0.001, two-sample F-test).
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SNIFF BEHAVIOR IS REFLECTED IN THE FLUORESCENCE SIGNAL
We next looked to see how differing respiratory behaviors affected
the fluorescence responses from MTCs. In anesthetized animals,
each inhalation induced an unambiguous response with complete
or near complete recovery between breaths (Figure 2A). In awake
mice, the sniff-locked response was less obvious, but despite a
lower signal to noise ratio, individual modulations could be rec-
ognized even during periods of rapid sniffing (Figures 2B,C).
Initial experiments indicated that odor stimulation led to focal
increases in fluorescence, as well as more diffuse changes across

FIGURE 2 | Sniff behavior has an effect on odor responses. (A) Time
course of fluorescence in the OB in an anesthetized mouse with
corresponding sniff trace, showing individual fluorescence fluctuations in
response to a sniff. (B) Awake mouse time course. Individual sniff triggered
responses are less easily identified. (C) Expanded version of the boxed
region in (B) with the original fluorescence values (red) and a filtered time
course (black). Fluorescence signal was filtered to remove high frequency
noise. (D) Left, �F image from stimulation with 1% ethyl valeraldehyde.
Responding glomerulus is circled in red. Right, time course plots from the
encircled glomerulus (red) and the whole bulb (green) with corresponding
sniff traces. Sniff bursts are correlated with response spikes across the
whole bulb, including both responding and non-responding areas, even
during clean air delivery. (E) Time courses and sniff traces from awake mice
depicting the effect of sniff bursts on glomerular activity.

large regions of the dorsal surface. We noticed that the response
signals averaged over the entire imaged region of the OB showed
clear modulation with respiration, and we analyzed these sig-
nals first (Figure 2D). Examination of the fluorescence traces
revealed that sniff bursts in awake mice were clearly associated
with increased fluorescence activity (Figures 2D,E). Intriguingly,
rapid sniffing could induce clear fluorescence rises even during
clean air delivery. To ensure that the whole-bulb responses were
not simply contaminations of glomerular odor responses, we also
excluded odor response hotspots and noted similar modulation
with respiration in “non-responding” areas (data not shown).
These modulations were not simply broad fluctuations related to
hemodynamics (Verhagen et al., 2007), because they were clearly
aligned to respiration. In addition, analysis of similar fluorescence
changes in the OMP-spH animals revealed much slower sniff-
burst-induced changes, as expected from a much slower reporter
of presynaptic vesicle traffic. These data indicate that the modula-
tion of fluorescence we observe is a function of the actual activity
reporter (GCaMP2 or spH) rather than some other indirect index
of activity such as hemodynamics or movement during sniffing.

A simple explanation for the increased post-synaptic activity
during sniff bursts is temporal summation of fluorescence sig-
nals, which do not return to baseline in the short time between
sniffs. We set up a simple prediction algorithm to test this idea.
Using all trials (n = 6 animals, >4 sniffs per animal in anesth,
>30 sniffs per animal in awake), we generated a normalized STA
that represented the average fluorescence response evoked by a
single sniff, as well as the average sniff shape (Figure 3A). We refer
to breaths taken in the anesthetized condition as sniffs to simplify
the language when referring to STAs. Interestingly, the shape of
the breaths was different in awake and anesthetized animals—
inhalation occurred first in anesthetized animals, but a brief
exhalation preceded inhalation in awake animals. Because awake
mice tended to sniff rapidly, the raw STA was contaminated by
subsequent sniffs and did not fully recover to baseline. Therefore,
we used a simple exponential extrapolation to fully account for
return to baseline. We then used the STA to predict fluores-
cence changes based on the timing of sniff (Figure 3B). The
simplest fitting algorithm we used involved a single amplitude
variable that matched the amplitude of the first STR after odor
onset, and remained the same throughout the odor period. The
temporal summation of all the STRs yielded the predicted time
course shown in Figure 3B. Examination of the fluorescence
traces made it clear that a single amplitude value throughout
the odor period could not describe the habituating fluorescence
amplitudes. We empirically obtained the relative amplitude of
the STR as a function of sniff (or breath) number (Figure 3C).
We used this relation between amplitude and sniff/breath num-
ber as a lookup table to adjust the amplitude of the predicted
fluorescence response to each sniff/breath.

Fluorescence changes in anesthetized animals were predicted
well by a simple algorithm with a single value for the amplitude
of STR (Figure 3D). Adjusting for habituation resulted in a statis-
tically significant (p < 0.001, Extra sum of squares F-test, n = 4
animals) but small change (weighted sum of squares of the resid-
uals = 0.195 without habituation parameter, 0.192 with habitua-
tion parameter). This is presumably because breaths were spaced
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FIGURE 3 | Sniffing behavior can be used to predict the glomerular

response. (A) Top, normalized sniff-triggered average representing the
generalized shape of the glomerular response to a single sniff in an
anesthetized (blue) and awake (red) mouse. Bottom, average sniff
traces showing the general shape of a single sniff in the two
conditions. (B) Generation of the prediction time course. At each peak
in inhalation (gray lines), the sniff-triggered average (green) is added to
a baseline value. The sum of all the sniff-triggered averages is the

prediction time course (pink). (C) Sniff triggered response amplitude as
function of sniff number. Values are relative to the amplitude of the
first sniff-triggered response and normalized to the peak sniff-triggered
average. These values were used as a lookup table adjust the
sniff-triggered averages (D,E). Examples of prediction time courses for
anesthetized (D) and awake (E) animals. The images on the left are
�F projections with white arrows indicating the glomerulus used to
derive the time courses.

well apart and there were too few breaths in an odor period to
have any significant habituation. In awake animals, however, the
prediction algorithm with single, fixed amplitude was less accu-
rate (Figure 3E). The predicted responses tended to overestimate
the actual time course, especially later in the odor period, but this
was drastically improved by the empirically-derived decay param-
eter (Weighted sum of squares = 0.509 vs. 0.387 with habituation
parameter, p < 0.001, n = 4 animals).

We chose to use sniff number as the independent variable for
the sake of simplicity, but previous studies have suggested that
neural activity in the OB may be attenuated during periods of
high frequency sniffing (Verhagen et al., 2007). Adding sniff fre-
quency to the analysis was technically challenging because of large

variability across sessions, which led to a highly variable relation
between inter-sniff interval and fluorescence response amplitude.
Therefore, we acknowledge the effect of sniff frequency, but were
unable to quantitatively account for it.

Taken together, these results indicate that even though the sig-
nals recorded in the awake mouse are highly dynamic, much of
the fluctuation can be attributed simply to sniff behavior and
habituation.

SPATIAL PATTERN OF ACTIVITY IN AWAKE AND ANESTHETIZED MICE
We next sought to analyze spatial patterns of responses. As
expected from many previous studies of the inputs to the OB,
different odors evoked different glomerular response patterns
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(Figure 4A; awake responses). As noted above, odor responses
had focal as well as diffuse components. By removing low spa-
tial frequency components (see Materials and Methods), we were
able to highlight glomerular-scale responses (Figure 4B).

We compared the spatial pattern of activity to the same
odors in the anesthetized and awake animals. Visual inspection
suggested that the activation patterns were largely similar
(Figures 4B,C). We quantified the similarity of spatial pattern of
responses in the anesthetized and awake conditions by perform-
ing cross correlation analysis (using mean subtracted Pearson
correlation). For each odor, a single image of the response was
generated by taking the difference between the odor and the pre-
ceding control period. The correlation coefficient between the
corresponding response images in the anesthetized and the awake
state was obtained (Figure 4D). To account for uncontrolled
shifts in the imaging fields, we digitally shifted the images up to
35 μm and obtained the maximal correlation value. The average

correlation coefficient between anesthetized and awake response
patterns for the same odor was 0.47 ± 0.26 (N = 89 pairings, n =
6 animals). For comparison, we also obtained within-condition
correlations by splitting trials of the same odor and condition
into two groups. This value averaged 0.65 ± 0.28 (N = 645
pairings, n = 6 animals) and 0.55 ± 0.28 (N = 645 pairings,
n = 6 animals) in anesthetized and awake animals respectively,
which sets the maximum value that could be achieved when cor-
relating anesthetized and awake trials, given the experimental
variability. Both these values were significantly higher than the
awake-anesthetized correlation (p < 0.001 and p < 0.05 respec-
tively, Kolmogorov–Smirnov test). We also calculated the lower
bound by correlating randomized trials across anesthetized and
awake conditions (that is, not odor matched), which averaged
0.38 ± 0.24 (N = 89 pairings; Figure 4D) and significantly lower
than the odor matched awake-anesthetized correlation value (p <

0.05). The non-zero correlation in the randomized trials is likely

FIGURE 4 | Global glomerular patterns are conserved across behavioral

states. (A) Different odors show different response patterns. The images
shown are �F images of the response of a single awake mouse to 12
different odors, averaged over three trials. IT, Isopropyl Tiglate; EV, Ethyl
Valerate; V, Valeraldehyde; EB, Ethyl Butyrate; 4-H, 4-Heptanone; I,
Isoamylamine; MT, Methyl Tiglate; H, Heptanal; T, Thiazole; EP, Ethyl
Propionate; ET, Ethyl Tiglate; IA, Isoamyl Acetate; M, medial, A, anterior;
Scalebar, 250 μm. (B) Glomerular activation pattern in an anesthetized (left)

mouse and awake (right) after presentation of 10% ethyl tiglate. To more
clearly distinguish individual hotspots in the anesthetized animal, we filtered
the anesthetized image with a spatial high-pass filter (middle). Color bar
indicates �F. (C) Second example of the similarity between anesthetized and
awake activation patterns. These images were taken from a different mouse
exposed to 1% isopropyl tiglate. (D) Distribution of correlation coefficients
obtained from pair-wise comparison of spatial pattern of responses in
different conditions.
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to be a result of our choice of related odorants. Furthermore,
some trials tested the same chemical at different concentrations,
further increasing the correlation value.

MULTI-PHOTON IMAGING YIELDS GLOMERULUS-CONFINED SIGNALS
Wide-field imaging, while technically easy, does not readily
permit optical sectioning to obtain signals from a particular
depth. To record glomerular signals in isolation, we used multi-
photon microscopy in anesthetized and awake mice (Figure 5A)
(Wienisch et al., 2012). Robust odor-evoked responses could be
recorded in the glomerular layer from the M/T cell dendrites
with a signal to noise ratio that was substantially better than
that for wide-field imaging (Figures 5B,C). As observed with
wide-field imaging, odor responses were clearly sniff-locked in
the anesthetized preparation and more smoothed out in the
awake brains (Figure 5C). We also noticed that the resting flu-
orescence in the glomerular layer was higher in awake than in
anesthetized mice (1.14 ± 0.58 vs. 1.0 ± 0.65, N = 3 animals,
p < 0.01, paired t-test), in line with the higher spontaneous
activity in MTCs in the awake state (Rinberg et al., 2006).
Individual glomerular responses to odors could be readily iden-
tified due to lack of spatial blurring (Figure 5D). Taking advan-
tage of these demarcated responses, we compared the spatial

pattern of activity in the awake and anesthetized states in the
same animals. As shown in Figure 5E, the glomerular pattern of
responses was quite similar in the two states. The correlation of
the response pattern was 0.80 ± 0.15, which is slightly, but sig-
nificantly (p < 0.01, Kolmogorov–Smirnov test) lower than the
within state-correlation (anesthetized) of 0.95 ± 0.06 (N = 2
animals, 30 glomeruli).

Our analysis indicated that the spatial patterns of activity
across behavioral states are significantly more similar than those
across odors, but there are some differences. One such difference
is discussed next.

SPATIALLY DIFFUSE ODOR RESPONSES IN ANESTHETIZED ANIMALS
Although the spatial pattern of responses to odors was generally
similar in anesthetized and awake animals, we noticed the pres-
ence of a spatially “diffuse” response in anesthetized mice that
was not as prominent in awake mice (Figure 6A). We quanti-
fied this diffuse response by selecting responding hotspots and
calculating the average fluorescence changes in the regions sur-
rounding the hotspots. This analysis indicated that fluorescence
changes in areas outside of the responding glomerulus were larger
in anesthetized animals, even when accounting for the increased
glomerular response in anesthetized animals (Figure 6B; decay

FIGURE 5 | Multi-photon optical sectioning confirms the consistency

of glomerular activation across states. (A) Schematic from
Figure 1A depicting optical sectioning. Multi-photon microscopy
excludes light from other layers, resulting in an image consisting
only of a thin layer (blue dashed line). (B) Multi-photon image
showing the resting activity of the glomerular layer. (C) Fluorescence
time courses and sniff plots for an anesthetized (top) and an awake
(bottom) mouse. Consistent with findings from wide-field microscopy,

anesthetized animals show clear, sniff-locked responses, while awake
animals display a noisier time course. (D) �F images from the OB
of an anesthetized (left) and an awake (right) mouse exposed to 1%
ethyl 3-hydroxybutyrate. Color bar indicates �F. (E) Response matrix
of 13 glomeruli and 20 odors in an anesthetized (top) and an awake
(bottom) mouse. Color bar indicates average �F in arbitrary
fluorescence units. Note that while awake animals had larger
glomerular responses, the activation patterns are similar.
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FIGURE 6 | Anesthetized, but not awake animals, have diffuse activation

patterns. (A) Widefield glomerular activation pattern in an anesthetized (left)
and awake (right) mouse after presentation of 10% ethyl tiglate. Note that it
is easier to distinguish individual activated glomeruli in the awake mouse.
(B) �F as a function of distance from the glomerulus in anesthetized (n = 6
mice, 256 glomeruli) and awake (n = 6 mice, 196 glomeruli) mice. Inset, �F
values are normalized to the �F of the glomerulus. Shaded areas denote
standard error. (C) Response images (�F) obtained with multi-photon

imaging in the glomerular layer. Note that neither anesthetized nor awake
animals had significant diffuse responses. (D) �F values as a function of
distance from the glomerulus. Blue, anesthetized (n = 6 mice, 77 glomeruli).
Red, awake (n = 6 mice, 99 glomeruli). (E) Odor responses in OB of
OMP-synaptopHluorin mice did not exhibit diffuse patterns. Shown are
example global activation patterns in the same mouse in anesthetized (left)
and awake (right) states. (F) Plot shows the �F values for the 18 labeled
glomeruli in anesthetized and awake conditions.

space constant of 326 ± 51.2 μm in anesthetized vs. 166 ± 32 μm
in awake, n = 6 animals, 263 spots, p < 0.001, Kolmogorov–
Smirnov test). The larger spatial spread of activation in the anes-
thetized animals was also observed when only isolated hotspots

were considered (140.2 ± 12.8 μm vs. 76.2 ± 12.8 μm, n = 6
animals, 242 spots, p < 0.001 Kolmogorov–Smirnov test).

The above analysis relied on identification of focal responses
and estimating the decay of surrounding fluorescence changes.
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To avoid any potential biases in identifying (or missing) focal
spots, we also used a different method to estimate the extent of
diffuse responses in the awake and anesthetized conditions. We
reasoned that more diffuse responses should lead to a greater rel-
ative weight to low spatial frequencies in the response images.
Therefore, we calculated the Fourier transform of the normalized
response images and averaged the power (square of the ampli-
tude) at each spatial frequency across multiple experiments in
the anesthetized and awake conditions. On average, there was
more power at low spatial frequencies in anesthetized animals
compared to awake ones, with the ratio of power in high and
low spatial frequencies averaging 0.25 ± 0.23 in anesthetized and
0.74 ± 0.39 in awake animals (p < 0.001; N = 60 odor responses
from 3 animals). These data confirm the findings from the decay
analysis above.

What could the source of the diffuse response be? A large part
of the signal recorded in the wide-field imaging mode is likely to
arise from the superficial layers, but signals from deeper layers [for
example from the external plexiform layer (EPL)] will still reach
the objective lens. To test whether the greater diffuse responses
in the anesthetized state arise from the glomerular layer, we
examined the data from multi-photon microscopy, which allowed
us to obtain thin optical sections. As noted earlier, odor-evoked
responses in the glomerular layer were spatially confined, and
quantification revealed no difference (p > 0.05, Kolmogorov–
Smirnov test) in the spatial decay constant between anesthetized
(5.7 ± 0.5 μm) and awake (7.1 ± 0.5 μm) animals (n = 3) in the
extent of spatial spread (Figures 6C,D). This argues against the
possibility that the diffuse responses are simply a manifestation of
a larger activation of more glomeruli in the anesthetized state.

The lack of a diffuse response in the glomerular layer is fur-
ther supported by studies in mice expressing the presynaptic
probe, synaptopHluorin, in OSNs (Bozza et al., 2004), in which
responses had similar spatial patterns in awake and anesthetized
states (Figures 6E,F). By elimination, our studies point to deeper
layers as the source of diffuse responses—most likely, the lateral
dendrites of M/T cells in the EPL. We were unable to obtain direct
recordings of multi-photon responses in the EPL in awake mice
due to large motion artifacts that affected imaging of fine M/T
lateral dendrites much more than glomerular layer processes.

CORRECTING TRIAL-TO-TRIAL VARIABILITY
The magnitude of responses to a given odor across multiple trials
in the awake animal appeared to be highly variable (Figure 7A).
This was also demonstrated earlier by the correlation analysis,
in which response pattern correlations between awake trials were
significantly lower than within anesthetized trials. However, when
responses of different glomeruli across different trials of a single
odor were plotted, it became clear that the variations in response
amplitude were correlated across the glomeruli (Figure 7B). The
overall global response fluctuates, but diminishes as a function
of trial number (Figure 7B). This variation is not simply due to
habituation because a given odor was presented with an inter-trial
interval of around 9 min. The correlated trial-to-trial fluctua-
tions in response amplitudes could arise either as a result of an
underlying additive background signal or a multiplicative ampli-
tude change. We tested each of these possibilities by obtaining the

average �F value over the whole bulb and either subtracting or
dividing this value from each glomerular response. First, a scat-
ter plot of the response amplitude on a particular trial against
response in another trial was created for all glomeruli and odors
(Figure 7C). When a similar plot was obtained with responses
adjusted by subtractive normalization, the scatter was signifi-
cantly reduced (Figure 7D; correlation coefficient 0.67 for nor-
malized plot vs. 0.58 for raw plot, N = 1400 trial pairings from
242 hotspots over 6 animals, p < 0.001, Fisher’s z-test). Simple
divisive normalization did not reduce variability (Figure 7E), and
actually reduced the correlation (0.26; p < 0.001, Fisher’s z-test
when compared to raw plot).

Given our previous findings that the sniffing behavior can
have significant effects on post-synaptic activity (Figure 3), it
seems likely that the trial-to-trial variability was a direct effect
of changing dynamics of sniffing. Downstream neural circuits,
such as the olfactory cortex, must take into account sniffing to
interpret changes in the activity of bulbar neurons—for exam-
ple, to distinguish between a response due to an odor and a
response generated simply by the act of sniffing. Such a “deconvo-
lution” could be accomplished if these downstream areas receive
exogenous information about sniff behavior (some corollary dis-
charge from respiratory centers, for example). Alternately, sniff
dynamics could be extracted directly from the responses of
bulbar neurons. Because responses due to the act of sniffing
would presumably affect both responding glomeruli and non-
responding glomeruli equally, we supposed that cortical neurons
could use average activity of the entire bulb as a proxy for sniffing
behavior.

To test this model, we used a simple algorithm to adjust for
sniff dynamics. We first derived a background time course using
the fluorescence activity of the entire dorsal OB. We then sub-
tracted the whole-bulb time course from the glomerular response
and compared the corrected glomerular responses of different
trials of the same odor. Even in examples with large variability
amongst trials (Figures 8A,B), using the whole-bulb fluorescence
time course as a proxy for sniff behavior significantly improved
the consistency of an odor response (Figures 8C–E). We quanti-
fied the variability for the raw and corrected signals by taking the
average standard deviation across different trials over the entire
odor period. The standard deviation was 3.06 ± 0.80 for the
raw traces and 1.81 ± 0.62 for the subtraction normalized traces
(Figure 8F; p < 0.001, Kolmogorov–Smirnov test, N = 2 ani-
mals, 79 hotspots). This improvement was not simply the result
of mathematical manipulation because adding the background
signal instead of subtracting increased the variability (Figure 8F;
standard deviation of 4.97 ± 0.1.42, p < 0.001 when compar-
ing either raw or subtraction-normalized data). The reduction
in trial-to-trial variability was observed irrespective of the time
period considered—the entire odor period or just the odor onset
(Figure 8F).

Our results demonstrate that using the whole-bulb “back-
ground” signal as a proxy for sniff behavior eliminates the need
for a separate respiratory input to the olfactory cortical processing
centers and allows the recovery of more consistent trial-to-trial
olfactory signals. This is illustrated in a schematic model, where
odors come on at unpredictable time and increase the activity
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FIGURE 7 | Awake mice had highly variable responses. (A) Glomerular
activation pattern in an awake mouse evoked by 10% ethyl tiglate. Images
represent two trials in the same mouse with the same odor. (B) Top, �F
responses of six responding glomeruli over 10 different trials. Trials of the
same odor were spaced approximately 9 min apart. Note that while the
absolute �F values varied significantly, the relative values of the six glomeruli
remained similar. Bottom, average whole-bulb response over the same 10

trials. While the average response decreases over the 10 trials, the
fluctuation cannot be explained solely by habituation. (C) Scatterplot
comparing the �F of a glomerulus in a single trial to the �F values of the
same glomerulus in each other trial. (D) Scatterplot similar to c but comparing
normalized �F values. �F was normalized by subtracting the average �F
value of the entire dorsal bulb. (E) Scatterplot comparing �F values
normalized by dividing �F values by the whole dorsal bulb �F.

by two-fold compared to sniffing clean air (Figure 8G). As illus-
trated, responses are not easily discerned in the noisy activity
of the glomerulus that receives input from the cognate odor-
ant receptor, but if sniff-locked activity from non-responding
glomeruli is subtracted, responses become clear (Figure 8G).

DISCUSSION
We used population imaging to find that the spatial patterns
of odor-evoked activity on the dorsal surface were generally
similar in anesthetized and awake animals, but with some differ-
ences due to infra-glomerular signals that can likely be attributed
to MTC lateral dendrites. The temporal dynamics of activa-
tion, on the other hand, were significantly different in the two
conditions, in part due to variation in sniffing patterns. The
highly variable sniffing pattern in awake animals led to sig-
nificant disparity in the dynamics of fluorescence signals from
MTCs over multiple trials. Relatively invariant odor-evoked
responses could nevertheless be extracted from the data by
removing the effects of sniffing, which could be obtained from the

population signals in principal cells without any direct knowledge
of sniff times.

SNIFF-LOCKED RESPONSES IN AWAKE MICE
Our recordings indicate that postsynaptic signals are clearly mod-
ulated by sniffing especially in awake mice. An earlier study
reported that OSN input signals were smeared at high fre-
quencies, and suggested that sniff-locked responses might be
lost during fast sniffing (Verhagen et al., 2007). However, spike
recordings from individual neurons (putative MTCs) have con-
firmed sniff-locking even at high frequencies (Cury and Uchida,
2010; Carey and Wachowiak, 2011; Shusterman et al., 2011). Our
population-level imaging revealed widespread synchronization of
neural activity by sniffing in the OB of awake mice, even at higher
frequencies.

The average STR had a briefer time course in awake ani-
mals compared to anesthetized ones, likely due to shortening of
response times during higher frequency of sniffing in awake ani-
mals. Indeed, recordings of single neurons in the anesthetized OB
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FIGURE 8 | Consistent response profiles in awake mice can be derived

by subtracting whole-bulb responses. (A) Glomerular activation profiles in
an awake mouse during two different trials (5 and 9, respectively) of 1%
valeradehyde presentation. (B) Response profiles of the glomerulus indicated
by the arrows in (A). (C) Glomerular response profiles plotted with the whole
dorsal-bulb background response. (D) Corrected glomerular response time
courses obtained by subtracting the background response from the
glomerular response. (E) Left, glomerular responses of 20 different trials of
the same odor. Right, time courses of the same 20 trials after background
subtraction. (F) Bar graph depicting the average standard deviation of each
point in the time course across all trials of the same odor (n = 6 mice,

79 total odors). Instead of subtracting the background response from the
glomerular response, the control algorithm added the two time courses
together. Errorbars indicate standard deviation. ∗∗∗p < 0.001. (G) Illustration
of the utility of removing global responses to better identify specific odor
responses. Odors come on at random times, and sniffing frequency varies
continuously. Each sniff produces a small response in all glomeruli when
there is no odor; when a particular odor is present, a stronger response
occurs in a glomerulus that is innervated by OSNs responding to that odor.
Some odor responses can be detected by simple threshold crossing (the
second and fourth odor response), but others become clearer when
responses from background glomeruli are subtracted.
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responding to “playback” of different sniff frequencies revealed
tightening of response times at high frequencies (Carey and
Wachowiak, 2011). One reason for this could be more rapid
recruitment of inhibition during higher frequency sniffing (Balu
et al., 2004; David et al., 2008; Carey and Wachowiak, 2011).

The temporal dynamics of evoked neural activity were highly
variable in the awake animal, in contrast to the repeatable
responses in the anesthetized state. Much of this variability was
related to the fluctuations in sniffing rate. As noted before by
others (Welker, 1964; Kepecs et al., 2007; Wesson et al., 2008b),
sniffing occurs at higher frequency in awake animals and the fre-
quency can be modulated rapidly. Sniffing did not follow stereo-
typed patterns seen in other studies, perhaps because odors were
passively delivered without any specific task. Changes in overall
neural activity could be observed even in the absence of odor
stimuli, simply from bursts of high frequency sniffs. Similarly,
even offset of odors could lead to apparent responses if sniff bursts
occurred, and different trials of the same odor stimulus yielded
highly differing responses. Because of this variability, odor-related
neural activity can only be interpreted with knowledge of sniffing.

SPATIAL PATTERN OF ACTIVITY IN AWAKE AND ANESTHETIZED
ANIMALS
A recent study using intrinsic optical imaging suggested that
odors lead to denser activation in the glomerular layer in
awake mice compared to anesthetized ones (Vincis et al., 2012).
However, respiration was not measured in those experiments and
it is possible that the stronger responses were due to increased
rate of sniffing, which might lead to increased concentrations of
odors in the epithelium as well as to greater temporal summation.
Another study in anesthetized animals indicated that the spatial
pattern of activity may vary with nasal airflow rate (Oka et al.,
2009).

We directly measured neural signals while monitoring sniffing
at the same time, and found that the spatial pattern of activity in
the glomerular layer was largely similar in different states, despite
the differences in the rates and amplitude of sniffing. Because
sniffing is much faster in awake animals, larger transient changes
occasionally did occur, though not affecting spatial pattern. Our
findings suggest that there may not be significant differences in
any lateral interactions that exist in the glomerular layer (Aungst
et al., 2003; McGann et al., 2005; Vucinic et al., 2006) in the awake
vs. anesthetized animals. Our data, however, do indicate that there
may be significant differences in lateral interactions below the
glomerular layer, as discussed below.

A recent study used cellular resolution imaging in vivo and
found that fewer mitral cells are activated by odors in awake mice
compared to anesthetized ones (Kato et al., 2012), but no infor-
mation was provided about the extent of propagation along lateral
dendrites. Imaging in the glomerular layer, that study also found
that the spatial pattern of responses were similar in anesthetized
and awake states, matching our findings.

GREATER LATERAL SPREAD OF ACTIVITY IN ANESTHETIZED ANIMALS
Although the spatial pattern of focal responses to odors
were similar in the anesthetized and awake states, spatially
diffuse responses were more prevalent in anesthetized state.

This was evident with wide-field imaging, where signals are
recorded from not just the glomerular layer. Optical section-
ing using multi-photon microscopy revealed that odor-evoked
responses respected glomerular boundaries in the glomerular
layer. Therefore, the origin of the diffuse signals recorded in wide-
field imaging must have been below the glomerular layer. It is
unlikely that the diffuse fluorescence arises from the soma of
MTCs for two reasons. First, fluorescence signals from very deep
layers (mitral cell layer, for example) are unlikely to reach the sur-
face given the scattering and absorption in the intervening layers.
Second, because MTCs associated with an active glomerulus are
likely to be located within a region below the glomerulus with a
radius of around 150 microns (Buonviso et al., 1991), the diffuse
responses cannot arise from spatially disperse somatic responses.
Mitral cell lateral dendrites, however, are very long and can reach
distances of 800 microns or more from the soma in rodents
(Orona et al., 1984; Urban and Sakmann, 2002). Because activity
can propagate along these secondary dendrites for long distances
(Margrie et al., 2001; Chen et al., 2002), activation of even a sin-
gle glomerulus can initiate laterally spreading activity. Thus, the
most likely source of the diffuse signals is the EPL, made up largely
of secondary dendrites of MTCs. In a different study from our
group, we have imaged mitral cell and EPL activity using a large
suite of odors and found that dendrites in the EPL were active
even in the absence of mitral cell somatic responses immediately
below (Albeanu and Murthy, unpublished data), supporting the
idea of lateral propagation in MTCs.

What mechanisms could account for reduced diffuse activity
in awake animals? Sniffing occurs more rapidly in awake animals,
and it is possible that the reduced lateral spread is related to the
higher sniffing rate. Faster sniffing may recruit greater glomerular
inhibition by more potent activation of external tufted cells and
subsequent recruitment of glomerular interneurons (Wachowiak
and Shipley, 2006; Carey and Wachowiak, 2011). While this
mechanism could explain the shorter time course of the STAs in
awake animals, it is unlikely to fully account for the reduced lateral
spread as it involves only intra-glomerular interactions that may
reduce the overall activity of M/T cells, and does not easily explain
the attenuation in lateral dendrites. Our data also argues against
such overall reduction in activity playing a role in determining
lateral spread because normalizing for response amplitudes did
not alter the basic finding. In addition, multi-photon microscopy
revealed little evidence for reduced overall postsynaptic activ-
ity in the glomerular layer in awake animals, and presynaptic
activity imaged in OMP-spH mice was also not weaker in awake
animals.

We favor an explanation for the reduced lateral spread of
activity in awake animals that involves attenuated propagation
along lateral dendrites, presumably due to increased inhibition
from granule cells, which can shunt action potentials in lateral
dendrites (Chen et al., 2002; Lowe, 2002). Odor-evoked granule
cell activity may be different in awake and anesthetized animals
(Kato et al., 2012), especially if cortical input to granule cells
(Price and Powell, 1970; Davis and Macrides, 1981; Matsutani
and Yamamoto, 2008; Restrepo et al., 2009; Boyd et al., 2012;
Markopoulos et al., 2012) is state-dependent. A recent study
indicated that granule cells are indeed more readily activated in
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awake animals (Kato et al., 2012), perhaps helping to shunt the
propagation of activity in M/T secondary dendrites.

DECODING ODOR RESPONSES WITHOUT DIRECT SNIFF INFORMATION
In awake animals, different trials of the same odor stimulus gave
rise to widely differing response profiles, largely due to variability
in sniffing. Areas downstream of the OB will need information
about sniff timing to decode MTC activity, and our studies indi-
cate that the overall population activity can itself be used to infer
sniff dynamics.

The population activity in the OB shows clear modulation
with breathing/sniffing even in the absence of odor stimuli, in line
with expectation from single neuron recordings (Macrides and
Chorover, 1972; Onoda and Mori, 1980). In many sensorimotor
systems, efference copies of motor commands are thought to be
relayed to sensory areas as reference signals (Crapse and Sommer,
2008; Hill et al., 2011; Wurtz et al., 2011). In the OB, however, the
respiration-coupled activity is likely to be driven by nasal airflow
(Grosmaitre et al., 2007; Phillips et al., 2012) and not due to an
efference copy of respiration signals from central areas (Phillips
et al., 2012).

We found that any variability associated with fluctuating rate
of sniffing can be removed by subtracting out population activ-
ity. If responses to odors are carried by a relatively sparse set
of neurons, and a large population of neurons is modulated by
sniffing, then an average of a random set of neurons should pro-
vide a reasonable proxy for breathing. Indeed, we found that a
simple global average of bulbar activity can be subtracted from
the individual glomerular response to reduce trial-to-trial vari-
ability. Physiologically, such a subtraction could be achieved by
broadly tuned inhibition converging on principal cells, which has
been recently described in the piriform cortex (Poo and Isaacson,

2009). Interneurons in many sensory cortical areas have broad
tuning and are thought to provide forms of globally averaged
inhibition to projection neurons. The removal of broadly cor-
related activity can act as a form of decorrelation that occurs in
many neural circuits—here it might serve to remove fluctuations
in neural activity arising simply due to sniff variability.

Such a referencing scheme could offer many biological advan-
tages. Reference signals originating from the olfactory periphery,
in contrast to those from central efferents, may be modulated by
changes in temperature, humidity, or other nasal conditions in
the same way as odor signals, allowing more accurate subtraction
of these variables. For example, a scheme that uses bulbar neu-
ral activity itself could balance out signal strength from each naris
and offer a coherent olfactory scene even in the face of chang-
ing differences in the condition of the two nares. Rodents have
a remarkable ability to identify and discriminate between simi-
lar odors with a single sniff (Uchida and Mainen, 2003; Abraham
et al., 2004; Wesson et al., 2008a). It will be interesting to deter-
mine whether such population activity is used to account for
trial-to-trial variability in sampling, perhaps by combining opto-
genetic modulation of global activity levels in one or both bulbs
and an odor discrimination task.

In summary, our study has revealed important differences in
the spatial and temporal patterns of activity in OB principal cells
in different behavioral states.
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