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How are neuronal representations of space organized in the hippocampus?
The self-organization of such representations, thought to be driven in the CA3 network by
the strong randomizing input from the Dentate Gyrus, appears to run against preserving
the topology and even less the exact metric of physical space. We present a way to
assess this issue quantitatively, and find that in a simple neural network model of CA3,
the average topology is largely preserved, but the local metric is loose, retaining e.g., 10%
of the optimal spatial resolution.
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INTRODUCTION
CA3 neurons in rodents develop their selectivity for certain por-
tions of any new environment (O’Keefe and Dostrovsky, 1971;
Wilson and McNaughton, 1993) through an ongoing unsuper-
vised learning process, probably driven by the dentate gyrus
(Treves and Rolls, 1992; Leutgeb et al., 2007) which is random
in nature and which generates a non-trivial mapping between the
external input (the position of the animal in that environment)
and the response of individual cells. The position, the shape and
the number of the fields developed by each CA3 cell are thus not
captured by any simple rule of organization (Park et al., 2011).
This is true also for non-spatial stimuli, which are most prob-
ably deposited in the hippocampal memory store in a similar
fashion (Komorowski et al., 2009; Naya and Suzuki, 2011; Tort
et al., 2011). Also in this case, we expect neurons to develop ran-
dom profiles of activation to stimulus features, spanning random
regions of feature space (Quiroga et al., 2005).

What is specific about physical space, and makes it differ-
ent from other correlates of neuronal activity, is its intrinsic
topographical structure. A set of spatial stimuli are naturally
endowed with a canonical topology and with a continuous metric,
defined by the relative position of locations in the environ-
ment. These stimuli thus span a multi-dimensional manifold,
which, in the typical experimental situation of a recording box,
is two-dimensional and Euclidean. How “spatial” is the internal
representation generated in CA3? How much of the external met-
ric is preserved inside the brain? (Samsonovich and McNaughton,
1997; Stringer et al., 2002; McNaughton et al., 2006).

One may pretend to ignore the real-world metric, and study
the metric of the virtual manifold established by the patterns
of neuronal activity with which physical space has been associ-
ated (Muller and Stead, 1996; Muller et al., 1996). How? In CA3
the movements of an animal traversing an environment elicit,

on repeated trials, a distribution of responses which one can
use to define distances between pairs of locations (Brown et al.,
1998; Deneve et al., 1999; Averbeck et al., 2006), in terms e.g., of
the mean overlaps in the corresponding distributions of popu-
lation vectors, and one can analyze the overall structure of such
pair-wise distances in geometric terms.

Ideally a faithful mapping of space should produce isometric
representations, i.e., whose relationships mirror the relation-
ships induced in real space by the Euclidean metric (Curto
and Itskov, 2008). Such an ideal mapping is, however, unfea-
sible with any finite neuronal population, even more so with
a random self-organization process (Tsodyks and Sejnowski,
1995; Hamaguchi et al., 2006; Papp et al., 2007; Roudi and
Treves, 2008). But how to assess the degree of deviation from
isometricity?

Spatial representations in CA3 depend, of course, not just
on the physical structure of external space but also on how it
is perceived by the animal, and on the effective dimensionality
of the representation, as spanned by animal behavior (Hayman
et al., 2011; Ulanovsky and Moss, 2011). Distant locations might
be seen as similar or confused altogether, irrelevant dimensions
might be ignored, e.g., on a linear track, the relative distance
between locations might be distorted, not all the locations might
be assigned a representation in the population, etc. In a word,
the Euclidean nature of external space may be altered arbitrarily.
To start with, it is useful, however, to remove such arbitrariness
and consider a model situation in which there is nothing but the
Euclidean metric of physical space to be represented, through self-
organization. This is what we set out to do in this study. While in a
companion paper (Cerasti and Treves, under review) we focus on
characterizing the local smoothness of these representations, and
how it scales with the size of the network, here we aim to quantify
their metric content.
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In Treves (1997), and later papers, e.g., Treves et al. (1998),
Ciaramelli et al. (2006), and Lauro-Grotto et al. (2007), a met-
ric content index was introduced in order to characterize the
amount of perceived metric in the representation of a discrete set
of stimuli, such as faces. It was shown empirically that such met-
ric content index is almost invariant as one varies the sample of
cells used to assess the representation. Thus, it approaches the role
of an objective or intrinsic measure, insensitive to the procedure
used to extract it (e.g., how many and which cells are recorded in
a particular experiment). Can a similar descriptor be applied to
the representation of real space?

Although physical space is low dimensional, each spatial vari-
able can span during everyday behavior a small or large interval
along any of the dimensions and, crucially, can do so contin-
uously. To actually define a set of distinct locations, for data
analysis, one has in practice to discretize space in a finite number
of bins and to assign to each of them a reference population vec-
tor, resulting from averaging over the activity expressed when in
that bin (the actual procedure to perform this average can vary).
One would want these bins to be as small as possible, to retain
part of the continuity compromised by the binning. On the other
hand, any refinement of the bin resolution leads unavoidably to a
low sampling problem.

This “curse of dimensionality” (Golomb et al., 1997; Panzeri
et al., 2007) (where the dimensionality referred to is not of space
itself, but of multiple locations in space) limits the current feasi-
bility of the metric content analysis of a set of real, experimental
data. The length of a recording session necessary to properly sam-
ple the distribution of population vectors tends to be prohibitive.
One may, however, turn to computer simulations, which can be
as long as needed, to produce the data necessary for the analysis.

MATERIALS AND METHODS
BASIC MODEL
The model we consider is, as in Cerasti and Treves (under review)
an extended version of the one used in our previous study (Cerasti
and Treves, 2010), where the firing rate of a CA3 pyramidal cell,
ηi, was determined, as the one informative component, by the fir-
ing rates {β} of DG granule cells, which feed into it through mossy
fiber (MF) connections. The model used for the neuron was a
simple threshold-linear unit (Treves, 1990), so that the firing of
the unit results from an activating current (which includes several
non-informative components) and is compared to a threshold:

ηi(�x) = g

⎡
⎣∑

j

cMF
ij JMF

ij βj(�x) + δ̃i − T̃

⎤
⎦

+
(1)

where g is a gain factor, while [·]+ equals the sum inside the
brackets if positive in value, and zero if negative. The effect of
the current threshold for activating a cell, along with the effect
of inhibition, and other non-informative components, are sum-
marized into a single subtractive term, with a mean value across
CA3 cells expressed as T̃, and a deviation from the mean for
each particular cell i as δ̃i, which acts as a sort of noise; thresh-
old and inhibition, in fact, while influencing the mean activity
of the network, are supposed to have a minor influence on the

coding properties of the system. In the earlier reduced model,
however, T̃ and δ̃i also included the effect of other cells in CA3,
through RC connections, and that of the perforant path, both
regarded as unspecific inputs—this based on the assumption that
information is driven into a new CA3 representation solely by MF
inputs.

In Cerasti and Treves (under review) and in this study, instead,
since we are interested in the ability of the RC system (Amaral
et al., 1990; van Strien et al., 2009) to express spatial representa-
tions, we separate out the RC contribution, and redefine T̃ and
δ̃i into T and δi—which sum the remaining unspecific inputs,
including the perforant path, not analyzed here:

ηi(�x) = g

⎡
⎣∑

j

cMF
ij JMF

ij βj(�x) +
∑

k

cRC
ik JRC

ik ηk(�x) + δi − T

⎤
⎦

+

(2)
Connections between cells are indicated by the fixed binary matri-
ces {cMF}, {cRC}, whose non-zero elements (which take value 1)
represent the existence of anatomical synapses between two cells.
The synaptic efficacies are instead indicated by the matrices of
weights {JMF}, {JRC}, whose elements are allowed to take posi-
tive values. The notation is chosen to minimize differences with
our previous analysis of other components of the hippocampal
system (e.g., Treves, 1990; Kropff and Treves, 2008).

The perforant path inputs from Entorhinal Cortex are not
explicitly included in the model, in line with the hypoth-
esis that they relay the cue that initiates the retrieval of
a previously stored representation, and have no role in the
storage of a new representation and in defining the prop-
erties of the attractors in CA3. This perspective has been
theoretically described in (Treves and Rolls) and has found
experimental support (Lassalle et al., 2000; Lee and Kesner,
2004).

The firing rates of the various populations are all assumed
to depend on the spatial position �x of the animal; and the time
scale considered for evaluating the firing rate is of order the theta
period, about 100 ms, so the finer temporal dynamics over shorter
time scales is neglected. To be precise, in the simulations, we take
a time step to correspond to 125 ms of real time, or a theta period,
during which the simulated rat moves 2.5 cm, thus at a speed of
20 cm/s. This is taken to be an average over a virtual exploratory
session, familiarizing with a new environment.

THE STORAGE OF NEW REPRESENTATIONS
The important novel ingredient that was introduced by (Cerasti
and Treves, 2010), and that makes the difference from previ-
ous models of self-organizing recurrent networks, is a realistic
description of the patterns of firing in the inputs, i.e., in the den-
tate gyrus. As the virtual rat explores the new environment, the
activity βj(�x) of DG unit j is determined by the position �x of the
animal, according to the expression:

βj(�x) =
Qj∑

k = 0

β0e−(�x − �xjk)
2/2σ2

f (3)
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The firing rate of the granule cells is then a combination of Qj

Gaussian functions, resulting in “bumps,” or fields in the firing
map of the environment, centered at random points �xjk. The envi-
ronment is taken to have size A, and the fields are defined as all
having the same effective size π(σf )

2 and height β0. Qj, which
indicates the multiplicity of fields of DG cell j, is drawn from a
Poisson distribution:

P(Qj) = qQj

Qj! e−q (4)

with mean value q, which roughly fits the data reported by
Leutgeb et al. According to the same experimental data, we
assume that only a randomly selected fraction pDG << 1 (here
set at pDG = 0.033) of the granule cells are active in a given envi-
ronment. Hence population activity is sparse, but the firing map
of individual active granule units need not be sparse [it would
only be sparse if qπ(σf )

2/A << 1, which we do not assume to be
always the case].

The activity of DG units determines the probability distri-
bution for the firing rate of any given CA3 pyramidal unit,
once the connectivity level between the two layer has been

fixed:
{

CMF
ij

}
= 0, 1 with P

(
CMF

ij = 1
)

= CMF

NDG
≡ cMF. In agree-

ment with experimental data, we set CMF = 50, a value in the
range of the ones providing an optimal information transmis-
sion from DG to CA3 (Cerasti and Treves, 2010). The MF
synaptic weights are set to be uniform in value, JMF

ij ≡ J, and

similarly JRC
ij ≡ JRC

0 initially. Subsequently, during the learning
phase, RC weights are modified according to the simulated learn-
ing process and under the influence of the input coming from
the MF connections. Following the simplified hypothesis that
the MFs carry all the information to be stored without con-
tributing anything to the retrieval process, which is left to the
recurrent collateral, MF weights are kept fixed to their ini-
tial values J; note that we have found, in our earlier study
that MF connections appear to be inadequate, even when asso-
ciatively plastic, to support retrieval of spatial representation
(Cerasti and Treves, 2010).

The connectivity among CA3 cells is given by the matrix{
CRC

ij

}
= 0, 1 with P

(
CRC

ij = 1
)

= CRC

NCA3
≡ cRC, where CRC =

900 in most simulations. The activity of the network is regu-
lated by the constraint we impose on its mean and on its sparsity
aCA3, i.e., the fraction of the CA3 units firing significantly at
each position, which is an important parameter affecting mem-
ory retrieval [(Treves, 1990); more precisely, aCA3 = 〈ηi〉2/〈η2

i 〉].
Here we set the sparsity of each representations as aCA3 = 0.1, in
broad agreement with experimental data (Papp et al., 2007), and
at each time step we regulate the threshold T accordingly, to fulfill
such requirement, while keeping the mean activity 〈ηi〉 = 0.1 by
adjusting the gain g.

RECURRENT COLLATERAL PLASTICITY
During the learning phase, the activity of CA3 is driven by DG
inputs, and RC connections contribute through weights uni-
formly set to their initial value JRC

0 . While the virtual rat explores
the environment, RC weights are allowed to change according to

an associative “Hebbian” learning rule, such that the total change
in the synaptic weights is given as a sum of independent terms

�JRC
ij (t) = γηi(t)

(
ηj(t) − �j(t)

)
(5)

where �Jij(t) indicates the variation of the connection weight
between cells i and j occurring at a given time step t, ηi, and ηj are
the postsynaptic and presynaptic firing rate, while γ is the learn-
ing rate. This associative learning rule includes the contribution
of a trace, �, of the recent past activity of the presynaptic cell,
defined as

�j(t) = 1

τ

τ∑
ts = 1

ηj(t − ts) (6)

where τ is taken equal to 14 time steps (1750 ms). RC weights
are forced to be non-negative, so they are reset to zero each time
they become negative. Moreover, the total of the synaptic weights
afferent to a single postsynaptic CA3 cell is normalized at the end

of the learning process, so that
∑CRC

j = 1 JRC
ij = 1 per each CA3 cell.

In words, the synaptic plasticity on recurrent connections allows
the system to store the information about the current environ-
ment conveyed by MF inputs; such information is expressed in the
form of place-like patterns of activity in CA3 units, and the Hebb-
like learning rule strengthens the connections between units that
show overlapping fields.

THRESHOLD SETTING IN CA3
CA3 units fire according to Equation (2), with the threshold T
hypothesized to serve to adjust the sparsity aCA3 of CA3 activity
to its required value. The sparsity is defined as

aCA3 =
(∑

i

ηi(�x)
)2 /∑

i

η2
i (�x) (7)

and it is set to aCA3 = 0.1. This implies that the activity of the
CA3 cell population is under tight inhibitory control.

SIMULATIONS
The mathematical model described above was simulated with a
network of 45,000 DG units and 1500 CA3 units. A virtual rat
explores a continuous two dimensional space, intended to rep-
resent a 1 sqm square environment but realized as a torus, with
periodic boundary conditions. In each time step (of 125 ms) the
virtual rat moves 2.5 cm in a direction similar to the direction of
the previous time step, with a small amount of noise.

Before and during the learning session, all recurrent connec-
tions weights take the same value JRC

0 ; after the learning phase,
they take the values resulting from the sum of all modifica-
tions occurred during the session, and described by Equation
(5), with learning rate γ. The trajectory of the virtual rat dur-
ing the learning session is a random path, extended over a
time long enough for it to effectively visit repeatedly all pos-
sible locations in space: 10,000 time steps to cover the entire
environment. This is taken to correspond to about 20 min of
exploration in real time. Such synaptic modifications start to
have an effect on the CA3 firing rate only at the end of the

Frontiers in Neural Circuits www.frontiersin.org April 2013 | Volume 7 | Article 81 | 3

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Stella et al. Metric content of spatial representations

learning session, when the RC weights are updated to their new
values.

After the learning phase for the CA3 network, we run a train-
ing phase for our decoding algorithm, during which we build the
so called activity templates (Rolls and Treves, 2011): the environ-
ment is discretized in a grid of 8 × 8 locations and to each of
these bins we associate a reference population vector. This ref-
erence vector for a bin is obtained averaging the activity of the
network in all the time steps that the rat spends in that bin during
a simulation of 100,000 time steps.

Subsequently a test phase is run. This time the rat is left
wandering on a random trajectory through the environment
and at each time step the activity generated in the network
is compared to the templates previously defined. The dynam-
ics is analyzed when the input coming from the DG units is
either on, to characterize externally driven representation, or
turned off, to characterize instead memory driven attractors
(Wills et al., 2005; Colgin et al., 2010). The noise level we use
is kept very low (δ = 0.002), as we are more interested to probe
the microstructure of the spatial representation rather than to
test its robustness. To have a roughly even coverage of the sur-
face of the environment and to produce a sufficient number of
visits to each one of the locations in which it is divided, simu-
lations are run for 400,000 time steps (nearly 35 h of virtual rat
time).

For simulations without DG direct input, aimed at describ-
ing attractor properties, in each step of the virtual rat trajectory,
activity is allowed to reverberate for 15 time steps; with a full DG
input during the first one, an input reduced to 1/3 during the
second, and to 0 for the remaining 13 time steps. The final config-
uration attained by the system after this interval is then observed
and the rat is moved to the next position and the procedure is
repeated.

ANALYSIS AND RESULTS
GLOBAL METRIC
What does the global structure of the CA3 representation gen-
erated in our simulations look like? One may start address-
ing this question by using the most comprehensive measure of
activity in the network. In our simulations, templates are gen-
erated using the entirety of the cells and averaging their activity
over the spatial extent of the relative bin. They are the finger-
prints of the representation of the environment contained in
CA3. Templates are vectors in a high-dimensional space, namely
the number of dimensions corresponds to the number of units
in the network, 1500 in the simulations we use for the anal-
ysis. To visualize the configuration of these vectors and their
arrangement, one should use some procedure to reduce their
dimensionality and to produce a readable picture. One can use
the correlation between the vectors associated to different posi-
tions to construct a similarity matrix containing the relative
distance of all the vector pairs. Multidimensional scaling (MDS)
uses this similarity matrix to assign positions to the templates
in a Euclidean space of a specified dimension (in our case, 3-
dimensional), so as to best preserve the ordering of the distances
in the distance matrix. One can then directly compare the con-
figuration obtained from the algorithm to the topology of the

external environment, which, in the case of our simulations that
make use of periodic boundary conditions, is a two-dimensional
torus.

In fact, also configurations produced by a metric MDS
[Sammon algorithm (Sammon Jr), Stress = 0.04] tend to have
a torus-like topology (Figure 1). The global properties of the
model CA3 representation thus faithfully reproduce those of
external space, at least in terms of average templates. This
assessment, however, is only qualitative and it misses finer
details that may hide at different levels of resolution. The
actual responses of the network while the animal is travers-
ing the environment are averaged away in building the tem-
plates. Moreover a measure based on the activity of the whole
population does not provide indications as to the distribu-
tion of information sampled, in practice, from the few neurons
which can be recorded simultaneously, leaving doubts as to
whether such a global measure has any experimental relevance.
We are then left with the problem of constructing a synthetic
description of the representation that comprises information
on its local properties, as gauged by observing a few units at
a time.

DECODING
To quantitatively assess the features of a neural representation
of any set of stimuli we can rely on some standard procedures
(Quian Quiroga and Panzeri, 2009). Decoding the spike trains
emitted by a population of neurons, when one (s) of a set of
stimuli is presented, means applying an algorithm that estimates,
given the current spike train and those previously recorded in
response to each stimulus, the likelihood for each (s’) of the pos-
sible stimuli to be the current one. The stimulus for which the
likelihood is maximal is the stimulus predicted on the basis of
the chosen decoding algorithm. One repeats this all the times s
is the current stimulus, to generate a table P(s’ | s). The decoded
stimulus is not necessarily the correct one, and a first measure
of the nature of the representation is just the fraction of correct

FIGURE 1 | Multidimensional scaling analysis. The figure shows the
3-dimensional configuration of template vectors based on pairwise
correlations obtained by multidimensional scaling [Sammon criterion
(Sammon, 1969)], applied to the spatial representation produced by the
model CA3 network. The configuration closely reproduces the original
similarity matrix (Stress = 0.04). Red and blue lines correspond to
orthogonal directions in the external environment.
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hits in the table,
∑

s P(s | s)P(s), where P(s | s) are just the diago-
nal elements of the confusion matrix. A more complex, yet more
complete, measure is given by the mutual information I

I =
∑
r,s

P(r, s) log2
P(r, s)

P(r)P(s)
(8)

which also reflects the distribution of errors, and thus provides
further insight on the way the stimuli are encoded (Rolls and
Treves). These two quantities, percent correct and mutual infor-
mation, depend on the pool of neurons used to perform the
decoding, and most crucially on the size of this pool. More cells
obviously allow for better decoding.

The two quantities are not completely independent, as there
are mutual constraints between them. At the same time, one does
not completely define the other: given a certain percent correct
there is a possible range of information values that depends on
the way errors are distributed among incorrect locations. At one
extreme, when there is no overlap between the representations of
different stimuli, we expect errors to be distributed at chance: the
“distance” between any pair of stimuli is maximal and effectively
the same, and no non-trivial metric can be defined. Conversely,
any non-uniform overlap influences the way errors are produced.
The more the distribution of errors deviates from being flat,
the more the representation contains overlapping and interfering
elements.

THE SPATIAL CONFUSION MATRIX
During the test phase of our simulations, at each time step, the
firing vector of a set of CA3 units is compared to all the templates
recorded at each position in the 8 × 8 grid, for the same sample,
in a test trial (these are the template vectors). The comparison is
made by calculating the Euclidean distance between the current
vector and each template, and the position of the closest template
is taken to be the decoded position at that time step, for that sam-
ple. This procedure applies to our spatial analysis what has been
termed maximum likelihood Euclidean distance decoding (where
the distance between population vectors should not be confused
with the distance between locations in the environment). The fre-
quency of each pair of decoded and real positions are compiled
in a so-called “confusion matrix.” Should decoding “work” per-
fectly, in the sense of always detecting the correct position in space
of the virtual rat, the confusion matrix would be the identity
matrix. The confusion matrix is thus L2 × L2 (64 × 64 for our
simulations) and its dimension grows very fast when increasing
the number of bins, requiring a prohibitively longer number of
time steps to properly fill all its entries.

The confusion matrix gives us the value of the percent correct
and of the mutual information. The size of the sample is then var-
ied to describe the dependence of these quantities on the number
of cells in the pool. We used samples of up to 256 units, a num-
ber which can be compared with the total population in our CA3
network, 1500 units.

METRIC CONTENT
For a given percent correct (fcor) there is in general, in a
non-spatial paradigm, a certain range of possible amounts of

information contained in the confusion matrix. Ideally the infor-
mation should be comprised between a minimum value

Imin = log2 S + fcor log2 fcor + (1 − fcor) log2(1 − fcor)

− (1 − fcor) log2(S − 1) (9)

(where S is the number of elements in the stimulus set) corre-
sponding to an even distribution of errors among all the possible
stimuli, while the maximum is attained when all the errors are
concentrated on a single incorrect stimulus

Imaxbias = log2 S + fcor log2 fcor + (1 − fcor) log2(1 − fcor) (10)

However, this maximum corresponds to a systematic misclassifi-
cation of the current location by the network. It might therefore
be reasonable to assume that our system is an unbiased classi-
fier, which implies that incorrect stimuli can at most be chosen
as frequently as the correct one, and reformulate the previous
maximum in the following terms

Imax = log2 S + log2 fcor (11)

The metric content index can then be defined, in such a non-
spatial paradigm, as

λ = I − Imin

Imax − Imin
(12)

This is the measure considered in our previous studies. With
this choice, though, we wouldneglect the intrinsic topological
structure of spatial information. In fact, the high correlation
existing between the representations of neighboring locations
constrains the distribution of errors. We need to distinguish
between errors originating from random correlations in the rep-
resentation of distant, unrelated locations, and errors emerg-
ing form the continuity of the representation. The latter can
be considered as structural to the representation and they
are expected to be present around the correct location even
in the case of optimal decoding, but with limited spatial
resolution.

FULL AND REDUCED MATRIX
The confusion matrix conveys information which is location-
specific: we know for each of the locations how it was decoded
during the test phase. The appearance of a typical exam-
ple of these location-specific matrices shows how a decoding
approach reveals characteristics of the representation otherwise
overseen (Figure 2A). Far from being close to the real posi-
tion, the decoded positions appear to be distributed in multiple
locations over the environment, often far away from the cor-
rect spot. The pattern of distribution of decoding probability
depends on the choice of the sampled neurons, and on the size
of the sample, and it seems to lack any regular principle of
organization.

If any regularity in the distribution of errors across positions
exists, we can try to reveal it by extracting the transla-
tional invariant component of this distribution. By deriving a
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position-averaged version of the matrix (Figure 2B), we construct
a simplified matrix Q(x−x0), which averages over all decoding
events with the same vector displacement between actual (x0) and
decoded (x) positions. Q(x−x0) is easily constructed on the torus
we have used in all simulations, and it is only L × L, much smaller
than the complete confusion matrix.

The two procedures, given that the simplified matrix is
obtained just by averaging the full confusion matrix after a
row translation, might be expected to yield similar measures,
but this is not the case (Cerasti and Treves, 2010). In fact
the amount of information that can be extracted from the
reduced matrix is significantly inferior to that of the full matrix,
even if the difference decreases as the sample of neurons gets
larger (Figure 3A). The discrepancy between the two measures

FIGURE 2 | Representative examples of the full and of the reduced

confusion matrix. (A) Decoding probability distribution for a single location
extracted from the complete confusion matrix. (B) Decoding probability
distribution obtained from the reduced matrix. Both are obtained with a
sample size of N = 4. Color coding just reflects the relative heights of the
points in the probability distributions.

reflects the presence of a distribution of errors which is not
translational invariant. The distribution found in the reduced
matrix instead represents the performance of the system when
the effects of specific firing configurations are averaged away.
Being quasi-randomly distributed, the errors of the complete
matrix average out and produce a smooth, radially decreas-
ing distribution around the central, correct position in the
reduced matrix (Figure 2B). We are thus able to extract the
average error dependence on the distance between two points,
regardless of their specific position. The reduced matrix is the
expression of the overlaps induced by the external metric of
space together with the continuity of the internal place field
representation.

All the quantities of interest, the information contained in the
full and reduced matrix and the percent correct, have a depen-
dence on the sample size which can be fit rather precisely by a
sigmoid function. The function we use to fit the information is

Ifit = Isat

1 + (n0/n)b
(13)

where n is the number of units in the decoding sample and
Isat, n, and b are the fit parameters. An analogous form is used
for the percent correct,

fcorfit = fcormin + fcormax − fcormin

1 + (n0/n)b
(14)

The change in the convexity of the data is particularly evident
when using a log scale for the number of unit in the sample
(Figures 3A,B).

THE METRIC INDUCED BY AN ACTIVE DG
We can use the information contained in the reduced matrix
to separate the effects of the external metric on the CA3

FIGURE 3 | Information and Percent Correct dependence on sample

size. (A) Information values. Markers: model data. Lines: fit curves.
Gray markers/blue lines: information content of the confusion matrix.
Purple markers/red lines: information content of the reduced matrix.

Square markers/solid lines: results with the DG input active.
Triangular markers/dashed lines: results without the DG input.
(B) Percent Correct values. Markers: model data. Lines: fit curves,
as in (A).
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representation from the other sources of correlation. For this aim,
the condition with the active DG is better suited, as we consider
the original map imposed by the external input, before the mod-
ifications induced by the storage, which will be described in the
following section.

If we fit the distribution of values in the reduced matrix with
a Gaussian we can extract the parameters describing the dis-
tance dependence of the errors, namely the height of the central
peak (pc), the width of the distribution (w) and the total vol-
ume below the distribution (a). They correspond, respectively,
to the number of correct hits, the spread of errors around the
central location and to the proportion of decoding steps asso-
ciated with a single location. These parameters depend on the
sample size (Figure 4): a larger sample corresponds to a higher
peak of the Gaussian (corresponding to an increase in the per-
cent correct), to a lower standard deviation around the mean
and to a higher total volume. It should be noted, however, that
the observed width w bundles together the distribution of out-
right errors and the spread of correct but spatially imprecise
responses.

A non-zero standard deviation σ, which can then be regarded
as a component of the width w, expresses the difference between
decoding a set of spatial stimuli and decoding a non-spatial one.

We can use this measure of the structural confusion between
locations of the environment to reformulate our measure of met-
ric content for the case of spatial information. We can argue that
given a certain percent correct, the minimal information would
be obtained when the decoding distribution corresponds to a
Gaussian of width σ and total volume a centered on the cor-
rect location, plus the remaining (1 − a) evenly distributed on
all the spatial bins. Analogously the maximal information attain-
able would correspond to the situation in which 1/a Gaussians
of the same shape sit on the same number of different locations

FIGURE 4 | The Gaussian distribution parameters vs. sample size. The
values obtained from the fit of the central bump of the reduced matrix, are
plotted for different sample sizes. Pc and a are probabilities. w is measured
in spatial bin units (each bin is 12.5 cm in size).

(one of them, of course, should be placed on the correct one).
Indeed this is a first maximum, and it corresponds to the max-
imal unbiased information defined above for the non-spatial
case.

For the spatial case, however, these minimum and maxi-
mum information values largely reflect simply the definition
of the reduced and full confusion matrix. They tell us about
the procedure used in the analysis more than about the rep-
resentations being analyzed. We can, however, go further, as
we can also extract the limit toward the discrete case for our
model, attained when the spatial resolution is optimal, i.e., the
spatial code is precise, spatially exact. By sending the stan-
dard deviation σ to zero, in the limit, and by replacing the
Gaussian distribution with a single peak of height a located
in the central spot, we retrieve the situation in which, in the
absence of errors due to fluctuations in the topology, only the
“retrieval” (i.e., identification) of a certain location is taken
into account. This upper maximum does not differ from the
previous one in terms of the number of different locations erro-
neously decoded as the correct one, but it modifies the way
in which individual decoded locations are distributed around
them. Of course all the conditions between these two extremes
can be obtained, using an intermediate value of the standard
deviation.

We can then define a spatial descriptor of the metric content
applicable to spatial representations, as

χ = 1 − σ

w
(15)

Note that χ = 0 implies that the entire width of the Gaussian in
the reduced confusion matrix is due to the poor spatial resolu-
tion, as decoding has a standard deviation σ = w; χ = 1 instead
implies that decoding is spatially exact, and the apparent width w
emerges entirely from averaging the errors in the full confusion
matrix. We can call χ the metric resolution index.

We can see where the data we generated with our simula-
tions sit in relation these three reference curves (Figure 5A). For
simplicity and clarity, instead of the original data we will use
the fit curves we previously calculated. For each sample size, the
parameters of the fit define the two maxima (lowest and high-
est dark blue dashed curves for χ = 0 and χ = 1, respectively)
and the minimum (dark red dashed line) for the information,
and we can compare then with the actual value of the simulated
network, both the value extracted from the complete confusion
matrix (blue solid line), and the value coming from the reduced
one (Figure 5A, red solid line). Both series of values appear to
sit on a curve of constant metric resolution. The metric resolu-
tion expressed by the complete confusion matrix is just above the
one defined by our “first maximum” curve, in fact it sits roughly
at χ = 0.1. This corresponds to having a matrix in which there
are essentially no randomly distributed errors, while those associ-
ated with specific locations are spread out locally, with resolution
σ = 0.9 w.

As expected, the form of the reduced matrix is quite differ-
ent. It belongs to a complete different category: here the errors
are almost entirely randomly distributed, with the exception of
those giving rise to the central bump.
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FIGURE 5 | Metric Resolution. (A) Metric resolution of the CA3
representation generated with the external DG input. Blue solid line:
information content of the confusion matrix (close to χ ∼ 0.1). Red
solid line: information content of the reduced matrix. Dark red dashed
line: theoretical minimum for the information. Dark blue dashed lines:

theoretical maxima of the information for progressively decreasing
values of the error dispersion. (B) Metric resolution of the CA3
representation based on the internal collateral activity only (also close
to χ ∼ 0.1). Color code, same as (A). Only the metric resolution of the
full confusion matrix is shown.

This measure of metric resolution, thus, extends the previous,
non-spatial notion of metric content, and captures the qualita-
tively different nature of the information expressed by the two
different types of matrices, full and reduced. It allows us to shed
light on the way spatial information is encoded in a CA3-like net-
work by quantifying the presence and the relative importance of
the different sources of confusion present in the system. Moreover
it indicates that the nature of the confusion is an invariant of the
spatial code expressed by the network and it does not depend on
the size of the sample of cells used for the decoding.

DRIFT
One may ask how the procedure previously described applies to
the other condition, in which the DG input is removed. As already
shown by Cerasti and Treves (2010) the removal of the external
drive causes a major drop in the information about the position
of the rat retrievable from the system (also shown in the figure).
This drop comes with a parallel decrease in the percent correct
obtained by the system (Figure 3B). This effect has been exten-
sively described by Cerasti and Treves (in preparation) and has to
do with what there has been called “drift.”

The main effect of storing a map in CA3 is to reduce the num-
ber of positions stably represented by the system. After initializing
the network in a certain configuration, the activity reverberated in
the collaterals modifies this initial pattern and drives it to another,
stable point of the configuration space. Eventually, when the final
population vector is used to decode the rat position, the out-
come will not correspond to the real position. Note that this
effect is not due to fast noise, which is kept very low or even
absent in the simulations, nor to the use of a limited sample
of units: it persists even when the whole population is used in

the decoding. Moreover such drift is completely deterministic: at
every presentation of the same position, the trajectory of the sys-
tem’s “relaxation” is the same. The size of the distance between the
real position and the one decoded after drifting varies for different
location of the environment. Its average depends on the number
of units in the network.

METRIC RESOLUTION WITHOUT DG INPUT
The main effect of drift on our analysis is to introduce a systematic
bias in the decoding of some of the positions in the environment.
Since we discretize space in bins of side L, every time drift crosses
bin boundaries, the decoded position will belong to a neighboring
bin. Not all the points in the same bin are decoded as belonging
to another bin, however, some of them will be assigned correctly,
while those who are not may move in different directions to
different neighboring bins.

This phenomenon introduces a series of non-negligible effects
in our measure. It undermines one of the fundamental assump-
tions of the approach, the unbiased nature of the decoding.
In many cases, in those locations where the drift is strong
enough, the maximum of the decoding matrix will be associ-
ated to an incorrect bin. Moreover it invalidates the use of the
reduced matrix to extract information about the distribution
of errors around the correct location. Being limited in space,
the bump obtained in the reduced matrix is a combination
of metric errors and of neighboring bins reached by the drift.
This makes the parameters of the bump very unreliable and of
little use.

It turns out, however, that the effects of drift can be effectively
accommodated in the analysis. To estimate the metric content
of the representation generated without the contribution of the
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external input we follow the same procedure used in the “DG
On” condition with a single modification. We calculate the mini-
mal and maximal information levels as in the previous case, using
the same parameters extracted from the previous fits and there-
fore still coming from the reduced matrix of the “DG On” case.
The only adjustment we introduce is to impose that each of the
1/a bumps present in the confusion matrix is transformed to
a combination of two adjacent Gaussian bumps, with the same
width of the original, but half of the height. In this way the
amount a of hits associated with the location is preserved but
the drift away from (some of) the locations comprised in the bin
is taken into account. This solution is an average of the effects
present at different locations in the environment, as in some of
them no drift is taking place, while in others the phenomenon
is present with different strengths and a variable number of
directions.

The result proves that this simple procedure captures very well
the effects of drift on the properties of the representation and jus-
tifies the 2-bump choice. As shown in Figure 5B, the data sits on
a curve of constant metric resolution, which happens to coincide
with the one expressed in the previous condition.

The calculation of the metric resolution offers insights on the
characteristics of this representation. In fact it shows how, fac-
toring out the drift phenomenon, the representation expressed
by the recurrent collaterals alone appears to have the very same
metric properties as the one obtained with the active contri-
bution of the DG. For each sample size, the distribution of
errors around the central location is indeed the same, as are
the number of locations erroneously chosen by the decoding
algorithm. As in the previous case, no portion of the errors
is allocated randomly. This consistency is noteworthy as we
applied a method adapted, in the previous study, to a com-
pletely different set of data, where both the information and the
percent correct values are drastically different. The metric con-
tent analysis shows a remarkable persistence of the relationship
between these two quantities, even when the external input is
removed.

DISCUSSION
The ability of the hippocampus to operate as a cognitive map
and to successfully guide spatial behavior (Morris et al., 1982)
lies in the amount of information about the external environ-
ment that can be stored and retrieved from its representations
(Battaglia and Treves, 1998; Kali and Dayan, 2000). In partic-
ular one would expect that the global topography expressed by
these representations, the set of relationships existing among the
patterns of activation associated with the different points of the
environment, should reflect the one which the animal actually
experiences (Curto and Itskov, 2008; Dabaghian et al., 2012). If
we imagine an internal observer trying to decode the position of
the rat, and the structure of the environment in which it is mov-
ing, only relying on the sequence of units that get activated in the
hippocampus, similarities between the population vectors would
be the most probable criteria to infer the geometrical location
of points traversed at different times, or to predict the existence
of traversable routes (Gupta et al., 2010; Dragoi and Tonegawa,
2011).

In fact we observe that the topology realized by the averaged
activity of our network actually reproduces the torus in which
the virtual rat of our simulations is moving. From such a coarse-
scale perspective, a CA3 representation is a true reconstruction
of the metric the rat is experiencing. Within minor deviations,
the correlation between two average population vectors is a good
estimate of the distance of the two locations over which their
individual population vectors were recorded.

But does such a general approach capture all the variabil-
ity expressed by the network during its normal operation? We
actually find that at a finer scale, the structure of a CA3 spatial
representation is richer than it appears at the coarser scale. The
difference we observe, between the information content of the full
confusion matrix and its reduced version, is telling us about other,
non-metric sources of correlation between different parts of the
representation. This difference appears when decoding is based
on limited samples of network units, but the effects persist up to
substantial sizes of the sample, and one should also consider the
experimental impracticality of a decoding procedure based on the
whole population.

To quantify the properties of the finer aspects of the spatial
representation we propose the use of an index, the metric reso-
lution that like the metric content used earlier with non-spatial
stimuli, combines the measures of information and percent cor-
rect, which are obtained from a confusion matrix. The index
allows for an assessment of the metric in the internal representa-
tion of space. The measure of metric resolution is applied to our
model of a CA3 network in two different regimes, when driven
by an external input coming from DG, and when this external
input is absent and the active representation is solely an expres-
sion of the activity reverberating in the collateral connections. In
both cases we find that the metric resolution of the representa-
tion is roughly constant, at a value χ ∼ 0.1, when the size of the
sample is varied, and that the same combination of metric and
non-metric structure is present in the confusion matrix gener-
ated from these different samples. The metric resolution measure
tells us that the self-organizing process has generated an inter-
nal representation of space, in the model, which is consistent with
external space but has limited metricity, i.e., limited spatial resolu-
tion, close to the minimum amount possible (which would yield
χ = 0.0).

We acknowledge the possible dependence of the results on the
size of the network that represents the real CA3. Although a net-
work of 1500 units is significantly smaller than the actual rodent
hippocampus, in some respects it can produce representations
which faithfully reproduce the characteristics of the ones exper-
imentally observed (Cerasti and Treves). Moreover the difference
in size is less extreme if one regards the real CA3 network as com-
prised of partially independent sub-modules. The fact that metric
content, in our model system, is independent of sample size and
of the mode of operation (whether or not externally driven) is an
indication of the robustness of this measure.

The errors in decoding that do not depend on the similar-
ity in the representation due to close distance, might be seen
as hindering the proper operation of the hippocampal mem-
ory system, by introducing ambiguities in the reconstruction of
the external space. But another possibility is that these “holes”
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in the consistency of the representation offer the hippocampus
a handle to introduce non-spatial elements of information in
the representation itself (Wood et al., 2000; Leutgeb et al., 2005;
Singer et al., 2010; Eichenbaum et al., 2012).

Thus the metric content analysis reinforces the suggestion
(Cerasti and Treves, submitted) that the CA3 network, with its
effectively random drive from the Dentate Gyrus, might be best

adapted to serve a memory function, rather than to produce
faithful representations of space.
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