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molecular resolution. In this perspective, we offer a roadmap by which a zebrafish
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networks generate behaviors and assimilate changes in synaptic connectivity.
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INTRODUCTION

One of the major goals of neuroscience is to understand how
the nervous system, as a dynamic assembly of cells and connec-
tions, generates behaviors as a suite of motor outputs. Impressive
progress has been made in recent times in understanding how the
nervous system develops and functions. However, with the current
set of animal models, neuroscience is approaching a problem of
how one can simultaneously work and integrate data across the
different scales and modalities at which one can interrogate brain
function. To understand a neural process across the scales—from
molecules, synapses, neurons, networks to whole brain—is a bona
fide frontier in the neurosciences today.

Advances in functional neuroimaging are allowing us to identify
with increasing precision which brain regions are correlated with
a particular behavioral output. However, brain-wide visualiza-
tion, permitted by electroencephalography (EEG) and functional
magnetic resonance imaging (fMRI), does not reliably approach
the cellular and/or synaptic spatial resolution of brain processing
(Thai etal., 2009; Lenkov etal., 2012). Conversely, electrophys-
iological or high-resolution imaging methods to record neural
activity are difficult to extend beyond discrete brain regions. To
understand the neural basis of behavior, a challenging goal in
basic and clinical neuroscience will be to bridge the gap between
these distant levels—i.e., to be able to record and analyze the entire
brain with single neuron, if not, single synapse accuracy. Here,
we suggest that the recent developments in live whole brain Ca?*
imaging and super resolution array tomography (AT) can, when
applied to a suitably compact brain (Figure 1), reveal and correlate
whole brain activity maps down to circuit function and changes in
the synaptic landscape. Already an established vertebrate model
for developmental biology, the zebrafish’s genetic toolbox and

unique physical characteristics can now be exploited for the
neurosciences.

THE ZEBRAFISH CAN BE A KEY BRIDGING MODEL FROM CIRCUIT TO
MOLECULAR NEUROSCIENCE

As with other animal models, the zebrafish will never fully recapit-
ulate the complex psyche and behaviors of humans. However, the
fundamental computational units of brain processing are likely to
be conserved and are thus well-studied outside the human brain in
model organisms (Sengupta and Samuel, 2009; Bellen et al., 2010;
Friedrich etal., 2010; Rinkwitz etal., 2011; Wang etal., 2011).The
most common mammalian model used in neuroscience is the
mouse, which offers a great variety of complex behaviors, pow-
erful genetics and excellent ex vivo brain slice electrophysiological
techniques (Kullander, 2005; Van Meer and Raber, 2005; Ward
etal,, 2011; Kim etal,, 2013). However, attempting whole brain
modeling with a mouse is a formidable challenge despite being
three orders of magnitude smaller than an adult human brain,
which has an estimated 10!! neurons each making around 10*
connections (Figure 1). At this time, a genetic model with fewer
neurons and a smaller, more accessible brain would be a more
feasible option.

Zebrafish, sharing conserved neurochemistry and broad brain
organization with their mammalian counterparts, may help to
bridge this gap and give the first insights of circuit dynamics from
whole brain down to molecular changes during conserved behav-
iors. Five key advantages of studying the zebrafish brain are its (i)
compact size, (ii) conservation of the neuropeptide pool (in con-
trast to invertebrates), (iii) linear organization of brain regions,
(iv) structural accessibility of internal nuclei (no overlaying neo-
cortex), and (v) optical clarity (Akanji et al., 1990; Charonis et al.,
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FIGURE 1 | Comparison of brain sizes of common vertebrate
neuroscience models. (A) Schematic diagram of the lateral view of adult
human, mouse, and zebrafish brains to scale. (B, C) Schematic diagram of the
linear organization of major brain regions from olfactory bulb to spinal cord (B)
and the dorsal location of telencephalic structures such as the presumptive
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(From Mueller et al., 2011)
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hippocampus and amygdala (C; adapted from Mueller etal., 2011). OB,
olfactory bulb; Tel, Telencephalon; Di, Diencephalon; Mes, Mesencephalon;
Rh, Rhombencephalon; sc, Spinal cord; Ctx, Neocortex; Hip, Hippocampus,
pirCtx, Piriform cortex; BLA, Basolateral Amygdala and lot, lateral olfactory
tract.

1990; Appelbaum et al., 2009; Berman etal., 2009; Friedrich etal.,
2010; Engert and Wilson, 2012). Particularly with respect to imag-
ing dynamic processes, the zebrafish model uniquely excels as its
brain is translucent and small enough that the entire volume can
be captured at single cell resolution by standard microscopy mag-
nifications. Even at 6 days old, this represents a formidable 100,000
neurons (Naumann etal., 2010), but the linear organization of the
major brain regions from olfactory bulbs to spinal cord tip further
facilitates brain-wide imaging (Figure 1B). In addition, while the
amygdala, hippocampus and habenula are difficult regions to scan
in mammals due to their deep location beneath the neocortex,

their position is inverted in zebrafish. While the anterior neural
tube of mammals undergoes invagination during development,
leading to their deep location beneath the neocortex, the ever-
sion process in the development offish telencephalic makes these
behaviorally important structures the most dorsal nuclei of the
telencephalon (Figure 1C; Northcutt, 2008; Mueller etal., 2011).
Further, the ease of transgenesis, pharmacological studies, and
conservation of behaviors (fear, anxiety, learning and memory,
feeding/preying, social and sexual behavior, sleep and diurnality,
etc.), altogether makes zebrafish a powerful complement to other
models used to study neural processing fundamentals likely to be
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conserved in humans. As we set out a roadmap below (Figure 2),
we contend approaches using zebrafish could yield insights to
coordinated brain activity and function that underpin the normal
healthy brain and what goes awry in pathological contexts.

WHOLE BRAIN IMAGING OF NEURAL ACTIVITY

The ability to image dynamic cellular and subcellular processes
during development has revolutionized the field of develop-
mental biology, ever moving from analyzing fixed samples to
dynamic processes in living animals (Huisken and Stainier, 2009;
Leung etal., 2011; Randlett etal., 2011; Leung and Holt, 2012).
Similarly, the central nervous system is also a highly dynamic
entity and adopting methods to interrogate the neural activ-
ity of cells and networks at brain-wide, single cell resolution

in the context of a behaving animal will be a turning point
in systems neuroscience. To characterize the activity landscape
of a brain at rest or engaged in a defined behavior on these
scales, we suggest the minimum requirements are a neural marker
of activity that can be used across the brain without a priori
hypotheses and an appropriate method to record this activity
over time in a specific animal. Following that, an ability to iden-
tify these active neurons molecularly is crucial for subsequent
progress.

A popular method to mark active neurons involves sacrificing
an animal while (or just after) it performs a behavior/process and
post-stain for a genetic marker of neural activity-the immediate
early genes [IEGs such as cFos and early growth response pro-
tein 1 (EGR-1)] — in whole or specific brain regions of interest.

Neural
networks

Synapse

Fish performing behavior

Whole brain activity map

AT of several known neurotransmitters,
neuropeptides and their receptors

Molecular definition of neurons
relevant to behavior

Promoters to genetically
target relevant neurons

Synaptic activity and plasticity

AT of synaptic components
Synaptic contacts that generate
circuit activity relevant to behavior

FIGURE 2 | Roadmap of the steps a zebrafish neuroscience researcher can take to integrate the various levels of analysis within the same model
organism. GECI, Genetically encoded calcium indicator; AT, Array Tomography; tol2, Tol2 transposase; SyGCaMP, Synaptophysin-specific GCaMP sensor.

'Knowledge of which neurons
‘mediate a behavior

Frequency of firing of
relevant neurons

Optogenetics
Pharmacology
Cell ablation

Promoter-specified
GECI imaging

Functional relevance of particular
networks to behavior
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This has led to the identification of several nuclei involved in
behavioral processes (Hoffman etal., 1993; Sherin etal., 1996;
Murphy etal., 2004), but despite good correspondence with neu-
ral activity, methods using IEGs have their limitations. Firstly, it is
possible that IEGs are only induced when neurons are highly/over
activated. Indeed, it is likely that tonic or low firing neurons, which
may also be important for a particular computation, may have little
orno I[EGs induced. Therefore, until further demonstrations of the
degree of activation required to induce IEG expression are made,
caution should be exercised in concluding that they mark the entire
firing population involved in a process. Secondly, a single IEG like
cFos is not pan neuronally expressed so it is unlikely to be the
sole gene used by all the neurons active during a given behavior.
Thirdly, there is important computational information encoded
when neurons cease firing as opposed to when they become active,
and no IEG currently reports the end of a period of activity. Finally,
the fixation for IEG staining precludes dynamic information
about activity and firing patterns which could provide a cru-
cial handle on the processing and functions carried out by active
neurons.

The development of genetically encoded Ca?* indicators
(GEClIs) sets to solve many of these limitations and zebrafish is
particularly suited to the use of GECIs with the ease of genet-
ics/transgenesis and a translucent central nervous system. GECls,
such as GCaMP (Nakai etal.,, 2001; Muto etal., 2011, 2013)
respond with changes in fluorescence intensity proportional to
subcellular Ca?* changes. In fact, the latest generation of GCaMPs
have the ability to reliably indicate single action potential (AP)
events and a whole library of versions exist to suit various potential
uses (Akerboom etal., 2012; Ohkura etal., 2012) as well as Ca2™
sensors that operate at UV and red-shifted excitation wavelengths
(Zhao etal., 2011; Akerboom etal., 2013). A further advantage of
GECIs as compared to traditional electrophysiological recordings
is their minimal invasiveness. A multi-electrode array that can dis-
criminate spiking activity from a dozen neurons is prohibitively
large for a zebrafish brain, while GECI imaging is completely
non-invasive and can acquire spiking activity from hundreds of
neurons from one image plane. Combined with pan-neuronal
promoters and two-photon excitation microscopy, the monitor-
ing of brain-wide neural activity during brain computations holds
great potential (Figure 3B). By focusing excitation to small precise
volumes in a tissue, two-photon imaging greatly reduces pho-
totoxicity resulting from illumination of tissues above regions
of interest typical of epifluorescent and confocal microscopy
(Carvalho and Heisenberg, 2009). This permits longer term imag-
ing of living samples than previously possible. An important
advantage of operating in the infrared range is that the imag-
ing also does not interfere with light-sensitive behaviors such
as circadian and sleep rhythms (Appelbaum etal., 2010). Such
excitation also confers benefits to the depth of tissue penetra-
tion and thus the imaging of deeper structures in the brain. To
give an idea of scale, an entire 1 month juvenile fish brain has
a thickness of ~1 mm, which can be fully covered in depth
with two-photon scanning. Indeed, the entire brain of a 7 dpf
larva can be covered with few imaging frames, as has already
been attempted with remarkable success even with the mod-
estly sensitive GCaMP2 (Ahrens etal., 2012). Here, the larva’s

computations during changes in motor gain during fictive swim-
ming were located without a priori assumptions to specific brain
regions such as the inferior olivary complexes. With advanced
microscopy, the possibility of whole brain imaging at single cell
resolution at physiological frequencies is within reach to zebrafish
researchers (Ahrens and Keller, 2013).The recent developments in
imaging Ca’* sensitive emitters of bioluminescence, such as green
fluorescent protein (GFP)-aequorin, in freely behaving zebrafish
offers further exciting avenues to complement GCaMP data of
stabilized/paralyzed animals (Naumann etal., 2010). After gain-
ing such volumes of information, the upcoming challenge with
brain-wide “activity screens” will be to accurately define the neu-
ronal populations of interest. Without accurate knowledge of
the neuroanatomical location or access to specified circuits, this
remains a challenging hurdle to a true understanding of circuit
function.

IDENTIFYING MOLECULAR MARKERS WITH ARRAY TOMOGRAPHY

So how do we progress from locating the active nuclei correlated
with particular behaviors and knowing their molecular identity?
What method can provide this missing link? We propose the use
of AT to take the same zebrafish that are used in Ca’* imag-
ing studies and perform a powerful spatial proteomic approach
to gain the molecular identity of the neurons that are active in a
given process (Figure 3C). AT is an imaging technique that uses
nanometer-thin physical sectioning of a fixed tissue sample to
facilitate the multiplexed imaging of dozens of protein markers
with exquisite spatial resolution and large volumetric tissue cov-
erage (Micheva and Smith, 2007; Wang and Smith, 2012).To date,
AT has been broadly used to characterized genetically targeted
neurons in zebrafish (Robles et al.,2011), assess the synapse deficits
caused by Tau accumulation in mouse and humans (Kopeik-
ina etal,, 2011), quantify the three-dimensional microstructural
changes of mouse aortic tissue after aneurysm (Saatchiet al., 2012),
and measure synapse density changes due to astrocytic glypi-
can release (Allen etal., 2012) and thalamic network stimulation
(Lacey etal., 2012).

Conjugated live imaging of neuronal activity and subcellular-
level AT will allow the quantitative analysis of cell physiology on a
circuit level. AT analysis of cell-type specific antigens will provide
single neuron differentiation of cell classes based on transmitter
expression, e.g., glutamate, GABA, acetylcholine, etc., (Figure 3).
Moreover, these transmitter-determined neuron types can be fur-
ther classified by the expression of neuropeptides or transcription
factors. By properly aligning Ca?* and AT data, single neuron
activity profiles can be mapped from Ca?* imaging experiments
to molecularly identified neurons. This post hoc identification of
the molecular physiology of measured circuit members in con-
junction with the temporal data from live imaging should allow
a more robust classification of functional relevance in terms of
understanding how inhibition, excitation and global modulation
affect the discrete calculations made by a specific circuit. Fur-
ther, since the sectioned sample can be kept indefinitely (Micheva
and Smith, 2007), when new markers for neuron identity become
available, previously unidentified nuclei that displayed interesting
activities can be marked and leads to a model that becomes more
accurate with time.
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FIGURE 3 | From whole brain to single synapse. (A) Behavioral processes
can be studied in non-pigmented (Nacre; mitfa mutant) species of zebrafish.
(B) Two-photon volume image of 5 dpf zebrafish expressing GCaMP
pan-neuronally, note the linear organization of the brain along the rostrocaudal
axis from telencephalon (tel) to spinal cord (sc). (C) Various maximal
projections (from area indicated in B by white box) of the 5 dpf zebrafish
midbrain reconstructed after array tomography against GABA (magenta),

Whole animal behavior napse resolution dynamics

“— bodies

le brain Ca* imaging

HCRT cell

BrdU (green) and DAPI (cyan) markers. White dashed line depicts

midline. (D) Genetically specified circuit analysis. Synaptophysin-eGFP
(syp-eGFP) allows imaging of structural plasticity of synapses (white
arrowheads) in hypocretin (HCRT) neurons. (E) Single synapse resolution
projection of array tomography sections stained for GFP (green), PSD95
(magenta) and Synapsin (cyan). Inset, magnification of a single shaft synapse
(white arrow).

The combination of Ca?* imaging and AT means we will be
able to map functionally relevant brain regions or nuclei in terms
of their temporal activity patterns and their molecular topology.
When correlated to behavior, the temporal structure could also
provide us with a map of how sensory inputs change the active con-
nections of a defined neural circuit. Obtained under both baseline
and challenged conditions, firing patterns could also be examined
to gain insights to the nature of the disruptions involved in brain
disorders and neural degeneration (see Future directions). On top
of this functional structure we will then be able to overlay a rele-
vant molecular topology that will reveal the identity of the nodes,
whether inhibitory or excitatory, being connected in the func-
tional activity structure. At its simplest, the temporal correlation

of inhibitory and excitatory inputs into a circuit will be the basis
of the computation performed by that group of neurons, and once
both the identity and the activity structures stereotypic to a spe-
cific set of inputs and outputs are known, it will then be possible to
reconstruct the actual algorithm performed by the circuit in rela-
tion to the set of inputs. Moreover, with the wealth of molecular
information we can obtain from AT, we will be able to look at how
patterns of activity might affect global modulation of the brain
through the induction of various categories of neurotransmitters
from monoamines to peptides.

Distinguishing the molecular identity of each brain nucleus —
if not neuron - is crucial so that we can exploit the use of
transgenesis to genetically capture these circuits in order to
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further study their functions. As with other model organisms,
genetic tagging of circuits will be critical since there is significant
interindividual variation in the spatial location of neurons that
prevents ease of comparison by the activity map alone. With
promoter driven transgenic lines at hand, specific neural popu-
lations can be imaged in more detail for their firing rates [GCaMP,
aequorin and genetically-encoded voltage indicators (GEVIs)] to
begin to understand the relative contributions of subgroups or
individual neurons to a behavioral output. Further, once relevant
firing circuits or nuclei are established, pharmacological treatment,
ablations, and optogenetic techniques (for review, Portugues et al.,
2013) can be used more accurately to dissect the necessity and
sufficiency for those regions (or even single cells) in normal
behavioral processes and put us in a position to model brain
disorders.

SYNAPSE IMAGING WITH TWO-PHOTON OR ARRAY TOMOGRAPHY

An ideal understanding of brain computation and function will
also require insights at the synaptic level. Perturbations at this
level as seen with Schizophrenia, Fragile X syndrome, and Rett
syndrome highlight the need to understand what constitutes nor-
mal brain connectivity (Chahrour and Zoghbi, 2007; Lauriat
and Mcinnes, 2007; Featherstone, 2010; Toro etal., 2010; Auer-
bach etal.,, 2011; Grant, 2012). Zebrafish allow a large shift in
scale, from whole brain to neural network down to subsynap-
tic components. For example, zebrafish permit both longitudinal
studies of synapses and whole brain coverage of the synaptic
landscape. Thanks to the accessibility of the zebrafish brain, live
two-photon imaging of genetically specified synaptic populations
offers an important glimpse into the dynamics of synapse for-
mation and disassembly related to the function of networks. For
example, a longitudinal study of zebrafish hypocretin synapses
on axons innervating the pineal gland at larval stages demon-
strated rhythmicity of synaptic connections made by this circuit
over time (Appelbaum etal., 2010). The reduction in photo-
toxicity allowed the imaging of the same genetically defined
neuronal process in a live vertebrate over 24 h (live zebrafish
can be safely imaged in agarose during a full sleep/wake cycle;
Appelbaum etal., 2010). Such insights are not possible using
fixed samples of several individuals and no other animal model
currently offers opportunities to study such phenomenon on a
brain-wide scale over time. Ca?* dynamics can also be inves-
tigated at the synaptic level across the brain or a genetically
defined circuit to demonstrate functionality. GCaMP indicators
fused to synaptic markers (e.g., SyGCaMP and SyRGECO) have
allowed the deciphering of the neural coding involved in the trans-
fer of information between cells in the zebrafish retina (Dreosti
etal., 2011) and tectum (Nikolaou etal., 2012; Walker etal.,
2013), showing the exciting potential of understanding synap-
tic firing at specific connections. Such a gain in resolution —
access to the firing pattern of individual synapses — bears tremen-
dous potential for revealing the potential disruptions in brain
diseases.

As discussed above for circuit dynamics, it is useful to know
the molecular identity of an activity profile — and AT again
affords this opportunity at the level of the synapse. Such infor-
mation identifies the nature of these synapses, whether they

are excitatory or inhibitory and if they are undergoing plastic-
ity changes such as those for long-term potentiation/long-term
depression (LTP/LTD) induction. The sub-diffraction resolution
(Wang and Smith, 2012) and the proteomic coverage (Micheva
and Smith, 2007) of AT is ideal for the analysis and classifica-
tion of synapses in a large tissue volume. The combination of live
two-photon structural analysis with AT will allow the identifica-
tion of proteins involved in the structural dynamics of synapses
in the brain (Figure 3D). A straightforward longitudinal anal-
ysis of synapse dynamics (Niell etal., 2004; Appelbaum etal.,
2010) followed by post hoc AT analysis of the stable or newly
formed synapses can give insight into the molecular mechanism
by which synapses are stabilized or generated (Figure 3E). This
further combined with measured activity of those synapses could
open the door to finding the molecular and synaptic mechanisms
underpinning behavioral control.

In this new regime, perturbations that affect synaptic plasticity,
e.g., disease or behavioral challenges, can be characterized during
longitudinal analysis, and the affected synapses will be targeted
for post hoc proteomic dissection to reveal potential molecular
changes. Then the candidate molecules can be labeled and modi-
fied and put back into a living system and then reanalyzed in terms
of their effects on synaptic plasticity and dynamics. In this man-
ner, deep molecular knowledge about the workings and deficits
of nervous systems can be gleamed by this iterative process of
longitudinal, quantitative observation and conjugate molecular
dissection.

FUTURE DIRECTION AND APPLICATIONS FOR HUMAN
DISORDERS

Zebrafish as a genetic model system has driven change in
developmental biology and we expect a similar impact in the neu-
rosciences with the advent of whole brain and synapse imaging
techniques. While the zebrafish, as with all other animal mod-
els, can never accurately recapitulate the behavioral output of a
human, we contend that at the level of the synapse and neuron,
invaluable insights can be made, with techniques that leverage the
unique properties of this vertebrate model, in understanding the
basic conserved principles of how neuronal networks coordinate
and function.

Knowledge of normal vertebrate brain function will have a
huge impact understanding normal brain health and psychia-
try. Importantly, there is an increasing realization that some
psychiatric/brain diseases are predominantly genetic, develop-
mental and neuronal/synaptic disorders. Indeed, insights to brain
health and psychiatry require a whole brain perspective at sin-
gle synapse resolution. Such a situation may appear to be an
unreachable goal today, but zebrafish comes very close to bridg-
ing these scales of neural circuit investigation. Psychiatry as a
field is now becoming a more integrated field benefiting of neu-
roscience and genetic studies. The introduction of novel uses of
established animal models such as zebrafish in psychiatry and clin-
ical neurosciences should allow new perspective and strategies.
With development of psychiatric therapies in decline, advances
in our understanding of the molecular basis of synaptic changes
in normal and diseased brains should offer new targets for
the pharmacological industry. Mental health disorders are the
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leading cause of disability according to most medical sources. For
most mental illnesses, the etiology is unknown, detection and
prevention are poor, and current medication is not consistently
effective. We hope whole brain studies with synapse resolution in
the vertebrate zebrafish will soon allow breakthrough advances in
our understanding of complex brain disorders.
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