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Learning in neuronal networks can be investigated using dissociated cultures on multielec-
trode arrays supplied with appropriate closed-loop stimulation. It was shown in previous
studies that weakly respondent neurons on the electrodes can be trained to increase their
evoked spiking rate within a predefined time window after the stimulus. Such neurons can
be associated with weak synaptic connections in nearby culture network. The stimulation
leads to the increase in the connectivity and in the response. However, it was not possible to
perform the learning protocol for the neurons on electrodes with relatively strong synaptic
inputs and responding at higher rates. We proposed an adaptive closed-loop stimulation
protocol capable to achieve learning even for the highly respondent electrodes. It means
that the culture network can reorganize appropriately its synaptic connectivity to generate
a desired response. We introduced an adaptive reinforcement condition accounting for the
response variability in control stimulation. It significantly enhanced the learning protocol
to a large number of responding electrodes independently on its base response level. We
also found that learning effect preserved after 4–6 h after training.
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INTRODUCTION
Neuronal networks formed in dissociated cultures grown on mul-
tielectrode arrays have been widely used as a biological model to
monitor mechanisms of information encoding, synaptic plasticity,
memory formation, and learning at the network level in vitro (le
Feber et al., 2010; Frega et al., 2012; Maccione et al., 2012). Pla-
nar microelectrode systems permit simultaneous recording and
electrical stimulation in different parts of the cultured neuronal
network (Thomas et al., 1972).

After 2–3 weeks of spontaneous development the cultured neu-
ral networks display spontaneous burst discharges. The discharges
consist of 0.1–1 Hz sequences of population bursts of 50–300 ms
duration. Recent investigations showed that spatio-temporal pat-
terns of spiking activity within the bursts are organized in a
statistically repeatable and reproducible way (Raichman and Ben-
Jacob, 2008; Pimashkin et al., 2011). Such repeatability indicated
the presence of quite stable synaptic connectivity formed in the
cultured network. External electrical stimulation modified the
spiking pattern and, hence, induced long-term changes in the
synaptic architecture of the underlying network. If the stimula-
tion is applied with closed-loop conditions such changes may be
directed to achieve a predefined profile of the evoked response.
The latter can further be associated with navigating robots capa-
ble to implement simple behavioral tasks (Chao et al., 2008; Shahaf
et al., 2008).

Low-frequency electrical stimulation in the form of pulse train
(0.03–0.1 Hz) induced population burst responses over most of
the neurons in the network during 50–300 ms after the stim-
ulus artifact (Maeda et al., 1995; Wagenaar et al., 2004). Such

stimulation did not change functional characteristics of the evoked
response at both short and long-term periods (Chiappalone et al.,
2008). However, spontaneous bursts can change their pattern after
the low-frequency stimulation indicating changes in the network
connectivity (Brewer et al., 2009; Bologna et al., 2010; Ide et al.,
2010; le Feber et al., 2010). Increasing the stimulation frequency
up to 1 Hz or higher led to suppression of the evoked responses
(Jimbo et al., 1993; Shahaf and Marom, 2001; Eytan et al., 2003;
Wagenaar et al., 2005; le Feber et al., 2010). Note, that tetanic
stimulation with 10 Hz induced spike timing-dependent plas-
ticity (STDP) in the culture network (Wagenaar et al., 2006a,b).
Note also, that if signal propagation through synaptic pathways
was blocked by applying 6-cyano-7-nitroquinoxaline-2,3-dione
(CNQX) and (2R)-amino-5-phosphonovaleric acid (APV), the
antagonists of N-methyl D-aspartate (NMDA) and α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptors,
then the evoked spikes can be observed only at latencies shorter
than 10 ms (Wagenaar et al., 2004). They represent a direct
response on the excitation of an axon passing both the stim-
ulation and the recording electrode, or on the excitation of a
cell whose axon passes the recording electrode. Blocking Na+
channels by tetrodotoxin (TTX) abolished all spontaneous and
evoked activity in culture network. These results suggested that
in normal conditions the stimulus evoked spikes with the laten-
cies greater than 10 ms represented “network” spikes generated by
signal propagation through the synaptic pathways of the culture
network.

A closed-loop protocol of learning in cultured network of cor-
tical neurons stimulated by low-frequency signal (0.3–1 Hz) was
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proposed by Shahaf and Marom (2001). Each stimulus response
was defined as a number of evoked spikes appeared in 50 ± 10 ms
post-stimulus interval. For continuous stimulation they intro-
duced the response-to-stimulus ratio (R/S) for the single electrode.
This quantity was defined as a moving average over 10 preceding
responses. It characterized slow changes in the response caused
by plasticity of synaptic pathways between neurons located near
stimulating and recording electrodes. If the R/S value exceeded
a certain threshold (R/S = 0.2 in Shahaf and Marom, 2001) the
stimulation was stopped for 5 min providing the reinforcement.
Then the cycle was repeated several times. Time interval needed to
reach the threshold in each cycle was treated as adaptation time.
The decrease of the adaptation time during the stimulation cycles
was then interpreted as learning. Contrariwise, low-frequency
stimulation in conditions without the reinforcement (e.g., open-
loop conditions) did not induce the learning effect. Changes in
the response was observed only on the trained electrode, whereas
such effect was not found on the other electrodes. le Feber et al.
(2010) found that closed-loop stimulation in cortical cultures
induced significant changes in synaptic connectivity in contrast
to the open-loop conditions. It was also noted that after training
the spontaneous bursts were changed enhancing their correla-
tion and synchrony (Li et al., 2007). This learning protocol was
used in several other studies (Marom and Shahaf, 2002; Stegenga
et al., 2009). It is important to note that only low-active elec-
trodes recording one spike per 10 stimuli (e.g., with R/S = 0.1)
were used for learning. Long-term changes were monitored for
more than 30 cycles of stimulation. Electrodes with higher R/S
(R/S = 0.5) were also examined for learning, but the learning
effect was observed only during first six cycles of stimulation
(Staveren et al., 2005).

In this paper we presented our results of learning experi-
ments in hippocampal cultured networks on multielectrode arrays
with closed-loop stimulation. Using adaptive and activity depen-
dent reinforcement condition we found that the electrodes with
relatively high response activity (R/S > 0.1) can be used for
learning. Thus, the closed-loop stimulation could modify culture
network synaptic pathways with relatively strong connections typ-
ically formed in spontaneous development. We also showed that
the adaptive reinforcement significantly enhances the number of
highly respondent electrodes (typically more than 50%) relative
to the ones with lower response (R/S < 0.1) used in the previous
studies.

MATERIALS AND METHODS
CELL CULTURING
Cell cultures were prepared from the hippocampus of C57BI6 mice
embryos at 18th prenatal day (E18) following standard procedures
(Potter and DeMarse, 2001; Pimashkin et al., 2011). After trypsin
treatment cells were dissociated by trituration and plated on 64-
electrode arrays (Alpha MED Science, Japan), pre-coated with
adhesion promoting molecules of polyethyleneimine (PEI). The
final density of cell culture was about 15,000–20,000 cells/mm2.
Note that in previous studies researchers used cultures with cell
density of about 10,000–50,000 cells/mm2 (Shahaf and Marom,
2001) and 5000 cells/mm2 (le Feber et al., 2010). In both
studies the cultures were plated from cortical cells. In similar

learning experiments with hippocampal cultures the density was
2000 cells/mm2 (Li et al., 2007).

Cells were stored in culture neurobasal medium (Invitrogen
21103-049) with B27 (Invitrogen 17504-044), Glutamine (Invit-
rogen 25030-024) and fetal calf serum (PanEco κ055), under
constant conditions of 37◦C, 100% humidity, and 5% CO2 in
air in an incubator (MCO-18AIC, SANYO). No antibiotics or
antimycotics were used. Glial growth was not suppressed because
glial cells were essential to long-term culture health. One half
of the medium was changed every 2 days. Experiments were
performed when neuronal networks were 3–6 weeks in vitro
that permitted their functional and structural maturation (Eytan
et al., 2003).

ELECTROPHYSIOLOGY
Extracellular potentials were collected through 64 planar platinum
black electrodes simultaneously with the integrated MED64 sys-
tem (Alpha MED Science, Japan). The 8 × 8 (64) microelectrode
arrays with 50 μm × 50 μm size and the 150 μm spacing were
used for recording at sampling rate of 20 kHz/channel (Figure 1A).
Stimuli were generated using a four channels voltage/current
stimulator (STG4004, MultiChannel Systems, Germany). Closed-
loop conditions were performed by custom made software
(Labview®) using real-time signal analysis and conditional
stimulation.

SPIKE DETECTION
Detection of recorded spikes was based on threshold calculation
of median of the signal according to the following formula:

T = Nsσ, σ = median

( |x|
0.6745

)
(1)

where x is the bandpass-filtered (0.3–8 KHz) data signal, σ is an
estimate of the median normalized on the standard deviation of
signal with zero number of spikes (Quiroga et al., 2004), and NS

is a spike detection coefficient determining detection threshold
(Pimashkin et al., 2011). Standard deviation of signal containing
Gaussian noise was equal to median of absolute values of the signal
divided by 0.6745 which was a normalization of the median on the
standard deviation.

Spike detection coefficient NS permitted to take into account
the contribution of different spike amplitudes. NS = 4 was used
for all data accounting spikes with amplitudes more than 20 μV.
Minimal interspike interval was set to 1 ms. Detected spikes were
then plotted in a raster diagram.

STIMULATION PROTOCOL
We used trains of biphasic rectangular voltage pulses (600 mV and
300 μs per phase, with positive phase first) at low-frequency in
the range of 0.05–0.06 Hz. The value of stimulation frequency was
chosen to induce bursting activity in the 20–500 ms post-stimulus
interval (Figure 1B). Note that in previous studies the stimulation
frequencies were significantly higher (0.1 Hz, 0.3 Hz, Shahaf and
Marom, 2001; 0.2–0.33 Hz, le Feber et al., 2010) without any rela-
tion to spontaneous bursting frequency. In our experiments most
of the stimuli with frequencies higher than 0.1 Hz did not evoked
stable bursting activity. However, we found that stimulation at
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FIGURE 1 | (A) Cultured hippocampal cells grown on multielectrode array
with 64 square electrodes with 50 μm size and 150 μm inter-electrode
distance. (B) Post-stimulus response recorded from single electrode.

Stimulation artifact marked by arrow. (C) Post-stimulus time histogram of the
recorded spikes. Each bar represents average spike rate in 10 ms
post-stimulus time interval ± standard deviation.

0.05 Hz and/or 0.06 Hz which is close to characteristic bursting
frequency led to the evoked bursts. Note also, that technically
the lower frequencies were also more preferable for the long-term
stimulation because of the less influence on electrode disruption
due to electrolysis.

Similarly, to previous studies we characterized the response by
the response-to-stimulus ratio (R/S) calculated for each response
and for each electrode. For our purpose, we counted the number
of spikes detected in 40–80 ms post-stimulus interval on each elec-
trode independently and then we defined R/S as the moving aver-
age across 10 preceding responses (Shahaf and Marom, 2001). This
quantity indicated slow changes of the neuronal response over past
170–200 s.

Control stimulation (open-loop)
The control stimulation was performed during 75 min (five
cycles of 10 min – stimulation, 5 min – rest) with 0.05 Hz
stimulation frequency (150 stimuli) and with 0.06 Hz (180 stim-
uli). In more than 50% of the experiments (14 out of 24)
the control stimulation was performed for 31 cycle (465 min
∼7.5 h) to test the learning effect without reinforcement. After
control stimulation the R/S values were calculated for each
electrode.

The stimulation electrode first was chosen at random. If
it evoked bursts recorded by the most of electrodes during

stimulation for 5 min then the electrode was considered as
stimulation electrode. If no bursting response was found, we
tried another one. We considered only stably responding cul-
tures, which during control stimulation did not significantly
increase or decrease the total number of spikes in 20–300 ms
post-stimulus interval for all recording electrodes. Slow changes
of the responses were tested by estimating significant difference
between the responses in the first and the last half of the record-
ings by Mann–Whitney rank-sum test (p < 0.05). If the sets
of responses were not significantly different then the stimula-
tion electrode was retained for further training, otherwise, we
tested another electrode also chosen randomly or took another
culture for the experiments. We also note, that most the cul-
tures, in which the responses increased or decreased during
control stimulation, demonstrated stable responses after several
days. The responses were compared by relative changes of the
mean value and of the standard deviation of the first and the
last 30 stimuli responses in 20–300 ms interval normalized to
the number of the spikes in the first 30 responses. Recording
from each electrode was characterized by two statistical indicators:
mean R/S value, M(R/S), and the R/S standard deviation, σ(R/S).
The electrode for training was randomly chosen among the elec-
trodes having M(R/S) value in the range of 0–8 with standard
deviation in the range 0.1M(R/S) < σ (R/S) < 2 M(R/S) in control
stimulation.
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FIGURE 2 | (A) Average R/S values (M(R/S)) distribution for all
recording electrodes during low-frequency stimulation (14 trials,
n = 10 cultures). The inset shows the magnification of the histogram
in the interval [0,1] of R/S values. (B) R/S values during several cycles
of the control stimulation at selected electrode. Blue dashed lines
illustrate the ends of the stimulation cycle. Red line shows the estimated
R/S threshold value (see Materials and Methods). (C) Distribution of the

R/S values from the selected electrode during control stimulation.
Red line illustrates estimated R/S threshold value (R/SThr% = 15%).
(D) Learning curves calculated for control experiments using different
threshold estimation parameter R/SThr%- 5, 10,15, and 20% (n = 14;
see methods). Due to high variability of the characteristics the error bars
(standard deviations) illustrated only for curves with R/SThr% = 5% and
R/SThr% = 20%.

Training stimulation (closed-loop)
Training stimulation was applied in closed-loop conditions. It
started in one hour after the control stimulation. The training
consisted of cyclic stimulation with continuous evaluation of the
response. If the R/S value of the response to current stimulus
exceeded a definite threshold then the stimulation stopped auto-
matically. It provided the reinforcement for the culture targeting to

achieve a required state. We introduced novel algorithm defining
the R/S threshold for the reinforcement condition taking into
account the responses in control stimulation. Such definition
set different threshold values for different parts of the culture
(e.g., different electrodes) involved in the training experiment. We
took the highest 15% of the R/S values distribution for selected
electrode, which was observed in control stimulation (example
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in Figure 2C). The lower boundary of that fraction of the dis-
tribution was assigned as the R/S threshold value. The threshold
may also be referred as the 85th percentile. The percentage of the
R/S values used for threshold estimation was defined as threshold
estimation parameter R/SThr%.

The training phase of the experiment consisted of sequence of
the stimulation cycles with the same frequency and real-time eval-
uation of the R/S value on the selected electrode. If the R/S value
of the activity from the selected electrode in response to stimu-
lus reached the R/S threshold or if the stimulation time exceeds
10 min, then the stimulation was automatically stopped for 5 min
completing the training cycle. Then the training cycle was repeated
for 30–35 times. Thus the response of the neurons on the selected
electrode altered the stimulation duration in each cycle. Time
interval, from the beginning of the cycle to the moment where
R/S value was found to be greater or equal to the R/S threshold
was defined as adaptation time, TR/S. The TR/S was monitored for
each cycle and the sequence of TR/S values defined learning curve.
Relative change of the TR/S during the experiment was defined as
adaptation time ratio, K(TR/S) and was estimated as mean TR/S

in the last 10 cycles divided to the mean of the TR/S in the first
10 cycles. The decrease of the TR/S during the stimulation cycles
[K(TR/S) < 0.5] was then treated as successful learning for the
neurons on the selected electrode to generate the desired response
on the stimulation. To compare the efficiency of the closed-loop
stimulation parameters K(TR/S) and TR/S were also calculated for
control stimulation (e.g., the open-loop).

We also checked if the learning effect is stable in 4–6 h after the
experiments by performing four cycle training stimulation.

At the longer time intervals (days or weeks) the cultures were
changed significantly due to spontaneous development. In our
experiments we reused some of them in not less than 2 days after
the last training stimulation. When multiple experiments were
performed on a single culture, we selected electrodes from different
regions of the array for each new experiment to avoid possible
influence of the previous stimulation experiments.

Spontaneous activity analysis
To analyze the effect of the stimulations on the state of the culture
network we recorded spontaneous bursting activity during 10 min.
We compared the average inter burst intervals, average number of
spikes per burst and burst durations for the recordings before
and after the stimulation experiments. Individual bursts detection
was based on threshold estimation of basal spike rate activity as
a total number of spikes observed in each 50 ms time bin (see
Pimashkin et al., 2011 for more details). Statistical analysis of the
bursting activity characteristics was performed by Mann–Whitney
rank-sum test (p < 0.05).

RESULTS
OPEN-LOOP STIMULATION
First we analyzed responses of the culture on long-lasting (five
cycles – 75 min and 31 cycles – 465 min) low-frequency stimu-
lation (0.05, 0.06 Hz) of the stimulation electrodes that evoked
population bursting response (see Materials and Methods). The
stimuli were initially delivered through one randomly chosen elec-
trode (Figure 1B). The dynamics of the evoked network response

recorded from all electrodes was characterized by post-stimulus
time histogram (PSTH). For each 10 ms time interval after the
stimulus artifact a total number of the spikes recorded from all
electrodes was calculated (Figure 1C). Maximum of the spike rate
of the response was observed at 50–100 ms after stimulus.

Then, we analyzed the characteristics of the responses in the
control stimulation (Figure 2). In our experiments we found that
31.13% of the electrodes (total 64) had 0 < M(R/S) ≤ 0.1 dur-
ing the control stimulation (14 trials of long recordings, n = 10
cultures). The percentage of electrodes having 0 < M(R/S) ≤ 10
was 58.16% (Figure 2A). Particular electrodes for training stim-
ulation were chosen among the electrodes with 0 < M(R/S) ≤ 8
(see Materials and Methods). Note that in previous studies only
the activity from the electrodes with average R/S values during the
control stimulation M(R/S) equal to 0.1 were chosen for training,
and R/S = 0.2 was set as the R/S threshold (Shahaf and Marom,
2001; Li et al., 2007; Stegenga et al., 2009; le Feber et al., 2010).

Time dynamics of the R/S values for each stimulus response
during the control stimulation is shown in Figure 2B. Ending
moments of the 10 min stimulation cycles are marked by blue
lines. Note that the responses were quite variable. The learning
threshold was defined as the lower value from the highest 15% of
R/S values referred as the 85th percentile of the R/S values (see
Materials and Methods). The example of the R/S values distribu-
tion from the selected electrode and the R/S threshold is shown
in Figure 2C. In other words, the threshold was set to detect
quite rare and high rate responses. Note that for different elec-
trodes the R/S thresholds were in range from 0.2 to 12 in different
experiments.

After the threshold was defined the adaptation time TR/S can be
estimated for each cycle. To confirm that the learning effect can be
induced only in closed-loop conditions, we estimated a learning
curve (TR/S for each cycle) for control stimulation (Figure 2D).
The results show that adaptation time remains relatively stable.
Next we analyzed the influence of the R/S threshold estimation
parameter on the adaptation dynamics by setting different R/SThr%

– 5, 10, 15, and 20% (95th, 90th, 85th, and 80th percentile,
respectively). Note that the lower threshold is set the easier to
reach the threshold by spontaneous fluctuations of the response.
Hence, the adaptation curves for the lower thresholds were located
lower (Figure 2D). However, changing the threshold did change
qualitatively the adaptation dynamics.

CLOSED-LOOP STIMULATION
Next we made the experiments on training stimulation with the
reinforcement (see Materials and Methods). In these conditions
the stimulation were turned off when the learning threshold was
reached at each cycle.

The adaptation dynamics for one experiment is shown in
Figure 3A. The adaptation time for the case of successful learn-
ing (black curve) went down after several cycles of the training
stimulation. We also found that some of the cultures could not be
trained as illustrated by the red curve in Figure 3A. For those cul-
tures the adaptation time was fluctuating with its maximal value
for the whole duration of the stimulation. The training stimulation
was applied for 17 different cultures in 24 experiments. Figure 3B
shows average learning curve for the set of successful experiments.
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FIGURE 3 | (A) Learning curve in one successful experiment (black curve) and
failure of learning in the other experiment (red curve). In the successful case
the adaptation time significantly decreased. (B) Average learning curve (six
experiments, six cultures). Dashed curves illustrates the standard deviation
(C) Average adaptation time during five cycles at the beginning of the training
experiment (1, n = 6), when learning is achieved (2, n = 6) and in 4–6 h after
the end of main experiment (3, n = 3). Error bar corresponds to the standard
deviation, statistical significance was tested by t -test (p < 0.05). (D) The R/S
threshold values for successful (black markers) and failed (colored markers)

learning experiments. The colored markers correspond to
the use of different values of the threshold estimation parameter,
R/SThr% = 5, 10, 15, and 20% of R/S (see methods). In six
experiments the learning was achieved using R/S threshold
parameter 15% (out of 9 and out of 24 experiments in total). (E)

Average adaptation time ratio for control stimulation, failed learning and
successful learning. Error bar corresponds to standard deviation. The
ratios of the successful learning were significantly different to the control
stimulation (t -test, p < 0.05).

In contrast to the open-loop case (control stimulation) the adap-
tation time decreased indicating the learning effect. To quantify
it we used the adaptation time ratio K(TR/S; see Materials and
Methods). If K(TR/S) was lower than 0.6 then the training was
considered as successful. We also analyzed the influence of the
threshold estimation parameter (Figure 3D). Interestingly, that
only the use of R/SThr% = 15%, induced the learning effect (black

squares in Figure 3D). It was found in six of nine experiments for
n = 9 cultures with absolute value of the R/S threshold less than 1.
Similar statistics of about 50% successful experiments were
reported in the previous studies (Shahaf and Marom, 2001;
le Feber et al., 2010).

In the adaptation dynamics the decrease of time TR/S was typ-
ically observed after 10–14 stimulation cycles (see Figures 3A,B).
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In two experiments it was decreased almost immediately after the
second stimulation cycle. In average at the end of the training
experiment the adaptation time became 110.62 ± 81.17. Note,
that the average R/S values for the first and for the last 30 stimuli
were not statistically different. In several experiments after 2–4 h of
stimulation we obtained rather high TR/S values leading to higher
deviations in the averaged values (Figure 3B).

To confirm that learning effect of the closed-loop stimulation
may induced long-term changes (at the time scale of hours) we
performed several experiments after main course of learning. The
training stimulation of four cycles (60 min) was applied in 4–6 h
after end of the main experiments. We found that in three of six
cases the learning effect was preserved as illustrated in Figure 3C.

Next we addressed the question if the pattern of the response
is changed due to the stimulation. We analyzed changes in the
number of spikes recorded in the evoked response. Figure 4A
illustrates these changes in one of the successful experiments. One
can note that after learning the spike intensity of the response
increased, e.g., more responses composed of doublets, triplets and

more spikes were observed. The average increase over all suc-
cessful experiments is illustrated in Figure 4B. We also analyzed
the response from other responding electrodes as illustrated in
Figure 4C. We found that after successful learning the activity of
the whole culture network increased significantly.

Changes in spontaneous activity were monitored by 10 min
recordings (see Materials and Methods). We calculated the average
inter burst interval, average spikes per burst and burst duration
as shown in Figure 4D. For each characteristic we did not find
any significant difference comparing between the four different
phases of the experiment (before the control stimulation, before
and after training stimulation and after 4–6 h after main learning
experiments).

DISCUSSION
We applied low-frequency stimulation to hippocampal culture
network with on-line monitoring of the response-to-stimulus
ratio (R/S) in open-loop and closed-loop conditions. The key
response indicator was defined as average number of post-stimulus

FIGURE 4 | (A) Response statistics of the neurons from training electrode
represented by the number of spikes recorded in 40–80 ms post-stimulus
interval. The responses were taken from 100 stimuli in the beginning of the
control stimulation, beginning and ending of the training stimulation. Number
of evoked spikes in 40–80 ms post-stimulus interval recorded from selected
electrode (B) and from all recording electrodes (C). The responses were taken
from 100 stimuli in the beginning of the control stimulation, beginning and

ending of the training stimulation. The quantities of the spikes were
normalized to ones measured in control stimulation. (D) Spontaneous activity
changes measured before the control stimulation, before and after training
stimulation and after 4–6 h after main learning experiments. The quantities of
the inter-burst intervals, spikes per burst and burst durations were normalized
to ones measured in control conditions (before stimulation). The values were
compared with the Rank-sum test (p < 0.05).
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spikes per 10 stimuli in 40–80 ms time interval. Note that this
interval corresponded to a peak in the post-stimulus histogram.

We found that learning in culture network can be achieved
using an adaptive activity dependent reinforcement condition
defined by the response-to-stimulus ratio (R/S) threshold value
calculated from the statistics of control (e.g., the open-loop)
stimulation. The threshold was estimated from the appearance
of rare and high-rate responses in control stimulation (e.g., the
highest 15% of the R/S values). Such responses may be associ-
ated with signal propagation along spontaneously activated and
relatively strong synaptic pathways in the culture network. In
other words, learning in our experiments means that particu-
lar synaptic pathways relative to particular stimulation electrode
became “strengthen” to satisfy the reinforcement condition. In
contrast to the previous studies in our approach we can use the
electrodes with quite high basal activity in control simulation,
0 < M(R/S) < 0.5. Note, that total number of such electrodes was
quite high, 67 ± 11%, which indicates that the learning proto-
col can be applied to rather large number of electrodes. Statistics
of successful trials was about 50% which is comparable to earlier
studies (Shahaf and Marom, 2001; le Feber et al., 2010).

Note, the R/S threshold, in fact, defines the reinforcement con-
dition which is crucial for successful learning. In particular, we
found that for lower values of the R/S threshold the learning effect
was not achieved at all (Figure 3D). It is explained by the fact that
the high variability of basal responses in culture network led to the
increase of the fraction of random over-threshold responses that
fails the learning effect which is concerned with regular changes in
synaptic pathways in the network.

It is believed that learning effect is associated with structural
and functional plasticity of underlying neuronal networks. In sim-
ple words synaptic connections are modified due to closed-loop
stimulation to achieve an adaptive state defined by the reinforce-
ment condition. In earlier studies low-activity electrodes were
typically used (Shahaf and Marom, 2001; le Feber et al., 2010).
Their activation implied that synaptic connections accompanying
the electrodes were strengthened after the stimulation. Our results

eventually demonstrated that not only weak connections between
stimulating and recording electrodes can be increased but also
well-functioning synaptic pathways can be modified for active
electrodes.

Previous studies (Shahaf and Marom, 2001; Li et al., 2007)
demonstrated that such training was quite selective. Only neurons
on the trained electrodes increased the number of spikes in the
response and hence the R/S value. In our experiments we found
some increase of the responses from all electrodes (Figure 4C)
and increase from the trained (selected) electrode (Figure 4B).
However, the difference of this increase was not significant indi-
cating the absence of the selectivity. We assume that it happened
because of the overall activity (mean R/S) and R/S threshold were
higher than in the previous studies. Setting higher reinforcement
conditions for reaching the threshold in our learning protocol may
require stronger modification of the overall synaptic connectivity
(hence lower selectivity) to achieve learning.

Another important question was for how long time the synap-
tic changes can be preserved in the network after learning. We
checked the response of our six trained cultures after 4–6 h
and found that learning effect preserved in three of six samples
(Figures 3C,E). Thus, the training stimulation in closed-loop
conditions may induce long-term changes in structure and func-
tions of culture network synaptic connectivity. We also found that
spontaneous activity of the trained cultures was relatively stable
and did not change significantly after learning experiments, e.g.,
we did not find statistical difference in the characteristics of the
spontaneously generated bursts (inter-burst intervals, spikes per
burst and burst durations).
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