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Spike-timing dependent plasticity (STDP) is a biologically constrained unsupervised form
of learning that potentiates or depresses synaptic connections based on the precise timing
of pre-synaptic and post-synaptic firings. The effects of on-going STDP on the topology of
evolving model neural networks were assessed in 50 unique simulations which modeled
2 h of activity. After a period of stabilization, a number of global and local topological
features were monitored periodically to quantify on-going changes in network structure.
Global topological features included the total number of remaining synapses, average
synaptic strengths, and average number of synapses per neuron (degree). Under a range
of different input regimes and initial network configurations, each network maintained a
robust and highly stable global structure across time. Local topology was monitored by
assessing state changes of all three-neuron subgraphs (triads) present in the networks.
Overall counts and the range of triad configurations varied little across the simulations;
however, a substantial set of individual triads continued to undergo rapid state changes
and revealed a dynamic local topology. In addition, specific small-world properties also
fluctuated across time. These findings suggest that on-going STDP provides an efficient
means of selecting and maintaining a stable yet flexible network organization.
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INTRODUCTION
Determining how populations of interacting neurons self-
organize in the presence of noisy, rapidly changing stimuli and
variable temporal and physical constraints remains a major chal-
lenge in neuroscience. In addition to the complex unfolding
of developmental programs and environmentally-driven modi-
fications which occur early in life, neural networks continue to
evolve throughout the lifespan. This on-going process of self-
organization among interacting neurons is the central concern of
this report.

One form of self-organization that has been extensively
explored is spike-timing dependent plasticity (STDP). As the
name implies, STDP is a form of synaptic plasticity where changes
in synaptic strength are determined by the precise timing of pre-
synaptic and post-synaptic spikes: when the pre-synaptic neuron
fires before the post-synaptic neuron, the synapse is potentiated,
and when the post-synaptic neuron fires prior to the pre-synaptic
neuron, the synapse is depressed. STDP has been observed in
a wide-range of neural systems, from mammalian cortical and
sub-cortical networks to non-mammalian nervous systems (for
a review, see Dan and Poo, 2006 or Froemke et al., 2010).

A number of models have been employed to explain some of
the basic properties and consequences of STDP (e.g., Song et al.,
2000). One approach used to characterize the potential function-
ality of STDP has been to explore how it influences the structure
(topology) of self-organizing neural networks. The use of graph
theoretic measures has revealed a number of adaptive topo-
logical features which emerge from STDP-governed networks.
For example, Shin and Kim (2006) demonstrated that a model

network of excitatory and inhibitory neurons that employed
STDP synaptic modification developed small-world properties
and power-law degree distributions. Small-world characteristics
(i.e., high clustering and short average path lengths; Watts and
Strogatz, 1998) have been detected in macaque and cat corti-
cal networks and the human reticular formation. Neuroimaging
studies have revealed both small-world properties and power-
law degree distributions in human functional brain networks
(for a review of graph theoretical analyses of brain networks,
see Reijneveld et al., 2007; Bullmore and Sporns, 2009). More
recently, Ren et al. (2009) compared the local topological charac-
teristics of the organism Caenorhibditis elegans to a biologically
inspired model STDP network. They found that the residual
network evolved by STDP produced specific three-neuron con-
nectivity patterns (motifs) in significantly greater frequencies
than observed in comparable random networks. The profile of
significant motif types detected in their model network was qual-
itatively similar to those observed in the C. elegans connectome.
These studies suggest that STDP may be an underlying mecha-
nism for the evolution of neuronal topologies observed in some
organic neurobiological systems.

While these and other studies have been informative regarding
the role of STDP in selecting residual network architectures, they
do not address the continual, experience-dependent changes in
network architecture which may emerge during on-going STDP.
Several recent reports suggest that, in addition to its role in
guiding cortical and subcortical structure during development,
STDP continues to modify synaptic connectivity in mature neu-
ral networks. Yu et al. (2009) demonstrated that neurons in
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the superior colliculus of adult cats adapted their responses to
cross-modal sensory stimuli over short time scales in a man-
ner that was consistent with STDP-governed synaptic modifi-
cation. The authors suggest that STDP may remain a viable
mechanism for rapid structural modification well into adult-
hood. More recently, Gambino and Holtmaat (2012) showed that
receptive fields in mouse barrel cortex could be modified in a tim-
ing dependent manner by deflections of surrounding whiskers.
These results support a previous study of spike-timing dependent
synaptic depression elicited in the primary somatosensory cortex
of anesthetized adult rats through the pairing of whisker deflec-
tions with spontaneously emitted postsynaptic spikes or spikes
generated by current injection (Jacob et al., 2007).

To date, there have been very few studies that address the
on-going topological dynamics of neural and brain systems.
Robinson et al. (2009) tested the robustness and stability of
different model network topologies during dynamic restructur-
ing. Limitations of this study include a restructuring scheme
that was not based on a biologically-relevant synaptic modifi-
cation, and an analysis that was focused on properties of the
residual, rather than the evolving, architecture. In another study,
Grindrod and Higham (2010) used a functional brain network to
demonstrate the effectiveness of new algorithms in characterizing
evolving graphs. Although interesting, the network was derived
from a short sample of time-series EEG data, and the algo-
rithm assessed only transient functional connectivity over a brief
period of time where structural plastic changes were unlikely to
take place.

Synaptic changes, including STDP, continue to affect neu-
ral organization in living organisms throughout their lifetimes.
Whereas other studies have examined the effects of these changes
after an initial period of reorganization, the continual evolution
of neural network topology shaped by these changes has not
been investigated. The aim of the present study was to system-
atically evaluate the effects of STDP on the on-going dynamic
topology of model neural networks. Ten networks were ini-
tially randomly connected and then subjected to different types
of external input while synapses underwent continual STDP
modification. After an initial period, the structural features of
the networks were monitored at regular intervals. This novel
approach permitted us to detect and track periodic changes in
the topology of the networks across time rather than only charac-
terizing the network at a single timepoint. By using small model
networks, we were able to simultaneously monitor multiple topo-
logical features: changes in the total number of synapses, the
average synaptic strengths, and the average number of synapses
per neuron were quantified. Changes in the degree of cluster-
ing and the average synaptic distance between neurons were
also measured to assess changes in the small-world proper-
ties of the networks. In addition, changes in local topology
and motif profiles were evaluated by monitoring changes in
specific three-neuron connectivity patterns across time. Results
revealed that with on-going STDP (1) global network structure
remained highly stable across time, (2) both stable/persistent
and transient/dynamic local features emerged (3) small-world
network properties fluctuated, (4) a large and rapid turn-over
in local network constituents across time occurred, and (5)

qualitatively different forms of network input altered the effects
of STDP on topological changes. These effects were robust across
a range of variations in STDP parameters and initial network
properties.

MATERIALS AND METHODS
MODEL NEURAL NETWORKS
The model neural networks used in all simulations consisted
of 400 regular-spiking excitatory (RSE) neurons and 100 fast-
spiking inhibitory (FSI) interneurons. The neurons of each net-
work were initially connected at random. The in-degrees and
out-degrees (i.e., the number of pre- and post-synaptic con-
nections) of each neuron were selected such that there were
∼50 pre-synaptic and 50 post-synaptic synapses for each neuron
(means = 50, SD = 5, normally distributed). Thus, there were
∼25,000 synapses (16,000 excitatory-to-excitatory synapses) in
each initial network (∼10% of full connectivity).

Izhikevich-type neurons were used in all network simulations
(Izhikevich, 2004). The neuronal dynamics of both neuron types
(RSE and FSI) were modeled by a system of differential equations:

dV

dt
= 0.04V2 + 5V + 140− u+ I (1)

du

dt
= a

(
bV − u

)
, (2)

where V is the neuronal membrane voltage (in millivolts, mV),
u is a membrane relaxation variable, and I is the total input to
the neuron (in mV). An action potential (spike) occurred when
V ≥ 30 mV, after which the voltage and relaxation variables were
reset according to the equation:

V ≥ 30 : {V ← c;u← (
u+ d

)}
(3)

Equations 1, 2, and 3, together with a range of values for param-
eters a, b, c, and d, allow a great variety of neuronal types and
dynamics to be modeled. Parameters a and b are rate variables
that determine how quickly each neuron recovers from a depolar-
izing event, while parameter c is the resting membrane potential,
and parameter d is an additional resetting variable following an
action potential. Based on previous work (Izhikevich, 2004), the
parameters for the RSE neurons were set to: a = 0.02, b = 0.2,
c = −65 mV, and d = 8. For FSI neurons, the parameters were set
to: a = 0.1, b = 0.2, c = −65 mV and d = 2. Note that param-
eters affecting the relaxation variable, u, are modified for FSI
neurons to shorten post-firing recovery which gives these neurons
their fast-spiking behavior. The values of u and V were approxi-
mated using a fourth-order Runge–Kutta numerical method to
evaluate Equations 1, 2, and 3 (h = 0.5 timesteps for Equation 1,
and one timestep for Equations 2 and 3). The simulation timestep
was selected to approximate 1 ms of real time.

The excitatory post-synaptic weights were initially uni-
formly distributed between 0 and 8 mV (RSE→RSE synapses
and RSE→ FSI synapses), while initial inhibitory post-synaptic
weights were distributed between −8 and 0 mV (FSI→RSE
synapses and FSI→ FSI synapses).
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NETWORK INPUT
Each network received five different types of external input (input
regimes) in separate simulations. External stimulation varied in
degree of regularity (periodicity) and synchrony and was quali-
tatively similar to the distinct types of spiking network dynamics
outlined by Brunel (2000).

Regular synchronous input (RS)
Under the regular, synchronous input regime, a randomly
selected subset of all neurons (mean = 100 neurons, SD = 1, nor-
mally distributed) received 16 mV input simultaneously every 20
timesteps (20 ms intervals, 50 Hz input rate). The subset of neu-
rons receiving input changed on every input cycle (i.e., every 20
timesteps).

Regular asynchronous input (RA)
The input parameters of the regular but asynchronous regime
were the same as RS input except that the input timing to each
neuron was jittered around a mean of 20 ms with a 6 ms standard
deviation.

Irregular synchronous input (IS)
The third input regime simulated irregular, synchronous input.
Similar to RS input, a randomly selected subset of approximately
100 neurons received simultaneous input; however, input was
delivered at a Poissonian distributed rate with a mean of 50 Hz
(i.e., non-periodic input).

Irregular 50 Hz input (IA50) and irregular 12 Hz input (IA12)
In the final two input regimes, input was delivered irregularly and
asynchronously such that every neuron in the network received
16 mV input independently at a Poissonian distributed mean rate
of either 50 or 12 Hz.

In addition to external input, every neuron in the network
received a constant small subthreshold input at each timestep
throughout the simulations. The value of this noisy input was
randomly selected at each timestep from a Gaussian distribution
with mean of 1.3 mV and standard deviation of 0.5 mV.

In addition to external input and subthreshold input, neu-
rons in the network received synaptic input from their pre-
synaptic neurons whenever the pre-synaptic neuron fired. The
input to the post-synaptic neuron occurred one timestep after
the pre-synaptic neuron fired (1 ms delay). The magnitude of
synaptic input was equal to the weight of the synapse from
the pre-synaptic neuron. The value of I in Equation 1 was
taken as the sum of these three input terms for each neuron at
every timestep.

SPIKE-TIMING DEPENDENT PLASTICITY
The weights of the RSE→RSE synapses in the network were
modified for the duration of the simulation according to an addi-
tive STDP learning rule. The STDP rule was implemented such
that a synapse was potentiated if a pre-synaptic neuron fired
before a post-synaptic neuron according to the equation:

�ωt = �ωt−1 + A+e−(tpost−tpre)/τ (4)

If the post-synaptic neuron fired before the pre-synaptic neuron,
the synapse was depressed according to the equation:

�ωt = �ωt−1 + A−e−(tpost−tpre)/τ (5)

In Equations 4 and 5, �ωt is the additive (±) change in synap-
tic weight, tpost and tpre are the post-synaptic and pre-synaptic
firing times, respectively, �ωt−1 is the value of �ω from the pre-
ceding timestep. The values of τ, A+, and A− were selected based
on the empirically derived STDP model outlined in Song et al.
(2000). The width of the STDP time window was determined by
the time constant τ = 20 ms. The values of A+ and A− determine
the maximum or minimum weight change for a given synaptic
event (learning rate). The value of A+ was set to 0.044 which is
0.55% of the maximal weight attainable by any synapse (8 mV).
The value of A− was set to −0.0462 to produce an asymmetry
(bias toward synaptic depression) in the STDP rule. This bias was
introduced so that uncorrelated pre-synaptic and post-synaptic
firings result in an overall weakening of the synapse.

The STDP rule was applied at all excitatory-to-excitatory
synapses (RSE→RSE). Inhibitory synaptic strengths remained
constant. Studies show that STDP at inhibitory synapses likely fol-
lows different STDP rules (e.g., Haas et al., 2006). STDP was not
applied at these synapses to avoid potentially misleading effects
and to increase computational tractability. �ω was initially set to
zero, and Equations 4 and 5 were evaluated during each timestep
of the simulation. The synapse was updated once every 1000
timesteps (1 s intervals) by adding the current value of �ω at that
time point to the current weight. Synaptic weights were bounded
so that when the sum of the synaptic weight and �ω was >8 mV
or <0 mV, the weight was set to 8 mV or 0 mV, respectively.

To simulate on-going STDP and permit re-potentiation of
zero-weight synapses, synapses with 0 mV weights were not
removed from the network. Instead, the value of �ω continued
to be modified by Equations 4 and 5 at each timestep and added
to the weight after every 1000 timesteps.

SIMULATIONS AND ANALYSIS
The dynamic effects of STDP on network topology were exam-
ined in 10 separate model networks. Each network received each
of the five external input regimes (RS, RA, IS, IA50, and IA12) in
separate simulations resulting in 50 simulations total. Each sim-
ulation consisted of 7.2 million timesteps, or 2 simulated hours
of activity. Measures of global and local topological features were
sampled once every 60,000 timesteps (1 min intervals) during
the last half of each simulation (The analysis interval; timesteps
3,600,001–7,200,000).

Global measures
Global measures included the total number of excitatory-to-
excitatory synapses in the network, the average weight of these
synapses, and the average synaptic degree (the total pre-synaptic
and post-synaptic excitatory-to-excitatory connections) per neu-
ron at each sampling point.

In order to assess the stability of each of these measures across
time, the coefficient of variation was also calculated for each mea-
sure, where the coefficient equals the standard deviation of the
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measure across the analysis interval divided by its mean. A smaller
coefficient indicates more stability (i.e., less variation) across
time. The coefficient of variation is a dimensionless quantity that
permits direct comparisons of temporal stability between net-
works/simulations in circumstances where comparisons of means
would be uninformative.

Small-world features
The potential small-world characteristics of the networks were
also evaluated by calculating the average clustering coefficients
and path lengths across all excitatory neurons at each sam-
pling point in the analysis interval. The clustering coefficient is
a measure that reflects the likelihood that two connected neu-
rons (neighbors) would share a common neighbor. The clustering
coefficient was determined in a manner which took into account
both the strengths and directions of the synapses involved in each
cluster and was based on a method presented in Fagiolo (2007).
The clustering coefficient of each neuron was evaluated by the
equation

Ci = 2

ki
(
ki − 1

)− 2
↔
ki

∑
j,m

(
wijwimwjm

)1/3
, (6)

where Ci is the clustering coefficient of neuron i, and ki is the

total number of in-degrees and out-degrees of that neuron.
↔
ki is

the sum of bi-directional synapses of neuron i and its neighbors
(i.e., where neuron i is both a pre-synaptic and post-synaptic neu-
ron with its neighbor). wij, wim, and wjm are the synaptic weights
between neuron i and its neighbor j, neuron i and its neighbor
m, and the weight between the two neighbors, respectively. Note
that Equation 6 only describes clusters that are purely directional

(by subtracting out the bi-directional synaptic term,
↔
ki from the

denominator) and scales these clusters by the geometric mean of
their synapses.

Path lengths were also determined in a manner that accounted
for directionality and synaptic strength by employing Dijkstra’s
Algorithm (Dijkstra, 1959). This algorithm assumes that the
shortest distance between neuron i and neuron j is the directed
distance between them containing the fewest synapses of the low-
est magnitude. In the networks considered here, greater synaptic
strengths should decrease distance (i.e., shorten paths). Since
Dijkstra’s Algorithm “punishes” synapses of greater magnitude
and rewards synapses of lower magnitude, the inverses of synaptic
weights were used to assess path length.

Clustering coefficients and path lengths were averaged across
all neurons at each sampling timepoint. The averages from
each simulation were compared to the values from the ini-
tial randomly connected networks. Higher clustering values and
shorter path lengths than in the initial networks indicated an
improved small-world topology. Functions included in the Brain
Connectivity Toolbox (Rubinov and Sporns, 2010) were modified
and employed to calculate these measures.

Triads
In order to quantify the local topological dynamics of each net-
work, all three-neuron connected subgraphs (triads) present in

each network at initialization were identified and changes in their
synaptic connectivites were monitored during the analysis inter-
val. There are 13 possible unique connectivity patterns in three-
neuron subgraphs (Figure 1). The distributions of these 13 triad
types in each network and their synaptic weights were assessed.
Since only RSE→RSE synapses were subjected to the STDP
learning rule, only triads comprised exclusively of excitatory neu-
rons were considered in the analysis. Although on-going STDP
permits the depression and repotentiation of existing synaptic
connections, new synapses cannot be formed. Therefore, all of the
individual triads identified in each of the 10 initial networks may
undergo state changes, but new triads cannot appear.

Triad intensity and coherence
To determine the strength and stability of each triad, the synap-
tic intensities and coherences of the triad were measured during
the analysis interval according to a method outlined by Onnela
et al. (2005). The synaptic intensity of a triad is equivalent to the
geometric mean of its synapses:

I(s) =
⎛
⎝ ∏

(i,j)∈Ns

wij

⎞
⎠

1/Ns

, (7)

where I(s) is the intensity of triad s, Ns represents the number of
synapses in s, and wij refers to the synaptic strength of neuron

FIGURE 1 | Triad types. Configurations of the 13 possible unique 3-neuron
subgraphs (triad types). Numbering scheme taken from Sporns and Kotter
(2004).
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i onto neuron j. In the present scheme, intensities could range
from 0 mV (non-connected) to 8 mV (when every synapse is at
maximal weight). In addition, triad coherence is defined as the
intensity of the triad (geometric mean of its synapses) divided by
the arithmetic mean of its synapses:

H(s) = I(s)∑
(i,j) ∈Ns

wij
, (8)

where H(s) is the coherence of triad s. Because the geometric
mean (intensity) of the synapses is always less than the arithmetic
mean except when all of the synapses are of equal weight, coher-
ence measures biases that occur when some synapses forming the
triad are stronger than others. The coherence of a triad is bounded
between 0 and 1, and values approaching 1 occur when the
synapses of the triad have nearly equal weights (i.e., when the geo-
metric mean approaches the arithmetic mean). Thus, coherence
is a measure of triad synaptic stability.

Triad turn-over
As a final measure of triad dynamics, the total number of indi-
vidual triads that re-emerged at a sampling point (triads gained),
the total number that disappeared at that sampling point (triads
lost), and the net change in the total number of triads (triads
gained–triads lost) from one sampling point to the next were
calculated.

Comparing input regimes
For each of the topological measures, the effects of external
input regime were assessed by performing a univariate analysis-
of-variance (ANOVA) test on the measure where external input
type was the fixed factor. When this test yielded a significance
value of p = 0.05, separate t-tests were performed which con-
trasted the effects of synchronous vs. asynchronous input (RS
and IS vs. RA, IA50, and IA 12) and regular vs. irregular input
(RS and RA vs. IS, IA50, and IA 12). These tests were Bonferroni
corrected.

RESULTS
INPUT DEPENDENT STEADY-STATE NETWORK ACTIVITY EMERGES
DURING ON-GOING STDP
Early activity in each initial randomly configured network dis-
played a pattern of “synfire explosions,” where brief periods of
inactivity were separated by periods when all of the neurons fired
synchronously. This activity resulted in the initial loss of a large
percentage of weak synapses. However, a pattern of steady-state
synchronous firing activity emerged shortly after the beginning
of each simulation (∼2 min). Figure 2 shows exemplar network
activity for each of the external input regimes. During this steady-
state, fluctuations in the average neuronal firing rates across
time were marginal. Rates were determined by external stimulus
type where irregular input patterns (IS, IA50, IA12) significantly
increased firings of excitatory neurons compared to regular input
patterns [t(48) = 3.52, p = 0.001]. However, firing rates for RSE
neurons from all simulations remained between 12 and 16 Hz. FSI
neurons fired at almost twice that rate (overall mean= 29.68 Hz)
owing to parameter differences in Equations 2 and 3.

A STABLE GLOBAL NETWORK STRUCTURE EMERGES FROM
ON-GOING STDP
Global topological features including the total number of
synapses, their average synaptic weight, and average neuronal
degree (number of excitatory synapses per neuron) were collected
throughout the simulations and evaluated across the analysis
interval (during the last half of the simulation). Figure 3 dis-
plays the trajectories of these measures across the simulations.
Although the range of values was narrow across the different
types of external input, all three measures were significantly influ-
enced by synchronous input regimes. The numbers of remain-
ing synapses were significantly fewer during synchronous input
regimes (RS, IS) compared to asynchronous input regimes [RA,
IA50, IA12; t(48) = 13.42, p < 0.001; Figure 3, top]. Likewise, the
average weight per synapse was also significantly reduced dur-
ing synchronous input compared to other input types [t(48) =
13.32, p < 0.001; Figure 3, middle]. The average neuronal synap-
tic degree for excitatory neurons showed a similar pattern [t(48) =
13.87, p < 0.001; Figure 3, bottom].

To better characterize how these global measures were chang-
ing during the simulations, the coefficient of variation was
assessed for each input regime. Lower coefficients signal less vari-
ability across time, or greater stability. In all cases, the coefficients
remained extremely low suggesting a very high degree of sta-
bility (Figures 4A–C). Nevertheless, external input type again
exerted a significant influence. Synchrony produced significantly
less change in the numbers of synapses, and in the number
of synaptic degrees [t(48) = 3.93, t(48) = 3.92, p < 0.001 both
cases]. Interestingly, coefficients of variation for both measures
were practically identical despite obvious differences in the means
and standard deviations.

Small-world topology was also evaluated across the analysis
interval. The overall average clustering coefficient for RSE→RSE
neurons across the analysis window for all simulations was
0.435 (SD = 0.006). In every simulation, the clustering coeffi-
cient was greater during the analysis interval than at initializa-
tion (initial network mean = 0.3368, SD = 0.0022), suggesting
increased clustering due to on-going STDP and external input.
Clustering coefficients varied little across the analysis interval
(i.e., low coefficient of variation, Figure 4D). The degree of clus-
tering was significantly affected by external input type as was the
coefficient of variation such that synchronous input decreased
clustering [t(48) = 8.67, p = 0.003] but also increased its variabil-
ity across time [t(48) = 3.10, p = 0.009].

In contrast, the average shortest path length increased almost
an order of magnitude over its value at initialization (path
length mean at initialization = 0.3537, SD < 0.001; mean of
overall path length during analysis interval = 3.196, SD = 2.03).
Average path length fluctuated greatly during the simulations,
as is apparent in the high coefficients of variation for all input
regimes (Figure 4E). Unlike clustering, path length was not dif-
ferentially affected by external input regime.

THREE-NEURON SUBGRAPHS (TRIADS) REVEAL LOCAL TOPOLOGICAL
DYNAMICS
An average of 1,002,498 unique triads were present in the 10 origi-
nal random networks, (SD = 7216.74). In general, the number of
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FIGURE 2 | Network firing activity. Exemplar rastergrams of 2 s of network firing activity in response to different input regimes. All examples are from the
same initial network. Red data points are FSI firings, black data points are RSE firings.

these triads that remained in each network (i.e., that were detected
at least once during the analysis interval) was a small fraction
of those present at initialization. Table 1 shows the total num-
ber and percentages of triads detected. The percentage of total
triads that remained varied significantly according to input type,
where synchronous input regimes resulted in significantly smaller
percentages of remaining triads [t(48) = 13.47, p < 0.001].

In all of the simulations, the set of remaining triads was divided
between core triads, which showed no change in their connectiv-
ity pattern throughout the analysis interval, and dynamic triads,
which disappeared, re-emerged, or changed triad type at least

once during analysis. Table 1 displays demographics for the core
and dynamic triads for each input regime. Again, the percentages
of the core triads and dynamic triads present in each network
depended upon the external input type each received such that
synchronous input significantly increased the proportion of core
triads relative to asynchronous input [t(48) = 9.31, p < 0.001].

CORE TRIADS CONSIST OF STRONG AND STABLE SYNAPSES
Figure 5 (left) displays the distributions of the 13 possible triad
types (see Figure 1) of core triads averaged across the differ-
ent input regimes. Two-synapse core triad types (types 1, 2,
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FIGURE 3 | Global variables. Trajectories of total number of excitatory
synapses (top), average synaptic weight (middle), and average total
neuronal degrees (bottom) across the entire simulation duration.
Colored lines represent responses to separate external input regimes
averaged across 10 simulations. Error bars represent S.E.M. across

each of the 10 simulations at that timepoint. Shaded area represents
analysis interval. Note that each input regime started with that same
initial number of synapses (mean = 15, 991.80), weights (mean =
4.00 Hz), and degrees (mean = 79.96) although they exceed the range
of the graphs.

and 3) occurred in every simulation, as did core triads of type
5. Type 7 core triads were observed in several of the simu-
lations involving asynchronous input (IS, IA50, IA12). Note
that because the numbers of core triads of this type were rel-
atively small, this type is not visible in the figure due to the

broad logarithmic scale of the distribution. No other triad
types consistently retained their initial configuration during the
simulations.

The strength and stability of core triads were deter-
mined by assessing their triad intensities (geometric means)
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FIGURE 4 | Coefficients of variation across time. Coefficients of variation
(the standard deviation across time divided by the mean) for (A) Total
number of excitatory synapses, (B) Average synaptic weight, (C) Average
total neuronal degrees, (D) Average weighted and directed clustering
coefficient, and (E) The average weighted and directed path length. Error
bars represent SD’s across the 10 simulations for each input regime.

and coherences. Core triad intensities from all simulations
approached maximal values (overall mean = 7.99 mV) as did
core triad coherences in all simulations (overall mean > 0.999).
The high values of core intensities and coherences suggest

that these triads consisted of strong synapses of nearly equal
weight. The values of intensities and coherences from all of
the simulations were very similar (overall SD of intensity =
0.005; SD of coherence < 0.001). Nevertheless, a significant
effect of external input type was detected. Regular regimes
reduced the coherences of core triads [t(48) = 2.46, p =
0.017] while synchronous regimes slightly increased both
core intensities [t(48) = 14.26, p < 0.001] and core coher-
ences [t(48) = 3.33, p = 0.002] relative to other input types
(Table 1).

DYNAMIC TRIADS REVEAL AN ACTIVE LOCAL TOPOLOGY
Dynamic triads are those triads which were detected during anal-
ysis but which changed connectivity pattern at least once during
the analysis interval. Whereas synchrony significantly increased
the proportion of core triads observed, asynchronous input
increased the proportion of dynamic triads.

Figure 5 (right) displays the distributions of the different
types of dynamic triads averaged across time and simulations.
Similar to core triad distributions, dynamic triad types consist-
ing of two synapses (types 1, 2, and 3) and triad type 5 occurred
most frequently; however, dynamic triads were more diverse and
every triad type was detected at least once during the simula-
tions (although those that occurred rarely are not visible in the
figure). Because dynamic triads can change type, distributions
represent the average number of types across the analysis inter-
val rather than sums of individual triads. Despite the dynamic
range of these triads, the distribution of triad types remained
highly stable across time (overall coefficient of variation across
all triad types = 0.865).

Example distributions of the average intensities and coher-
ences of dynamic triad types for each external input regime
are shown in Figure 6, and their values are presented in
Table 1. Intensities and coherences from all simulations dis-
played a bimodal and skewed distribution. The bimodal and
negatively skewed distributions suggests that a large propor-
tion of these triads possessed relatively strong, stable synapses
despite on-going state changes while a smaller proportion
were more unstable. Alternatively, this distribution pattern may
reflect high frequencies of individual triads which possessed
both strong-stable, and weak-unstable states. The intensities
and coherences of synapses forming dynamic triads varied
according to input type. Similar to core triads, regular input
regimes (RS, RA) significantly reduced both the intensity
[t(48) = 2.72, p = 0.009] and coherence [t(48) = 3.18, p = 0.003]
of dynamic triads. Synchronous input significantly increased
both measures [intensity, t(48) = 4.98; coherence, t(48) = 4.11;
p < 0.001 both].

INDIVIDUAL TRIADS DISAPPEAR AND RE-EMERGE AT RAPID RATES
To fully assess the dynamics of the local topology, the numbers
of individual dynamic triads which disappeared and re-emerged
across each sampling interval were calculated. The average num-
ber of individual triads which were lost from one sampling point
to the next was 15,459.25 (SD = 3765.55), while the number that
were gained (re-emerging as either as the same type or as a dif-
ferent type) was 15,444.37 (SD = 3762.79). Table 2 and Figure 7
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Table 1 | Core and dynamic triad characteristics by input regime.

Input regime

RS RA IS IA50 IA12

Total no of triads 516343.6 (8650.1)* 556875.1 (9821.11) 465299.3 (9944.84)* 566319.7 (10173.93) 569135.4 (9473.55)

%Remaining 51.51 (0.73)* 55.55 (0.85) 46.41 (0.89)* 56.49 (0.9) 56.77 (0.81)

CORE TRIADS

%of TTL 54.52 (2.34)* 49.75 (1.95) 61.39 (2.68)* 48.78 (1.95) 50.08 (2.2)

Intensity 7.99 (0.047, <0.001)* 7.99 (0.064, <0.001) 7.99 (0.044, <0.001)* 7.98 (0.061, <0.001) 7.98 (0.058, <0.001)

Coherence 1 (0.003, <0.001)* 1 (0.004, <0.001)* 1 (0.002, <0.001)* 0.999 (0.003, <0.001) 1 (0.003, <0.001)

DYNAMIC TRIADS

%of TTL 45.48 (2.34) 50.25 (1.95)* 38.61 (2.68) 51.22 (1.95)* 49.92 (2.2)*

Intensity 4.77 (2.823, 0.19)* 4.67 (2.802, 0.09) 5.39 (2.798, 0.19)* 4.77 (2.828, 0.14) 4.7 (2.81, 0.17)

Coherence 0.7 (0.303, 0.02)* 0.69 (0.298, 0.01) 0.76 (0.287, 0.02)* 0.71 (0.281, 0.01) 0.69 (0.294, 0.02)

Values represent means across simulations. Values in parentheses represent SD’s across triads (where appropriate) and/or networks, respectively.
*Indicates significant difference in measure due to input regime.

display the average number of individual triads that were gained
and lost at each sampling point, as well as net changes in total
number of triads. As is evident from the figure and table, nearly
as many triads were gained at each timepoint as were lost for
each input regime, keeping the overall number of triads across
time negligible. For all simulations, the average change in the
total number of triads from one sampling point to the next (net
change) was±1676.47 triads (SD = ±378.78). To better quantify
the disparity between the numbers of individual triads which dis-
appeared and re-emerged and the overall changes in triad counts,
the ratio of the number of triads which re-appeared at each sam-
pling point to the net change in triad counts was calculated. The
overall gained-to-net ratio was 9.26 (SD = 1.54) across all sim-
ulations, almost a tenfold increase. This implies that the total
number of triads remained nearly constant while the compo-
sition of participating triads was changing at nearly 10 times
the rate. External stimulus type influenced triad losses, gains,
and net changes. In every case, synchronous input significantly
reduced these values [t(48) = 13.09, 13.06, and 6.79 respectively;
p < 0.001 for all cases].

THE FINAL NETWORKS POSSESS SIGNIFICANT MOTIF TYPES
Different types of small connected subgraphs present in com-
plex networks are frequently referred to as “motifs.” Milo et al.
(2002) defined motifs as subgraphs that occur in a network
of interest at significantly greater frequencies than observed in
equivalent, randomly connected networks of the same size. The
significance of occurrences of each of the 13 possible different
triad types was tested in the final organizations of the networks
investigated (i.e., at the final timestep of each simulation). Thus,
triads of significant occurrence were motifs. Final networks were
compared to randomly connected networks where the random
networks were generated by switching synapses between neu-
rons in the final network while preserving the same number
of incoming, outgoing, and mutual synapses of each neuron
(mfinder version 1.2, http://www.weizmann.ac.il/mcb/UriAlon).
Between 50,000 and 100,000 switches were performed for each
graph and 100 random graphs were generated for comparison.

Details of the edge switching algorithm can be found in
Milo et al. (2003).

For each of the 13 triad types, the number of occurrences of the
type in the final network was compared to the number of occur-
rences of the same type in 100 random networks by calculating a
Z-score test statistic as follows:

Z = Ffinal − Frandom

σrandom
, (9)

where Ffinal is the number of occurrences of the type in the final
network and Frandom and σrandom are the mean and standard
deviation of the occurrences in the 100 random networks. If the
Z-score was greater than 1.96 or less than −1.96, the type was
considered to have occurred at significantly greater or fewer num-
bers than in the distribution of random networks (at the 95%
confidence level), and therefore represented a significant motif in
the final network.

The numbers of significant triad types (motifs) found in
the final networks for each input regime were similar to those
detected previously in model and biological neural networks
(Ren et al., 2009). In every simulation, triad types 2 and 5
were found to be significant motifs, occurring more frequently
than in random networks. Triad type 8 also occurred signif-
icantly more frequently across all input regimes. Triad types
1, 3, and 7 occurred significantly less frequently in all simula-
tions. Other motif types revealed more complex patterns. Type
4 occurred significantly more after one simulation of the RS
condition and significantly less after irregular input (IS, IA50,
IA12) following several simulations. Type 6 occurred signifi-
cantly more following one IS simulation and one IA50 sim-
ulation and less in one simulation following RA input. Type
10 occurred significantly more frequently following one of the
IA12 input simulations, but occurred significantly less in sev-
eral simulations following RS and IA50 input. Finally, type 11
occurred significantly more in one simulation following an RA
input simulation and significantly less in one simulation involving
IA50 input.
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FIGURE 5 | Core and dynamic triad type distributions. Triad type
distributions for core (left) and dynamic (right) triads in response to
each external input regime averaged across 10 simulations. Dynamic
triad distributions are averaged across the analysis interval for each

network and then across simulations. Note that triad counts (ordinate
axes) are presented on a logarithmic (base 10) scale. Note that due
to logarithmic scaling, triad types with very small averages are not
visible.
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FIGURE 6 | Dynamic triad intensities and coherences. Exemplar dynamic
triad intensity (left) and coherence (right) distributions in response to
separate external input regimes. All examples are from the same initial

network. Note that triad counts (ordinate axes) are not on the same scale for
all input regimes, and all intermediate ordinate values are scaled by a factor
of 10−4.
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Table 2 | Triad turn-over by input regime.

Input regime

RS RA IS IA50 IA12

Net change 1623.23* (1249.73) 1953.81 (1467.43) 1087.04* (806.91) 1716.94 (1234.55) 2001.32 (1511.56)

Triads gained 13802.95* (1373.46) 17340.58 (1666.98) 9025.7* (902.58) 18815.17 (1488.23) 18237.44 (1668.52)

Triads lost −13811.87* (1283.37) −17376.07 (1593.05) −9035.94* (880.07) −18830.03 (1447.61) −18242.36 (1588.17)

Gained-to-net ratio 8.71* (1.1) 8.91 (1.15) 8.36* (1.12) 11.11 (1.21) 9.23 (1.12)

Values represent means across simulations. Values in parentheses represent SD’s across time.
*Indicates significant difference in measure due to input regime.

FIGURE 7 | Dynamic triad trajectories. Average number of dynamic triads
gained, lost, and net triad number differences for each minute in the
analysis interval. Each minute (abscissa) represents the difference between
that minute and the following minute. The number of individual triads
(ordinate axis) is separated into “gained,” “net,” and “lost” for clarity.
Colored lines represent responses to separate external input regimes
averaged across 10 simulations. Error bars represent S.E.M. across each of
the 10 simulations at that timepoint.

VARIATIONS IN STDP LEARNING PARAMETERS AND NETWORK
CONFIGURATIONS HAVE MIXED EFFECTS ON STABILITY AND
DYNAMICS
Several parameters of the STDP learning rule (Equations 4 and 5)
were modified to assess the robustness and generalizability of the
learning rule to effects upon network stability and dynamics:

Reduced STDP rate condition
In the first modification, the values of A+ and A− (the degree
of change in synaptic strength per plasticity event) were reduced
to one tenth of their original values (0.0044 and –0.0046,
respectively).

Reduced STDP window condition
In the second modification, the STDP time constant, τ, was
narrowed from 20 to 10 ms.

Symmetric STDP condition
In this modification the asymmetry of the learning rule was
removed such that A+ = A− = 0.044 (i.e., the bias toward synap-
tic depression was eliminated).

In addition to modifications in the STDP learning rule,
several more modifications were made to the initial network
parameters:

Reduced synaptic weight condition
In the first condition, the permissible range of synaptic weights
was reduced from −8 to 8 mV to −4 to 4 mV while all other
parameters remained the same.

Asymmetric weight condition
In the second condition, an asymmetry was introduced in
the excitatory-to-inhibitory synaptic weight ratio such that the
range of excitatory synaptic weights remained from 0 to 8 mV
while the inhibitory range was increased from 0 to −8 mV to
0 to−9.6 mV.

Sparse connectivity condition
In the third condition, the number of initial synapses was evenly
decreased from 25,000 to 12,500 (from 10% of full connectivity
to 5% of full connectivity).

Stationary input condition
In the final modification, a subset of 100 neurons was randomly
selected prior to the simulations, and only these neurons received
external input. This condition contrasted with the original sim-
ulations where the subset of neurons receiving input changed
during every input event.

One simulation of each of these conditions was conducted
using each of the five external input regimes, resulting in 35 sep-
arate simulations. The same initial network was used for each
simulation and was selected from the initial networks employed
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in the original simulations. During the parameter modified simu-
lations, all other parameters remained the same as in the original
simulations.

Parameter modified simulations were compared to the orig-
inal simulations on several measures of stability and dynamics:
(1) the coefficient of variation across time of the number of
synapses remaining, (2) the coefficient of variation of the average
synaptic weight of these synapses, (3) the coefficient of varia-
tion of the average neuronal degree, (4) the percentages of core
and dynamic triads remaining during the analysis interval, and
(5) the gained-to-net ratios of triad turn-over. All of these mea-
sures are dimensionless and are thus suitable for comparisons
with unmodified networks where quantitative differences occur.
Further, they capture qualities of topological change that direct
comparisons of means may not.

To assess the magnitude of the effects of these variations upon
global and local network stability, direct comparisons were made
to the original, unmodified simulations by performing signifi-
cance tests. T-tests were used as the test statistic where t was
calculated as follows:

t = Vmodified − Voriginal

σoriginal/
√

n
(10)

Vmodified is the value of the measure resulting from the modified
simulation and Voriginal and σoriginal are the mean and standard
deviation of the values from the original simulations, respectively,
and n is the sample size (10 in all cases). T-scores greater than 3.25
or less than −3.25 were considered to be indications of a signifi-
cant deviation in the measure from values obtained in the original
simulations (at the 99% confidence interval). Comparisons were
only made between simulations employing the same type of
external input (e.g., STDP modified networks receiving RS type
stimulation were only compared to the 10 original simulations
where RS stimulation was used).

Tables 3, 4 report values of topological features obtained from
each parameter variation condition.

Overall, each of the STDP rule modifications had only
marginal effects on network stability. The coefficients of vari-
ation for the number of synapses, synaptic weight, and degree
were comparable to those seen in the original simulations.
Nevertheless, the reduced STDP window condition, where the
plasticity time constant was decreased, resulted in a significant
decrease in neuronal degree variability across time when com-
pared to the original simulations [coefficient of variation of
neuronal degree; t(9) ≤ −3.35, p ≤ 0.01].

The largest differences observed from the STDP modified sim-
ulations were in the percentages of core and dynamic triads. The
proportion of core-to-dynamic triads was significantly increased
in almost every simulation involving an STDP parameter modifi-
cation [t(9) ≥ 3.35, p ≤ 0.01], indicating that the composition of
core and dynamic triads remaining in the network was sensitive
to changes in STDP potency.

The gained-to-net ratios of triads across time were sig-
nificantly reduced by the symmetric STDP condition (where
potentiation and depression events have equal potency)
during exposure to asynchronous input regimes (IS, IA50,

IA12) and by the reduced STDP window condition dur-
ing RA stimulation [t(9) ≤ −3.35, p ≤ 0.01]; however, the
ratios still remained high in the STDP modification con-
ditions, suggesting that high triad turn-over is a robust
effect.

Changes in network configuration parameters had more mod-
erate effects. In the reduced synaptic weight condition, where the
range of weights was reduced to half, global measures remained
highly stable across time; however, significant increases in the
coefficients of variation of the average weights and number of
synapses were observed [t(9) ≥ 3.35, p ≤ 0.01]. In every simula-
tion involving the reduced weight condition, percentages of the
core triads were reduced [t(9) ≤ −3.35, p ≤ 0.01]. This effect was
so great in the IA50 and IA12 simulations that no core triads were
observed during the analysis interval. An effect of this parame-
ter variation was also observed in the triad turn-over rates. This
condition significantly increased gained-to-net ratios in almost all
simulations [t(9) ≥ −3.35, p ≤ 0.01], sometimes achieving val-
ues of over 30 triads gained for each net change in triad count.
Overall, these results suggest that reducing the synaptic weight
range while applying the same level of external input increased
network dynamics.

Effects were mixed during the asymmetric weight condition,
where inhibitory synapses were stronger on average than
excitatory synapses. This variation did not significantly alter
the temporal stability of any of the global measures with
the exception of an increase in the coefficient of varia-
tion of the number of synapses during the IA12 input
regime [t(9) ≥ 3.35, p ≤ 0.01]. Additionally, the core-to-dynamic
triad ratio was significantly reduced following RA input
[t(9) ≤ −3.35, p ≤ 0.01]; however, all other input types resulted
in increases in the ratio [t(9) ≥ 3.35, p ≤ 0.01]. The gained-to-net
ratio of triads decreased in this network in every input
regime except during RS input. Nevertheless, values remained
high, suggesting that substantial triad turn-over continued
to occur.

Reducing network connectivity (sparse connectivity condi-
tion) also resulted in several significant differences. Although
they remained low, this condition increased the coefficients
of variation of all of the global measures in almost all of
the simulations [t(9) ≥ 3.35, p ≤ 0.01]. This condition also sig-
nificantly decreased the core-to-dynamic triad ratios in every
simulation [t(9) ≤ −3.35, p ≤ 0.01]. Effects of sparse con-
nectivity on gained-to-net ratios varied according to input
regime: RA, RS, and IS input decreased the ratio while
IA12 input increased the ratio [t(9) ≤ −3.35; t(9) ≥ 3.35; p ≤
0.01, all]. Similar to reducing the synaptic weight range,
reducing the number of initial synapses seemed to increase
network dynamics.

During the stationary input condition, where the same set
of neurons received all external input, global stability was not
significantly altered except for an increase in the stability of
the average neuronal degree across time [i.e., decreased coeffi-
cient of variation of degree; t(9) ≤ −3.35, p ≤ 0.01]. This condi-
tion also significantly increased the core-to-dynamic triad ratios
in all simulations [t(9) ≥ 3.35, p ≤ 0.01]. The gained-to-net
triad change ratio was also decreased in every simulation
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Table 3 | Global stability and triad dynamics for all parameter variations.

Condition Global stability Triad dynamics

Input C.V. no. of syns C.V. weight C.V. degree Net change Gained Lost Gain/net

STDP PARAMETER VARIATIONS

Reduced rate RS 0.0025 0.0005 0.0025 1741.53 13425.65 13406.05 7.7091

Reduced window RS 0.0015 0.0011 0.0015 1012.09 8032.56 8005.86 7.9366

Symmetric STDP RS 0.0024 0.0018 0.0024 1493.85 10923.51 10876 7.3123

Reduced rate RA 0.0032* 0.0004** 0.0032 2140.07 17159.59 17231.56 8.0182**

Reduced window RA 0.0018 0.0011 0.0018 1431.46 11126.53 11078.49 7.7729**

Symmetric STDP RA 0.0023 0.0011 0.0023 1683.24 14153.95 14066.65 8.4088

Reduced rate IS 0.0015 0.0007 0.0014 1153.92 9159.97 9161.65 7.9382

Reduced window IS 0.0015 0.0009 0.0015 950.02 7322.75 7318.39 7.708

Symmetric STDP IS 0.0018 0.0013 0.0018 1211.92 7569.25 7551.88 6.2457**

Reduced rate IA50 0.003 0.0007 0.003 2113.29 18946.13 19014.98 8.9652**

Reduced window IA50 0.0017 0.0013 0.0017 1113.53 10964.31 10984.68 9.8465

Symmetric STDP IA50 0.0018 0.0013 0.0018 1497.17 13115.8 13133.37 8.7604**

Reduced rate IA12 0.0029 0.0009 0.0029** 2181.02 19180.83 19248.15 8.7944

Reduced window IA12 0.0026 0.0013 0.0026 1603.1 13929.24 14045.97 8.6889

Symmetric STDP IA12 0.002 0.0013 0.002 1936.32 14750.08 14709.53 7.6176**

NETWORK PARAMETER VARIATIONS

Reduced weight RS 0.0032* 0.0033* 0.0032* 3374.46 85382.1 85395.51 25.3025*

Asymmetric weight RS 0.0023 0.0011 0.0023 1586.63 13208.95 13283.31 8.3252

Sparse RS 0.0064* 0.0035* 0.0064* 1940.37 13669.17 13673.95 7.0446**

Stationary input RS 0.0016 0.0012 0.0016 703.93 3763.03 3730.49 5.3457**

Reduced weight RA 0.0033* 0.0047* 0.0033 3984.73 141100.59 140983.25 35.4103*

Asymmetric weight RA 0.0029 0.0018 0.0029 2241.7 16864 16826.71 7.5229**

Sparse RA 0.0058* 0.0038* 0.0058* 2254.03 14758.46 14768.49 6.5476**

Stationary input RA 0.0015 0.0012 0.0015** 1092.25 6752.48 6764.09 6.1821**

Reduced weight IS 0.0092* 0.0038* 0.0092* 7546.39 68970.17 68842.42 9.1395

Asymmetric weight IS 0.002 0.0014 0.002 1217.88 8640.75 8645.17 7.0949**

Sparse IS 0.0056* 0.0046* 0.0056* 1138.66 7937.2 7888.78 6.9706**

Stationary input IS 0.0017 0.0012 0.0017 536.42 2427.78 2414.2 4.5259**

Reduced weight IA50 0.0042* 0.0063* 0.0042* 4976.66 194756.25 194647.86 39.1339*

Asymmetric weight IA50 0.0025 0.0016 0.0025 2229.73 18842.02 18817.85 8.4504**

Sparse IA50 0.0044* 0.004* 0.0044* 1835.63 21273.37 21307.92 11.5892

Stationary input IA50 0.0023 0.0016 0.0023 1319.29 10783.39 10759.42 8.1736**

Reduced weight IA12 0.0038* 0.006* 0.0038 5748.78 169349.36 169372.55 29.4583*

Asymmetric weight IA12 0.00338* 0.0013 0.0033 2697.68 18182.61 18186.25 6.7401**

Sparse IA12 0.0055* 0.003 0.0055* 1328.09 16124.86 16087.73 12.1414*

Stationary input IA12 0.0026 0.0016 0.0026 1627.37 12137.78 12154.85 7.4585**

*Indicates significant increase in value compared to the original simulations (t ≥ 3.25).

**Indicates significant decrease in value compared to original simulations (t ≤ −3.25).

Note: Triad net change, gained, and lost are reported for comparison only and were not tested for significant differences.

[t(9) ≤ −3.35, p ≤ 0.01]. These results suggest that apply-
ing external input to a fixed input layer increases network
structural stability.

DISCUSSION
Previous theoretical and empirical work has demonstrated
that STDP is capable of selecting unique and presumably
advantageous topological features, such as small-world prop-
erties and specific mosaics of motifs (Shin and Kim, 2006;
Ren et al., 2009). This report demonstrates that not only

does STDP select these features, but it also maintains them
across a broad range of input regimes and parameter val-
ues. The low variability in measures such as synapse count,
clustering, degree distributions and frequencies of motif types
across time reveals that STDP-driven networks are highly sta-
ble even in the presence of noisy and unpredictable input.
However, this global stability belies a dynamic local topology
which remains flexible and responsive. This balance of sta-
bility and flexibility is critical for unsupervised learning and
underscores the viability of STDP as a powerful tool not
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Table 4 | Core and dynamic triad characteristics for all parameter

variations.

Condition Input %Remain %Core %Dynam

STDP PARAMETER VARIATIONS

Reduced rate RS 48.968 69.583* 30.417

Reduced window RS 45.794 68.247* 31.753

Symmetric STDP RS 51.409 58.819* 41.181

Reduced rate RA 53.484 63.952* 36.048

Reduced window RA 51.159 60.884* 39.116

Symmetric STDP RA 53.735 57.772* 42.228

Reduced rate IS 44.063 75.295* 24.705

Reduced window IS 44.074 70.546* 29.454

Symmetric STDP IS 47.276 63.807 36.193

Reduced rate IA50 55.817 64.173* 35.827

Reduced window IA50 51.893 61.96* 38.04

Symmetric STDP IA50 55.127 56.818* 43.182

Reduced rate IA12 55.733 62.738* 37.262

Reduced window IA12 54.32 56.463* 43.537

Symmetric STDP IA12 55.933 55.349* 44.651

NETWORK PARAMETER VARIATIONS

Reduced weight RS 95.059 12.962** 87.038*

Asymmetric weight RS 50.251 57.015* 42.985**

Sparse RS 80.019 27.897** 72.103*

Stationary input RS 36.129 82.943* 17.057**

Reduced weight RA 99.995 3.779** 96.221*

Asymmetric weight RA 55.443 47.616** 52.384*

Sparse RA 79.937 25.908** 74.092*

Stationary input RA 39.878 69.582* 30.418**

Reduced weight IS 86.906 11.026** 88.974*

Asymmetric weight IS 46.403 59.937* 40.063**

Sparse IS 67.277 36.371** 63.629*

Stationary input IS 34.629 84.903* 15.097**

Reduced weight IA50 100 0** 100*

Asymmetric weight IA50 56.819 47.475* 52.525**

Sparse IA50 94.672 10.072** 89.928*

Stationary input IA50 48.617 56.872* 43.128**

Reduced weight IA12 100 0** 100*

Asymmetric weight IA12 55.709 50.969* 49.031**

Sparse IA12 83.92 23.267** 76.733*

Stationary input IA12 49.481 57.518* 42.482**

*Indicates significant increase in value compared to original simulations

(t ≥ 3.25).

**Indicates significant decrease in value compared to original simulations

(t ≤ −3.25).

The total percent of triads remaining (3rd column) was not subjected to

significance testing.

only during neurobiological development but throughout the
lifespan.

The main finding of this study is that networks undergo-
ing continual STDP evolve globally stable topologies while the
local topology remains highly dynamic, as evidenced by the
continual emergence, disappearance, and reshaping of individ-
ual three-neuron triads. This finding is consistent with several
recent studies where local cortical activity was monitored over

long durations while adult mice underwent learning. For exam-
ple, Huber and colleagues (2012) recently reported changes in
primary motor cortex while mice learned an object detection
task. The authors found that as the mice learned the task,
population-level representations stabilized despite an on-going
instability of representations in individual neurons. It was also
recently reported that, following whisker-trimming, overall pop-
ulation activity in the barrel cortex of adult mice re-stabilized;
however, there was a radical shifting of activity in individual
neurons. Previously silent neurons increased their responsiveness
to spared-whisker stimulation, while the formerly most active
neurons decreased their responsiveness (Margolis et al., 2012).
These studies did not specifically investigate the synaptic plas-
ticity mechanisms responsible for these changes; however, in the
present study it was found that STDP similarly maintains global
stability in the presence of active local dynamics, and therefore
may play a role in the rodent cortical plasticity that was observed
during learning.

The balance between stable and dynamic network structure is
emphasized by the discovery of both persistent core triads and
transient dynamic triads. Core triads were composed of strong
and stable synapses, similar to patterns that have been observed
in vitro and in vivo. Song et al. (2005) found a core network of
strongly connected triads among layer V neurons in rat visual cor-
tex. The authors suggest that these triads drive network activity
and are responsible for the stereotypical firing patterns observed
in cortical slices. Consistent with this hypothesis, Lefort and col-
leagues (2009) have reported the presence of sparse, strong and
reliable synapses in rodent somatosensory cortical columns. In a
model, they found that minimal synchronous input was capable
of driving networks that possessed these synapses. Interestingly,
in the present study, synchronous input increased the presence
and strength of core triads. STDP appears to act as a self-
organizing mechanism that leads to the emergence of greater or
fewer core triads depending upon external input. If these core tri-
ads drive the dominant patterns of network activity as suggested,
this may explain why qualitatively different input characteristics
cause distinct patterns of population activity like those seen in
Figure 2.

Asynchronous input, on the other hand, resulted in an
increase in dynamic triads. Asynchronous cortical activity is a
hallmark feature of awake, adult mammals. The presence of
desynchronization appears to emerge during perinatal neocor-
tical development and emerges largely independently of exter-
nal stimulation (Golshani et al., 2009; Rochefort et al., 2009).
This Spontaneous desynchronized activity may lead to a ubiq-
uity of dynamic triads as networks become more refined. The
presence of dynamic triads in these networks may have impor-
tant functional consequences. After exploring a range of brain
and neural networks from several species, Sporns and Kotter
(2004) proposed a distinction between structural and func-
tional motifs (triads). According to their interpretation, the
physical connections between neurons or brain regions form
structural motifs and functional motifs are transient activations
upon these structural motifs recruited during on-going infor-
mation processing. Some structural motifs possess a repertoire
of functional motifs because distinct subsets of connections can
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be selectively activated. Motif types composed of more con-
nections possess larger repertoires because of the number of
functional motifs that can be formed from them. The authors
have argued that topologies comprised of a small set of struc-
tural motifs with large repertoires of functional motifs are
highly efficient because they increase computational capacity
with low wiring costs. In the present report, dynamic triads
are analogous to the functional motifs that Sporns and Kotter
describe. Their presence illustrates how a simple and biolog-
ically realistic mechanism, STDP, provides a viable means for
recruiting functional motifs to accommodate on-going demands.
Further, the set of the functional motifs which are employed
at a given moment can be modified by synaptic potentiations
and depressions. Since a single synapse invariably participates
in a multitude of motifs, subtle changes in the weights of just
a few synapses can lead to network-wide changes in functional
motif activity. Thus, STDP increases network efficiency even
further by adding another dimension to computational capac-
ity (the mosaic of active functional motifs) with relatively low
metabolic costs.

A novel and unexpected finding in this study was the degree of
“small-worldness” observed during on-going STDP. The observa-
tion of increased neural clustering coupled with increased path
lengths between neurons suggests a much more localized net-
work than would be expected in a small-world topology. However,
the highly dynamic nature of the path lengths during the sim-
ulations must be considered. Widely fluctuating path distances
between neurons during the simulations suggest that there were
moments of greater small-worldness intermixed with moments
of more localization and restriction. In this study, distance is
not merely interpreted by the number of synapses between neu-
rons but also reflects the strengths of the synapses separating
them. In this case, a path formed by several strong synapses may
be more advantageous than a path consisting of a single weak
synapse. Again, STDP may enhance the functional capacity of
these networks by varying the strengths of key synapses rather
than through forming network-wide changes. The modulating
path lengths may act as a functional gating mechanism which
could significantly enhance the computational properties of the
networks. Incorporating synaptic weights and directionality into
the evaluation of path lengths may also explain why this study
did not find the emergence of a consistent small-world topology
while similar studies did (Suzuki and Ikeguchi, 2005; Shin and
Kim, 2006). Indeed, when path lengths were evaluated without
consideration of direction or weight in the present simulations,
values dropped considerably and practically no temporal vari-
ability was observed (data not shown). The potential flexibility
of small-worldness and the qualitatively different results that are
observed when directionality and synaptic strength are accounted
for warrant further investigation in both model and biological
systems.

One of the important conclusions that may be drawn from
this report is that complex networks can appear static at one
level of analysis and yet be highly dynamic at another level.
The explorations reported here provide some insight into how
to assess evolving neural networks and other types of networks
which change over time. It appears that an important and thus far

overlooked metric is motif turn-over rates, and perhaps the turn-
over rates of other network constituents. The highly dynamic
behavior and shifting participation of individual triads suggests
that they may play an important computational role in the net-
works. As a caveat, researchers should be cautious in assessing the
activity of any complex network without taking into account the
unique participations of individual network constituents.

This work presents novel findings regarding the influence
of STDP on evolving network topology; however, a number of
outstanding questions remain. Inhibitory synapses were not mod-
ified in these simulations, although it is likely that these synapses
change the functionality of triads (Li, 2008). What influence
would inhibitory plasticity have? The spike-timing mechanisms
at these synapses appear to be governed by different rules than
at excitatory synapses (Haas et al., 2006), and unique behav-
iors occur in predominantly inhibitory networks where STDP
is at play (Fino and Venance, 2010; Fino et al., 2010). Further,
STDP represents only one form of synaptic modification, and
indeed only one type of Hebbian plasticity. We selected STDP
as the candidate plasticity mechanism in our simulations based
on previous work which has shown that STDP can promote sta-
ble activity and reduce noise in recurrent networks (Diesmann
et al., 1999; Bohte and Mozer, 2007; Takahashi et al., 2009). While
the results here suggest that STDP plays the key role in stable
yet flexible network self-organization, other forms of plasticity
may lead to similar network topologies or wholly unique yet
viable topologies of their own. It should be noted that we exper-
imented with a Hebbian plasticity model based on correlations
between pre-synaptic and post-synaptic firing rates. The model
led to completely different behavior, including a total absence of
dynamic triads early in the simulations (unpublished data). These
preliminary findings suggest that direct comparisons between the
effects of STDP and other plasticity models on topological evolu-
tion warrants further investigation. The inclusion of other plastic
changes such as the formation of new synapses, on-going synap-
tic decay, and the role of neuromodulators undoubtedly add to
the complexity of topological dynamics, as well. Another poten-
tial limitation is the time-scale of synaptic modification studied.
While these simulations represented 2 h of activity in small net-
works, the persistence of the stable topological features observed
such as core triads may erode at longer timescales and more
transient structural fluctuations may have been missed due to
sampling rate limitations. Finally, present study only focused on
three-neuron motifs as the main feature of local topology. We
selected three-neuron motifs for comparison to previous work
and because of their computational and analytical tractability;
however, motifs of other sizes undoubtedly possess additional
unique responses to on-going STDP that remain to be charac-
terized. Further theoretical work coupled with empirical explo-
rations will provide a more complete picture of the on-going
topological dynamics of neural networks and the factors that
influence it.

CONCLUSION
Over the past decade, network science has provided a number
of insights into an array of complex systems such as social, bio-
logical, and technological networks, as well as real and modeled
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neural and cortical networks. As a consequence, network scien-
tists have developed new ways of approaching complex systems
and have uncovered a number of common features shared by
many different types of systems. Nevertheless, despite general
agreement that the topology of many of these systems continually
evolves, only a handful of studies have begun to explore their
on-going structural dynamics. New measures and methodologies
are being developed to capture the unique properties of evolv-
ing graphs (e.g., Acer et al., 2011; Starnini et al., 2012), and a
better understanding of the temporal characteristics of specific
systems, such as human contact networks and technological net-
works, is beginning to emerge (Scherrer et al., 2008; Kim et al.,

2012). However, to date, research into the on-going topological
dynamics of neural and cortical networks is almost non-existent.
In addition, although there is a spate of theoretical and empirical
work addressing the functionality of STDP, the continuing role
it plays in shaping network organization beyond early develop-
ment is underexplored [notable exceptions include recent work
by Gambino and Holtmaat (2012) and Pawlak et al. (2013)]. The
present work sheds light onto the evolving topology of neural net-
works and the role that STDP plays in shaping and maintaining
this topology. It remains to be seen whether the discoveries made
here are unique to STDP-driven neural networks or whether they
represent general features of broader classes of complex systems.
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