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The tuning, binaural properties, and encoding characteristics of neurons in the central
nucleus of the inferior colliculus (CNIC) were investigated to shed light on nonlinearities
in the responses of these neurons. Results were analyzed for three types of neurons
(I, O, and V) in the CNIC of decerebrate cats. Rate responses to binaural stimuli were
characterized using a 1st- plus 2nd-order spectral integration model. Parameters of the
model were derived using broadband stimuli with random spectral shapes (RSS). This
method revealed four characteristics of CNIC neurons: (1) Tuning curves derived from
broadband stimuli have fixed (i. e., level tolerant) bandwidths across a 50–60 dB range
of sound levels; (2) 1st-order contralateral weights (particularly for type I and O neurons)
were usually larger in magnitude than corresponding ipsilateral weights; (3) contralateral
weights were more important than ipsilateral weights when using the model to predict
responses to untrained noise stimuli; and (4) 2nd-order weight functions demonstrate
frequency selectivity different from that of 1st-order weight functions. Furthermore, while
the inclusion of 2nd-order terms in the model usually improved response predictions
related to untrained RSS stimuli, they had limited impact on predictions related to other
forms of filtered broadband noise [e. g., virtual-space stimuli (VS)]. The accuracy of the
predictions varied considerably by response type. Predictions were most accurate for I
neurons, and less accurate for O and V neurons, except at the lowest stimulus levels.
These differences in prediction performance support the idea that type I, O, and V neurons
encode different aspects of the stimulus: while type I neurons are most capable of
producing linear representations of spectral shape, type O and V neurons may encode
spectral features or temporal stimulus properties in a manner not easily explained with
the low-order model. Supported by NIH grant DC00115.
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INTRODUCTION
The central nucleus of the inferior colliculus (CNIC) is an impor-
tant site of convergence in the auditory system (Adams, 1979;
Brunso-Bechtold et al., 1981; Winer, 2005). Ascending inputs
to the CNIC terminate in tonotopically organized layers, but
afferents from different brainstem sources innervate overlapping
domains within the layers (Oliver et al., 1997; Henkel et al., 2003;
Cant and Benson, 2008; Malmierca et al., 2009; Loftus et al.,
2010). Despite the diversity of inputs, the cellular organization
of CNIC is relatively homogeneous, with only a small number
of morphological cell types that are not gathered into subnuclei
or into an organized microstructure (Oliver and Morest, 1984;
Malmierca et al., 1993; Ito and Oliver, 2012; Wallace et al., 2012).
Studies of neurons’ responses and electrophysiological charac-
teristics are consistent with this anatomical evidence, in that
neurons showing a relatively small number of response patterns
are scattered throughout CNIC (e.g., Ramachandran et al., 1999;
Sivaramakrishnan and Oliver, 2001).

The lack of distinct morphological cell types and organized
microstructure suggests that progress on the representation of
sound in the CNIC will depend on physiologically defined neuron

classes. One basis for such classes is the pattern of frequency
selectivity of CNIC neurons in response to tones (Davis, 2005).
Tone responses can serve to define response classes; however, the
most commonly encountered stimuli in the natural environment
are broadband. Because tone responses typically do not accu-
rately predict selectivity for broadband or natural stimuli (Nelken
et al., 1997; Holmstrom et al., 2007; May et al., 2008), it seems
important to derive models of spectral integration on the basis of
responses to broadband stimuli.

The tuning of neurons to broadband sounds can be studied
using a method like reverse correlation (De Boer and De Jongh,
1978; Aertsen and Johannesma, 1981) that derives an equiva-
lent filter consistent with the neuron’s responses to broadband
or natural stimuli. In the CNIC, neurons have been character-
ized using the so-called spectro-temporal receptive field (STRF)
which is based on the assumption that neurons perform a 1st-
order (linear) spectro-temporal weighting of the stimulus (e.g.,
Klein et al., 2000; Theunissen et al., 2000; Escabi and Read, 2005;
Eggermont, 2011). However there are a number of important
questions remaining. The STRF has been successful in describing
various aspects of neural responses [e.g., stimulus-dependence of
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responses, (Theunissen et al., 2000); motion sensitivity, (Andoni
and Pollak, 2011); spatial organization of response properties,
(Chen et al., 2012); and comparison of response complexity
between CNIC and auditory cortex, Atencio et al., 2012; etc.],
but often STRFs do not predict the responses to test stimu-
lus ensembles accurately (Machens et al., 2004; Versnel et al.,
2009; Eggermont, 2011). Significant improvements in the models
and in prediction have been made recently (Ahrens et al., 2008;
Calabrese et al., 2011), but the reasons for the limited perfor-
mance are not fully understood. In this work, we study three likely
causes of limited prediction performance.

First, it seems likely that the performance of existing mod-
els is limited by the nonlinearity of auditory neural integration
(Johnson, 1980; Christianson et al., 2008). Models have some-
times taken a “linear-nonlinear” form in which a 1st-order
weighting of the stimulus is followed by a static nonlinearity to
match the growth of response with stimulus level (Sharpee et al.,
2004; Nagel and Doupe, 2006; Lesica and Grothe, 2008a). In
other models, an input nonlinearity is postulated (most simply,
using the log of the stimulus amplitude instead of the amplitude
or power; Escabi et al., 2003; Ahrens et al., 2008), but nonlin-
earities intrinsic to the frequency response itself have not been
considered.

Second, models have usually been studied at one or two sound
levels only (but see Bandyopadhyay et al., 2007; Ahrens et al.,
2008; Lesica and Grothe, 2008a; Pienkowski and Eggermont,
2011), while auditory nonlinearities often change significantly
across sound levels (Nelken et al., 1997; Bandyopadhyay et al.,
2007). For example, in the dorsal cochlear nucleus, neurons
behave in a relatively linear manner at low sound levels, but
exhibit nonlinearity at higher levels where so-called “type II”
inhibitory interneurons are active. Thus there is a need for sys-
tematic examination of the effects of sound level on auditory
spectral integration.

Finally, most studies of spectral representation in CNIC (and
auditory cortex) have not investigated the separate contributions
of the two ears in a systematic manner; stimulus presentations
have been either monaural or free-field (but see Schnupp et al.,
2001; Qiu et al., 2003). Thus, the possibility that nonlinear inter-
actions occur between neural inputs from the two ears has also
not been investigated sufficiently.

Here we describe spectral integration in three common
response types of CNIC neurons (I, V, and O; Ramachandran
et al., 1999) in unanesthetized (decerebrate) cats. The rate
responses to broadband stimuli are used to construct weighting
function models (Yu and Young, 2000; Young and Calhoun, 2005)
that measure 1st and 2nd-order relationships between stimulus
spectra and average discharge rates across a range of stimulus lev-
els. Neural responses to the temporal aspects of the stimuli are
not addressed in this paper. In the three response types, tuning
observed in response to broadband stimuli is substantially more
level tolerant than tuning to tones. Moreover, although contribu-
tions of the ipsilateral ear to neural responses are usually weak
relative to contributions of the contralateral ear, they are still sig-
nificant in many neurons. Finally, 2nd-order nonlinearities are
significant and take a form that is poorly captured by the linear-
nonlinear model. These results point the way for improvements

in models of central auditory neurons. They also support previ-
ous suggestions (Davis, 2005) that the representation of stimuli
in CNIC occurs in parallel pathways with characteristics that
provide differing information about aspects of the stimulus.

MATERIALS AND METHODS
ANIMAL PREPARATION AND RECORDING
The experimental protocol was approved by the Johns Hopkins
Animal Care and Use Committee. Data were obtained from eight
adult male cats (3–4 kg) with clean ears and clear tympanic
membranes. The cats were anesthetized with xylazine (2 mg im)
plus ketamine (40 mg/kg im), then treated with dexamethasone
(2–4 mg im) and atropine (0.1 mg im) to delay the onset of edema
and minimize mucous secretions, respectively. A tracheostomy
was performed to facilitate quiet breathing. Supplemental doses
of ketamine (15 mg/kg iv) were given as needed during surgery.
Body temperature was maintained between 37 and 40◦C. A supra-
collicular decerebration was performed by aspiration. Anesthesia
was then discontinued.

The ear canals were transected and hollow ear bars inserted
to prepare for stimulus delivery. Polyethylene tubing (PE-200,
approximately 40 cm in length) was inserted into each bulla
to prevent static pressure buildup in the middle ear. A cran-
iotomy was performed, tissue was aspirated, and dura was opened
to expose the IC. In experiments that lasted several days, cats
were given intravenous lactated ringers to maintain body fluids.
Experiments were terminated when vascular pulsations or edema
at the recording site prevented single neuron isolation. Animals
were euthanized with a lethal intravenous injection of sodium
pentobarbital.

An electrostatic speaker was coupled to each ear bar for stim-
ulus delivery. The sound in each ear was calibrated near the
tympanic membrane with a probe microphone. Sample acoustic
calibrations are shown in Figure 1A.

A platinum-iridium microelectrode was inserted dorso-
ventrally into the IC (at an angle of 5–15◦ from vertical) under
visual guidance, and single neurons were isolated from the ampli-
fied, filtered electrode signal using a Schmitt trigger. Each neuron
was characterized by its best frequency (BF) and threshold in
response to tones in the contralateral ear. Here, we define BF
as the frequency at which a response is observed at the lowest
sound level of the stimulus. The excitatory (E) or inhibitory (I)
nature of the responses to contralateral and ipsilateral stimuli was
determined by presenting monaural tones to each ear at BF. All
neurons were binaural, although the responses of some neurons
to ipsilateral stimuli were weak. Most neurons were EE or EI; that
is, they were either excited by tones in both ears (EE), or excited
by tones in the contralateral ear and inhibited by tones in the
ipsilateral ear (EI).

Contralateral and ipsilateral response maps (shown below
in Figures 2–4) were obtained by recording discharge rates in
response to sequences of tones in the contralateral and ipsilat-
eral ears, respectively. The frequencies of the tones in each ear
were logarithmically spaced and spanned up to 4 octaves. Tone
sequences were presented monaurally as 200-ms tone bursts, once
per second, at fixed attenuation levels. Driven rates were averaged
across the tone duration, and spontaneous rates were averaged
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FIGURE 1 | The properties of the RSS stimuli. (A) The acoustic calibration
of the two ears in one animal, showing the sound pressure level as a function
of frequency at 0 dB attenuation. These were determined using a calibrated
probe tube placed within 2 mm of the eardrum. The spectra of sounds were
modified by filtering with these transfer functions. (B) Spectra of three
example RSS stimuli, out of the set of 200, shown as the dB spectrum level
vs. log frequency. The sound levels of individual frequency bins (of width 1/8
octave) are symmetrically distributed around a mean value of 0 dB, with SD
12 dB. The reference 0-dB sound level is varied with an attenuator, usually over
a 50–70 dB range. Note that the spectra presented to the ipsilateral ear are
frequency-shifted versions of the spectra presented to the contralateral ear

(e.g., compare gray areas). (C) Spectral shape of the RSS stimuli in more detail.
Each frequency bin consists of 8 tones, logarithmically spaced at 1/64 octave.
Individual tones are shown in the line spectrogram at right, which corresponds
to the shaded region of the stimulus spectrum at left. The eight tones in each
bin (1/8 octave wide) have equal sound level. Frequencies of the bin centers
are indicated by the symbols in gray circles. (D) Spectra of white noise filtered
with two cat HRTFs. The ipsilateral and contralateral HRTFs approximate the
spectral shapes in the ipsilateral and contralateral ears of a broadband noise
stimulus played at 15◦ azimuth, 30◦ elevation. The stepped-function (“Ipsi in
RSS bins”) shows the stimulus energy for the ipsilateral spectrum in bins
corresponding to the RSS stimuli at a sampling rate of 100 kHz.

across the last 400 ms of the stimulus-off period. Response maps
were based on one presentation of each tone frequency at each
sound level.

For the estimation and testing of weight-function mod-
els, broadband stimuli with random spectral shape (RSS) were

presented to both ears simultaneously in 400-ms bursts, once per
second, at fixed attenuation levels. Discharge rates were averaged
across the 400-ms stimulus-on interval, and spontaneous rates
were averaged across the last 400 ms of the stimulus-off intervals.
Models were usually constructed from a single presentation of an
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FIGURE 2 | Response characteristics for a type I neuron, BF 12.2 kHz.

(A) Tone response maps showing rate responses to 200-ms tone bursts,
plotted against the tone frequency at a fixed attenuation. Rates were
computed from single tone presentations and smoothed (5-bin triangular
filter) for display. Attenuations are shown at right. Zero dB attenuation was
94 dB SPL at the neuron’s BF. Response maps were created by presenting
tones in the contralateral ear only (left) and ipsilateral ear only (right).
Discharge rates across the duration of the tone are shown by solid lines.
Spontaneous rates are shown by dashed lines. The horizontal solid straight
line indicates 0 spikes/s, and the rate scale is given at bottom left (different in
the two ears). Excitatory responses are colored gray and inhibitory responses
are light blue. The vertical lines at the top of the plots show the BF in the
contralateral ear (12.2 kHz). (B) Weight functions estimated from responses
to binaural RSS stimuli presented across a range of attenuations. First-order
weights (wC and wI in Equation 1) are plotted on the same frequency axis as

in (A). Weight estimates are shown as black lines, and gray regions indicate
±1 SEM. Contralateral and ipsilateral weight functions were derived from the
same 200 responses to the binaural stimulus set. Note that the weight
scales on the ordinate differ. (C) Rates predicted by the model (ordinate) vs.
experimental rates (abscissa) in leave-one-out model testing. For each plot,
data for two attenuations (indicated in the legend) were combined for the
leave-one-out procedure. (D) Second-order effective filters (i. e., eigenvectors
of MC and MI in Equation 3) for the same two fits shown in (C). Eigenvectors
multiplied by their corresponding eigenvalue are plotted against frequency.
The 1st-order weights, scaled to the same maximum value in each plot, are
shown as black dotted lines. Only eigenvectors with the two largest positive
eigenvalues λ are shown (largest λ, orange; second-largest λ, pink). The
colored regions indicate ±1 SEM. The negative eigenvalues are smaller than
the positive eigenvalues (<0.03, top case; <0.1, bottom case) and the
corresponding eigenvectors are noisy (not shown).
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FIGURE 3 | Response characteristics for a type O neuron, BF 11.4 kHz.

(A,B) Tone response maps and RSS weight functions, plotted as in Figure 2.
Note the large inhibitory area centered on BF in the contralateral and
ipsilateral tone response maps. Also note the difference in shape of the tone
and weight-function maps. 0 dB attenuation is 98 dB SPL at the BF of the

neuron. (C) Prediction performance as in Figure 2. fv-values are 0.54 for the
stimuli at −60/−50 dB, and 0.51 at −20/−10 dB. (D) 2nd-order weight
functions with the largest eigenvalues, given in the legends. Weights with
positive eigenvalues are shown in red, and weights with negative
eigenvalues are shown in blue.

ensemble of 200 RSS stimuli. In the few cases where multiple pre-
sentations of the same stimulus ensemble were performed, the
resulting models were essentially the same as those based on a
single presentation.

RESPONSE TYPES
CNIC neurons have been classified according to tone-based
response maps using various criteria [e.g., Yang et al., 1992;
Egorova et al., 2001; Lebeau et al., 2001; reviewed by Davis
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FIGURE 4 | Response characteristics for a type V neuron, BF = 3 kHz.

(A) Response maps, plotted as in Figure 2. Zero dB attenuation was 98
(contra) and 95 (ipsi) dB SPL at the BF of the neuron. (B) At high sound
levels, 1st-order weight functions suggest a substantial inhibitory area around

BF–a pattern consistent with the weak responses to tones near BF in (A).
(C) Prediction performance as in Figure 2. fv-values are 0.61 for the stimuli at
−50/−40 dB, and 0.41 at −20/−10 dB. (D) 2nd-order weights with the largest
negative eigenvalues, given in the legends.

(2005)]. Here, we group neurons based on response map pat-
terns and binaural properties—a classification scheme found
most appropriate for the CNIC in decerebrate cats (Davis et al.,
1999; Ramachandran et al., 1999). Type I (“eye”) neurons demon-
strate sharply tuned excitatory responses to contralateral tones

at frequencies surrounding BF, and inhibitory responses to ipsi-
lateral tones at frequencies equal to and surrounding the con-
tralateral BF (EI). This pattern remains stable across all sound
levels tested (see Figure 2). By contrast, Type V (“vee”) neurons,
which usually have a BF less than 3–4 kHz (in cats), demonstrate
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broad excitatory responses to contralateral and ipsilateral tones
(EE). Type V response maps frequently also suggest that some
degree of inhibition exists at and above BF at high sound levels
(see Figure 4). Finally, Type O neurons are strongly nonmono-
tonic (Figure 3): tones near BF presented to the contralateral ear
produce excitatory responses at low sound levels and inhibitory
responses at higher sound levels. For Type O neurons, responses
to ipsilateral-ear stimuli are inhibitory at all sound levels tested.
The CNIC also contains relatively few onset neurons (<10%),
which do not give sustained responses to tones. Note that these
classification criteria are qualitative: they are determined mainly
by the binaural ipsilateral/contralateral response type (EI or EE)
and the degree to which contralateral tones inhibit responses
around BF. A number of quantitative properties for these dif-
ferent response types have been documented (Davis et al., 1999;
Ramachandran et al., 1999), but these were not necessary for
neuron classification.

RANDOM-SPECTRAL-SHAPE (RSS) AND VIRTUAL-SPACE (VS) STIMULI
Random-spectral-shape stimuli spanning a frequency range of 5.7
octaves (0.8–43 kHz) were used to explore the spectral sensitivity
of IC neurons to broadband stimuli. The spectra of these stimuli
are comprised of 1/8-octave bins, where each bin contains 8 tones
of the same level spaced 1/64 octave apart. Sound levels across the
bins were independently drawn from a Gaussian distribution with
a mean of zero dB and a standard deviation of 12 dB. Here, zero
dB serves as the reference sound level of the stimulus, which usu-
ally varied over a 50–70 dB range of absolute intensities. Stimulus
waveforms were constructed by summing the tones with a base-
line sampling rate of 100 kHz; the starting phases for the tones
were randomized to prevent a click at time 0. Because the stim-
uli are defined on a log frequency axis, changing the sampling
rate simply shifts the stimuli along the log frequency axis without
changing their spectral shapes, binwidths, or the log-frequency
spacing of the tones. As such, whenever possible, the sampling
rates of the RSS stimuli were changed to place the BF of the neu-
ron between one-half and two-thirds of the total frequency range
of the stimulus.

In order to estimate parameters for the weight-function model,
we constructed 192 binaural RSS stimuli with unique spec-
tral shapes. The spectra of three such stimuli are shown in
Figures 1B,C. Each RSS stimulus is characterized by S(f), the
sound levels in dB of the bins centered at frequencies f. Binaural
stimuli are represented as two vectors �sC and �sI whose elements
are dB sound levels SC(fj) and SI(fj) at each frequency in the con-
tralateral and ipsilateral stimuli, respectively. Note that for each
binaural stimulus pair, the low-frequency half of the stimulus
in one ear is equal to the high-frequency half of the stimulus
in the other ear (gray boxes in Figure 1B). This circular fre-
quency shift ensures that ipsilateral spectra are orthogonal to
contralateral spectra across half the stimulus bandwidth. Because
the half-bandwidth of the stimuli (2.85 octaves) was wider than
the bandwidth of the neurons, this symmetry did not confound
characterization of a neuron’s response patterns.

In addition to the 192 stimuli with RSS, we constructed eight
binaural stimuli in which all levels are at the reference level: that is,
S(f ) = 0 dB for all f. These flat spectra stimuli were used to check

the estimation of parameter R0 in the weight-function model
described below.

Virtual-space stimuli (VS) were generated by filtering a broad-
band (50-kHz wide) flat-spectrum noise stimulus with head-
related transfer functions (HRTFs) that were measured in cat
[Figure 1D from Rice et al. (1992)]. HRTF filtering produces
noise at the eardrum similar to that which would have been pro-
duced if the noise were presented in free field. HRTFs representing
100 spatial locations (range: −60 to +60◦ azimuth, −30 to +45◦
elevation) were presented to the ears in binaural pairs that pro-
vided a virtual space simulation (assuming that the contralateral
and ipsilateral ears of the cat are identical). For example, if the
sound presented to the contralateral ear were filtered by the HRTF
for −7.5◦ elevation and 15◦ azimuth, then the sound presented to
the ipsilateral ear was filtered by the HRTF for −7.5◦ elevation
and −15◦ azimuth. Because the same 50-kHz noise stimulus was
applied to all HRTF filters, the resulting binaural signals also had
appropriate interaural time, interaural level, and spectral cues.
The responses to VS stimuli were used to test the models derived
from responses to RSS stimuli.

WEIGHT-FUNCTION MODEL
The spectral sensitivity of neurons responding to broadband
stimuli was characterized using the following model.

r = R0+
n2∑

j=n1

wCjSC(fj)+
n2∑

j=n1

wIjSI(fj)+
n4∑

j=n3

n4∑
k=j

mCjkSC(fj)SC(fk)

+
n4∑

j=n3

n4∑
k=j

mIjkSI(fj)SI(fk) +
n6∑

j=n5

n6∑
k=n5

bjkSC(fj)SI(fk) (1)

This model has previously been applied to auditory nerve fibers
(ANF) (Young and Calhoun, 2005), brainstem neurons (Yu and
Young, 2000; Tollin and Koka, 2010), and neurons in the auditory
cortex (Barbour and Wang, 2003); however, in the present study,
binaural processing is also explicitly represented. In this model,
the discharge rate of the neuron r is the sum of six terms: constant
R0 which is the response to the flat-spectrum stimuli with all lev-
els at 0 dB; 1st-order weightings of the spectral levels in each ear
(the second and third terms); 2nd-order weightings of the levels in
each ear, (the fourth and fifth terms); and a 2nd-order contribu-
tion related to a binaural interaction (the sixth term). Parameters
wCj and wIj are 1st-order weights on stimulus levels at frequency
fj in the contralateral and ipsilateral ears, respectively. First-order
weights represent gains of the rate response to energy at each fre-
quency in spikes/(s·dB), and first-order weight functions show
these gains for each stimulus frequency bin. Parameters mCjk and
mIjk are 2nd-order weights which describe an interaction between
spectral level pairs associated with the same ear [e.g., mCjk is the
weighting on the multiplicative interaction SC(fj) SC(fk)]. Finally,
parameter bjk is a binaural weight measuring an interaction of
spectral level pairs from opposite ears [i. e., bjk is the interaction
of SC(fj) in the contralateral ear and SI(fk) in the ipsilateral ear].

The model of Equation 1 is a linear function of the unknown
parameters R0, {wCj}, {wIj}, {mCjk}, {mIjk}, and {bjk}. The param-
eters are estimated from discharge rates r, which are the responses
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to 192 RSS and 8 flat-spectrum 0-dB stimuli. At each reference
sound level (expressed in dB attenuation), weights were esti-
mated by solving 200 simultaneous linear equations in the form
of Equation 1—that is, one equation for each stimulus presented.
Weight estimates were obtained by using either the method of
normal equations or singular-value decomposition (Press et al.,
2007, chapter 15)—both of which minimize the mean square
error between the actual discharge rates and those predicted by
the model. For the estimates computed here, the two methods
give identical results. Plots of the estimated weights against fre-
quency at each of the reference sound levels were aggregated to
form weight-function maps.

Weights were also computed by combining responses at two or
more reference sound levels—a calculation which mainly affected
estimates for 2nd-order weights. A model with combined sound
levels usually predicted rate responses to RSS stimuli (but not
HRTF stimuli) more accurately than models estimated at only
one sound level: median improvements in the goodness of fit for
the predictions (i. e., fv; defined in the next section) are 0.12,
0.15, and 0.12 for I, V, and O neurons, respectively. The per-
formance improvement presumably reflects the fact that a larger
amount of data (400 vs. 200 data points) and a wider range of
stimulus levels were used to fit the model. Response predictions
generated by combining data from multiple levels are mixed with
single-attenuation fits in Figures 2C, 3C, 4C, 7, 9.

The frequencies that are assumed to contribute to a neuron’s
responses are additional parameters in the model. These parame-
ters, which are shown as limits on the summations {n1, n2, n3, n4,
n5, n6} in Equation 1, define the sequential set of weights (includ-
ing BF) that lead to the model’s best prediction performance.
These frequency limits are determined by systematically varying
the span of frequencies used during weight estimation and pre-
diction. Parameters {n1, n2} are varied first, followed by {n3, n4}
and finally {n5, n6}. Specifically, beginning with one weight at BF,
weights are added below and above BF, one at a time, only as long
as they improve prediction performance. When the 2nd-order
weight limits are being determined, the 1st-order weight limits are
fixed at the best performance of the 1st-order model. Similarly,
when the binaural weight limits are being determined, both the
1st- and 2nd-order weight limits are fixed. Note that all weights
in the current set, as specified by the {nj}, are estimated simulta-
neously at each step, so that as 2nd-order weights are added, the
1st-order weights usually change. Neither the weights nor the pre-
diction error are strong functions of {nj}, especially near the edge
of the response area, so the order in which the {nj} are tested does
not change the model or error.

PREDICTION
Increasing the limits on summation in the model amounts to
increasing the number of weights that need to be estimated.
To prevent overfitting the model, we consider only weights in
the model that are needed to accurately predict responses to
broadband stimuli. To test the model, we use a leave-one-out
cross-validation procedure where each of the 200 rates is set aside
as a test response while the remaining 199 rates are used to esti-
mate weights. The procedure is repeated for each of the 200 rates.
This method produces results similar to bootstrap; however, it is

preferred over bootstrap because it yields 200 separate prediction
tests while also using the largest number of data points to fit the
model. The SEMs of the weights are estimated from the leave-one-
out calculations as (n − 1) σp/

√
n, where n is the number of data

points (200) and σp is the standard deviation of the weights in
the 200 leave-1-out trials [Equation 10.9 in Efron and Tibshirani
(1986)].

The quality of prediction is measured with fraction of variance,
defined as:

fv = 1 −
∑ (

rj − rmj
)2

∑ (
rj − r̂

)2
(2)

where rj are the rates in the test data set, rmj are the rates predicted
by the model, and r̂ is the mean of the rj. The value of fv is 1 for
a perfect fit and decreases as the fit worsens. The fv is zero if the
model predicts the data no better than the mean rate, and the fv
can be negative for very bad fits. We have chosen fv as a measure
of fit because, unlike the often-used correlation coefficient (R), fv
is sensitive to constant rate errors (i. e., differences in the mean
rates between model and data). Such errors can be a problem for
a model with even-order terms. Empirical comparisons of fv and
R2 based on the present data and auditory nerve data (Young and
Calhoun, 2005) show that R2 ≥ fv in all cases, and that the two
measures are approximately equal for good fits (taken to be values
of fv above ∼0.5). Noise in the rate measurements cannot be fit
by the model and therefore decreases fv. A Poisson assumption for
the rate statistics suggests that the maximum possible fv is about
0.8—a value consistent with the data (Figure 7B, assuming values
above 0.8 are random scatter).

During this fitting process, fv for the 1st-order model usually
did not change dramatically as the number of weights (n1 and n2)
changed. However, the addition of 2nd-order weights to the best-
performing 1st-order model (i. e., the 1st-order model with the
largest fv) usually yielded increases in fv by up to 0.4, even when
only one 2nd-order weight was introduced. The inclusion of addi-
tional 2nd-order weights (beyond the first one) also produced
only small incremental changes in fv. This behavior, which was
observed in 314/337 cases, suggests that the 2nd-order model pro-
vides information about spectral integration in these neurons that
is not present in the 1st-order model. Note that binaural weights
usually added little to the prediction quality of the best 1st- or
2nd-order models—improving fv by less than 0.01 in 225/310
cases.

Weight function models derived from RSS responses were used
to predict responses to HRTF stimuli. Because the HRTF stim-
uli did not have an all-0-dB reference for the estimation of R0, a
modified prediction procedure was used. For these predictions,
the reference stimulus was chosen to be the average of the four
HRTF stimuli with the flattest spectral shape within 0.5 octave of
the neuron’s BF. R0 was set to the average of the rates produced
by those stimuli. HRTF responses were then predicted as differ-
ences between the response to the averaged reference stimulus
and responses to each of the other 96 HRTF stimuli. This method
produced usable predictions, but there were still errors in the rate
predictions; specifically, there was often a shift in the means of the
actual and predicted rates (see Figure 8B). As such, R2 (i.e., the
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square of the Pearson product-moment correlation coefficient),
and not fv, was used to quantify errors between the actual and
predicted rates (in Figure 8C only). Unlike fv, R2 is sensitive to
correlated rate fluctuations but not to errors in average rate or
overall rate gain.

SECOND-ORDER FILTERS
The frequency selectivity implicit in the 2nd-order weights may
be better understood by interpreting the terms in Equation 1 as
filters (e.g., Lewis et al., 2002; Reiss et al., 2007). Equation 1 can
be written in vector-matrix form as:

r = R0 + �wT
C�sC + �wT

I �sI +�sT
CMC�sC +�sT

I MI�sI +�sT
CMB�sI (3)

where the stimulus vectors �sC and �sI are defined above. Weight
vectors �wC and �wI contain the 1st-order weights. Matrices MC,
MI , and MB contain 2nd-order and binaural weights correspond-
ing to frequency pairs. Because the 2nd-order matrices MC and
MI are real and symmetric, they can be written as

M =
N∑

j=1

λj�ej�eT
j (4)

where λj are real eigenvalues of M and �ej are orthonormal eigen-
vectors. As such, each 2nd-order term in Equations 1 and 3 can
be written as:

�sT M�s = �sT

⎛
⎝

N∑
j=1

λj�ej�eT
j

⎞
⎠�s =

N∑
j=1

λj

(
�sT�ej

)2
. (5)

Examination of Equation 5 shows that an eigenvector �ej can be
viewed as an “equivalent 2nd-order filter.” However, because the
filtering operation �sT�ej is squared, the excitatory or inhibitory
nature of the 2nd-order filter is determined by the sign of the
eigenvalue, where a positive eigenvalue indicates an excitatory
contribution and a negative eigenvalue indicates an inhibitory
contribution. Furthermore, the magnitude of the eigenvalue
quantifies the importance of the associated filter. In this paper,
filters are shown for only the largest one or two eigenvalues.

RESULTS
Neurons in the CNIC show a variety of patterns of fre-
quency sensitivity, as measured by responses to tones [reviewed
by Davis (2005)]. Here, we use response types described by
Ramachandran and colleagues in decerebrate cat (Davis et al.,
1999; Ramachandran et al., 1999), as detailed in Materials and
Methods. As stated previously, there are three types of tonic
responses: types V, I, and O. Figures 2 through 4 provide exam-
ples of tone and broadband tuning for these neuron types. Data
presented in this paper are from neurons for which complete tone
and RSS responses were obtained across a range of sound levels.
These include 12 V neurons (BFs 0.8–4.1 kHz), 13 I neurons (BFs
1.8–21 kHz), and 10 O neurons (BFs 2.2–21 kHz). Onset neurons
were also encountered during the study—comprising 9% of the
total sample—and all gave reliable tonic responses to RSS stimuli.
However, onset neurons were not studied completely and are not
discussed here.

RESPONSE MAPS
Type I tuning
Figure 2A shows a tone response map typical of a type I neu-
ron. Contralateral response maps (left) show a narrow excita-
tory area centered on BF (in this case, 12.2 kHz) and inhibitory
sidebands at frequencies below and above the excitatory area
(light blue). To better visualize the inhibitory areas, the response
at −40 dB is shown on an expanded scale at the bottom of
Figure 2A. Ipsilateral response maps (right), by contrast, show
mainly inhibitory areas that are well tuned and centered on
approximately the same BF. Like all type I neurons that were
analyzed in the study, this neuron is EI in its responses near BF.

The effective tuning of a type I neuron for broadband noise
can be inferred from the 1st-order weight functions (Figure 2B).
First-order weight functions computed for the contralateral ear
(at left) resemble contralateral response maps in that they show
large positive peaks at BF. Similarly, 1st-order weight functions
for the ipsilateral ear are negative at frequencies where responses
to ipsilateral tones are inhibitory. This pattern of excitation and
inhibition inferred by the weight-function maps is typical of all
type I neurons studied.

To better understand the nature of 2nd-order weight func-
tions, eight 2nd-order filters (Equation 5) were computed for the
type I neuron featured in Figure 2. At low sound levels, negative
eigenvalues for this neuron are small compared to the positive
eigenvalues—a finding that supports a predominantly excita-
tory contribution of 2nd-order weights. However, inhibitory 2nd
order effects are present at higher sound levels, where nega-
tive and positive eigenvalues reach comparable values (<0.1,
not shown). The two filters corresponding to the largest pos-
itive eigenvalues are shown in Figure 2D. As indicated by the
shaded areas (±1 SEM), most of the second-order weights are
significantly different from zero. First-order weight functions at
the same sound levels are superimposed for comparison (black
dashed lines). Some of the contralateral 2nd-order filters are
shown to have plus-minus shapes that differ significantly from
1st-order weight functions. For example, peaks are present at fre-
quencies below BF rather than on BF, and substantial gain slopes
occur near the BF. These differences suggest that 2nd-order filters
change the frequency selectivity of the neuron.

The meaningfulness of the second-order weight function was
evaluated by testing how well the model predicted responses to
RSS stimuli not used in parameter estimation. Predictions were
performed at the same sound levels featured in Figure 2B, and
the results for two sound levels are shown (Figure 2C). Here, each
data point is the predicted rate response to each left-out test stim-
ulus (ordinate), plotted against the actual rate response to that
stimulus. The fv-values (Equation 2), which measure the accuracy
of the prediction, are 0.85 and 0.79 at the sound levels shown. For
this type I neuron, the contribution of the 2nd-order terms in the
weight-function model is significant: when all 2nd-order weights
are excluded from the model, fv-values decrease to 0.32 and 0.58,
respectively.

Type O tuning
Response maps and weight functions of a type O neuron are
shown in Figures 3A,B, respectively. At low sound levels, the
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contralateral response map for the type O neuron (Figure 3A,
left) shows an excitatory response to low-level tones near BF
(11.4 kHz at −90 dB); at higher levels, the response map demon-
strates a strong inhibitory response around BF, and a mixture
of excitatory and inhibitory responses at frequencies away from
BF. Given that the responses to ipsilateral tones (Figure 3A,
right) were predominantly inhibitory, the neuron was classi-
fied as EI, as were all type O neurons studied. Unlike the type
I neuron (Figure 2), contralateral weight functions computed
from responses to RSS stimuli (Figure 3B, left) differ signifi-
cantly from the tone-based response map: rather than having
large areas of inhibition at BF, the weight functions show a
combination of positive gains near BF and negative gains above
BF across a range of sound levels. Ipsilateral weight functions
(Figure 3B, right), on the other hand, are similar to the response
maps in that they mainly show weak inhibition near BF at most
sound levels.

The equivalent 2nd-order filters show substantial inhibitory
and excitatory contributions (Figure 3D), possessing both large
negative (blue filters), and large positive eigenvalues (red filters).
The contralateral and ipsilateral 2nd-order filters are statistically
different from zero, and their shapes differ significantly from their
corresponding 1st-order weight functions.

Compared to the weight-function model for the type I neuron,
the model for the type O neuron is a less accurate predictor of
responses to novel stimuli (Figure 3C). For this type O example,
the general trend in the data is captured by the model; however,
the fv-values are only 0.54 and 0.51 at the two sound levels shown.
The 2nd-order terms are important to the model, as exclusion
of these terms produces fv-values (for the best-fitting 1st-order
model) of only 0.38 and 0.28, respectively.

Type V tuning
Like all type V neurons in this study, the neuron in Figure 4 is EE,
exhibiting broad excitatory responses to contralateral and ipsilat-
eral tones (Figure 4A). At high sound levels, the weak response
near BF, in addition to apparent limits on the spread of excitation
to frequencies above BF, suggests that the response of the neu-
ron is sculpted by inhibition. Although this behavior is observed
in many V neurons (Davis et al., 1999), responses to tones that
are strictly inhibitory (i. e., with rates below spontaneous rate)
are small and rarely observed. Note that type V neurons were
also encountered for which either, or both, response maps did not
show signs of inhibition (not shown).

At low sound levels, weight functions for the type V neu-
ron in Figure 4B resemble tone response maps in that weights
are significantly positive at BF. Weight functions at higher sound
levels show negative weights around BF in a manner consis-
tent with the inhibitory sculpting described above. Second-order
filters (Figure 4D) corroborate the inhibitory nature of this neu-
ron’s response: the largest eigenvalues are negative, and increases
in sound level produce even larger negative eigenvalues.

In Figure 4C, the weight-function model predicts responses of
the type V neuron with moderate accuracy. The fv-values for the
2nd-order model are 0.61 and 0.41 at the two sound levels shown.
Exclusion of 2nd-order weights from the model reduces fv-values
to 0.54 and 0.26, respectively.

LEVEL TOLERANCE
In this section, we compare the tuning of neurons responding
to tones against the tuning implicit in responses to RSS stim-
uli. Specifically we compare areas of activity observed in tone
response maps with those seen in weight-function maps at equiv-
alent sound levels (dB re threshold). For type I neurons, this
comparison is robust and straightforward. In the tone maps of
type I neurons, edges of activity are taken to be the frequen-
cies at which rate responses first go to zero on either side of BF
(Figure 5A, blue line). These edges define a central excitatory
region flanked by inhibitory sidebands. Analogously, in weight-
function maps, edges of activity are taken to be the frequencies at
which 1st-order weights are first indistinguishable from zero on
either side of BF (i.e., within ±1-SEM of zero; Figure 5B, dashed
green lines). In this example, as sound level increases, tone-based
tuning (blue curve) broadens, as is commonly observed for audi-
tory neurons in many parts of the brain. By contrast, the tuning
apparent in noise-based weight-function maps is level tolerant:
that is, bandwidths are relatively fixed over the range of sound
levels studied (dashed green curve).

The comparison of tone- and noise-based tuning in Figure 5
is typical of type I neurons. This is shown in Figure 6A where
upper and lower edges of tuning curves are shown for type I

FIGURE 5 | Derivation of tuning curves from response maps for a type I

neuron (BF = 8.3 kHz). (A) Tone response map for the contralateral ear.
The blue curve shows the tuning curve edges for the tone response map,
derived as described in the text. The green dashed curve in both (A) and
(B) shows the edges of the tuning curve for the weight-function map.
(B) Weight-function map for the same neuron. The dB scale in both parts is
dB re threshold for BF tones (A) or RSS stimuli (B). The tuning curve near
the BF tip is not well specified by the response maps. For the tone
response maps, the threshold at BF is determined from a rate-level
function; for the weight-function maps, the threshold is set halfway
between levels that do and do not produce weights that are significantly
different than zero.
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FIGURE 6 | Level tolerance of the edges of tone and weight-function

response maps for populations of type I (A), O (B), and V (C) neurons.

Frequency edges computed as in Figure 5 are shown for contralateral stimuli
only. Lower-(left) and upper-(right) frequency edges derived from tone
response maps (blue lines) are overlaid on those derived from
weight-function maps (dashed green lines) at equivalent sound levels, in dB
re threshold. The point at BF is not included. For each neuron, lower (or
upper) edge frequencies are plotted relative to the geometric mean across
levels of the lower (or upper) edge frequencies of the weight-function maps.
Slopes of lower frequency edges of tone maps differ significantly from those
observed in weight-function maps (type I: P = 0.1; type V: P < 0.01; signed

rank sum comparisons of slopes of best-fit lines). Upper-frequency edges do
not differ. Tone maps were not analyzed for type O neurons (see text). The
red curves in (B) show mean weight-function edges for auditory nerve fibers
[ANF; data from Figure 5 of Young and Calhoun (2005)]. Here, frequencies are
normalized by the average frequency edge at the lowest two sound levels. As
sound level increases, the slopes of lower-frequency edges of CNIC
weight-functions differ from those observed in ANF. Specifically, slopes
suggest a relative narrowing in type I and type O data (P = 0.02), and relative
widening in type V neurons (P = 0.07). For all weight-function types, upper
frequency edges are not significantly different from those seen in ANFs. All
Ps are Bonferroni corrected.

neurons. Frequency edges derived from weight-function maps
(green dashed curves, as in Figure 5) are overlaid on those derived
from tone-based response maps (blue lines, as in Figure 5A). To
enable comparison of tuning curve slopes across neurons with
different BFs, lower (or upper) frequency edges for each tuning
curve (i. e., tone response maps and weight-function maps) are
plotted relative to the geometric mean of lower (or upper) edge
frequencies across all sound levels of the weight-function map.
The lower and upper edges are plotted separately and the point at
BF is not included.

Type I tuning in weighting functions is level tolerant: as sound
level increases, upper and lower frequency edges remain relatively
fixed. Level tolerance, however, was not observed in tone response
maps, where increases in sound level typically yielded a broad-
ening of response maps at the lower frequency edge: the slopes
differ significantly between tone and weight-function maps on
the low-frequency side (P = 0.1, Bonferroni corrected signed-
rank-sum comparisons of slopes of best-fit lines), but not the
high-frequency side.

For type O neurons, a direct comparison of tone- and noise-
based tuning was not done because the patterns of excitation
and inhibition in tone maps are complex and vary significantly
from sound level to sound level (as in Figure 3A); thus, it is not
clear how a meaningful and consistent bandwidth measure would
be chosen. However, weight-function maps could be analyzed as

described above for type I neurons. Because type O neurons often
have distinct excitatory and inhibitory regions that are promi-
nent near BF (as in Figure 3B, 3/7 cases), frequency edges in
type O maps were chosen to include all statistically significant
features that persisted across sound level (i. e., weights exceed-
ing ±1 SEM). For the map in Figure 3B, the persistent feature
that was selected consists of both the excitatory lobe near BF and
the inhibitory lobe above BF. The choice of persistent feature is
not critical, for as long as the same feature definition is applied
consistently across sound level, the result does not change for the
sample of type O neurons studied. In Figure 6B, upper and lower
frequency edges are shown for a population of type O neurons.
Note that the frequency edges are roughly constant at the different
sound levels, thus implying that broadband frequency selectivity
in type O neurons is tolerant to increases in noise level.

A similar analysis for a population of type V neurons is shown
in Figure 6C. As with type I neurons, edges of activity in tone-
based response maps were taken to be frequencies at which rate
responses first go to zero on either side of BF. This area of activ-
ity included frequencies at and above BF where responses were
excitatory but appear dampened by inhibition (e. g., Figure 4A).
As with type O neurons, frequency edges for weight-function
maps were defined to encompass distinct statistically significant
features. However, unlike type O neurons, the excitatory and
inhibitory nature of those features often changed with changes
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in sound level, as in Figure 4B. In such cases, all features near
BF were included as part of a response area if they persisted over
at least two levels. Because of the variability in weight-function
maps, there is considerable variation in the width of type V tuning
with changes in sound level (green dashed curves in Figure 6C).
Weight-function tuning usually broadens near threshold, and in
some cases narrows at high sound levels. However, lower fre-
quency edges of weight-function maps remained relatively fixed
compared to lower frequency edges of tone-based response maps
(P < 0.01, signed rank sum test comparisons of slopes of best-fit
lines).

Thus, the three CNIC neuron types—I, O, and V—exhibit
level-tolerant tuning in response to broadband stimuli, but not in
response to tones. For comparison, the edges of weight-function
maps for a population of ANF were averaged and plotted in
Figure 6B (red). For ANFs, the upper and lower frequency edges
delineate an area of excitation that is centered on BF. The ANF
weight-function map broadens slightly with increasing noise level
at the lower frequency edge, exhibiting more widening than
observed in type I and O edges (P = 0.02; signed rank sum test
of slopes of best-fit lines). By contrast, ANF tuning widens less
than that of type V neurons (P = 0.07).

QUALITY OF MODEL PREDICTIONS AND THE IMPORTANCE
OF 2ND-ORDER TERMS
The weight-function model in Equation 1 predicts responses of
the three CNIC neuron types with different degrees of accuracy.
Figure 7A shows the distributions (left) and cumulative distri-
butions (right) of fv-values for predictions computed using the
leave-one-out procedure. Of the three response types, the model
performs best for type I neurons where the median value of fv is
0.51 (gray). For the type V and O populations, median values of fv
are only 0.30 (red) and 0.21 (blue), respectively. The differences in
the medians of the fv distributions are statistically significant (see
the figure caption).

The accuracy of the model predictions depends substantially
on the inclusion of 2nd-order terms. The scatterplot of Figure 7B
compares the performance of two models for each test response—
a model which includes all 1st- and 2nd-order terms (abscissa),
and another which includes only the 1st-order terms (ordinate).
All data points are located below the diagonal line, meaning that
the addition of 2nd-order terms consistently improves model per-
formance. This was found to be true regardless of the quality
of the 1st-order fit or the neuron type. Specifically, the median
improvement in fv (calculated as the difference in fv-values for
the 2nd- and 1st-order models) is 0.23 for I, 0.16 for V, and 0.18
for O neurons. Although it is not shown here, the binaural term
(i. e., the sixth term of Equation 1) has a negligible impact on the
quality of the prediction. In 225/310 cases, the improvement in fv
resulting from the addition of binaural weights was less than 0.01.

Generally the accuracy of model predictions declines as sound
level increases. Figure 8A shows the relationship between predic-
tion accuracy (fv) and RSS stimulus level. The weight-function
model most accurately predicts responses of type I neurons (gray
lines), and this prediction performance declines slightly with
sound level (R = −0.17, NS). Prediction performance for type
V and type O neurons is relatively less accurate across sound

FIGURE 7 | Quality of the model predictions as measured by fv in

leave-one-out cross validation tests. Each plot contains an aggregation of
prediction data obtained at different sound levels. A neuron is usually
represented multiple times, once at each sound level and also at pairs of
adjacent sound levels. (A) Distribution (left) and cumulative distribution
(right) of fv-values for the three response types. Vertical lines at the top of
the plots show median fv-values. Differences in the distributions across the
neuron types are statistically significant (rank sum test with Bonferroni
correction; I vs. V and I vs. O, P << 0.001; V vs. O, P < 0.02).
(B) Comparison of the best prediction quality (fv) for a full binaural model
containing all 2nd-order terms (abscissa) and a model containing only
1st-order terms (ordinate). Ten data points with ordinate values < −0.2 are
not shown, but are included in the statistics. Vertical arrows indicate
median fv-values for each of the neuron types.

levels (red and blue lines), suggesting that nonlinearities not cap-
tured by the weight-function model have a marked impact on
the rate responses in these neurons. The decline in prediction
accuracy with sound level is significant in V neurons (R = −0.5,
P < 0.001), but not in O neurons (R = −0.04, NS).

An important test of a model is whether it can predict
responses to stimulus types different from those used to estimate
model parameters. For this purpose, we tested the model with a
functionally relevant stimulus set—specifically, broadband noise
filtered by HRTFs (Figure 1D) that simulate natural sound local-
ization cues. As described in Methods, the absence of a reference
stimulus for the estimation of R0 required a modified prediction
approach. In Figure 8B, VS response predictions computed in this
manner are shown for type I and type O neurons. Whereas rate
fluctuations are qualitatively similar between the actual (green
lines) and model (blue lines) rates, there are errors in average rate,
especially in the type O example (Figure 8B). To deemphasize
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FIGURE 8 | Prediction quality for RSS and HRTF stimuli by sound level.

(A) Quality of RSS response predictions (fv) plotted against the sound level
of the stimulus. Light colored symbols connected by lines show data
obtained from one neuron. Heavy colored lines show median fv-values for
the 3 neuron types. For clarity in plotting, 1 dB was added to the
attenuations for V neurons, and 2 dB was added to the attenuations for O
neurons. (B) Predicted rate responses to HRTF-filtered noise (VS stimuli),
computed using weight-function models derived at the same overall sound
level (−40 dB). Predictions for a type I (left) and a type O (right) neuron were
computed using the difference method (see text). Actual rates are shown in
green and predicted rates are shown in blue. The goodness of fit for these
predictions are as follows: Type I (left): R2 = 0.82, fv = 0.7; type O (right):
R2 = 0.39, fv = 0. (C) Median R2 for the three neuron types. Solid lines
indicate median R2-values obtained when the full model was used to
predict responses to VS stimuli; dashed lines indicate median R2-values
based only on 1st-order terms. The black dots show the positions of the
two examples in (B). The gray shaded region indicates the range of
R2-values that were observed for type I neurons at each attenuation level.

differences in the means of the actual and predicted rates, the
Pearson correlation coefficient R2—instead of fv—was used to
quantify the model fit (see Materials and Methods). Figure 8C
shows median values of R2 for the three neurons types. Consistent
with Figure 7, the fits are best for type I neurons (gray lines),
which maintain good fits (median R2 > 0.5) over the range of
sound levels; however, the range of R2-values is quite wide, espe-
cially at high sound levels (gray shaded region). At each sound
level, R2-values for type V and type O neurons were comparable
to those of type I neurons with the poorest fits.

HRTF response predictions, unlike RSS response predictions,
were generally not improved with the addition of 2nd-order
terms. In fact, at high sound levels, median R2-values were slightly
better for 1st-order models, as shown by the dashed lines in
Figure 8C.

IMPORTANCE OF THE CONTRALATERAL EAR
Although it is well known that neurons in the CNIC have tuned
responses to both contralateral and ipsilateral stimuli, the impor-
tance of ipsilateral inputs to spectral selectivity of neurons has not
been studied extensively. We investigated this question by fitting
a contralateral-only model to the data—that is, a model incorpo-
rating only the first, second, and fourth terms of Equation 1. We
then used the monaural model to predict responses to test stim-
uli and compared the quality of those predictions to the quality
achieved using the full binaural model (Figure 9A). The exclusion
of ipsilateral information from the model was found to reduce the
quality of the predictions: most of the data points in Figure 9A lie
below and to the right of the diagonal line. However, the impact
of the ipsilateral contribution is relatively small, as inclusion of
ipsilateral weights in the model improved fv by more than 0.2 for
only about 10% of the data.

Ipsilateral weights have a relatively weak impact on the accu-
racy of the model, partly because they are smaller in magni-
tude than contralateral weights. This difference in magnitude—
which is evident in Figures 2B, 3B, 4B—are summarized in
Figure 9B. Here, amplitudes of 1st-order contralateral weight
vectors (abscissa) are plotted against amplitudes of 1st-order ipsi-
lateral weight vectors (ordinate). These amplitudes are computed
as the norm (or length) of the corresponding weight vector.
Only type V neurons frequently exhibit ipsilateral norms that are
larger than contralateral norms. By contrast, the ipsilateral norms
for type I and type O neurons are usually relatively small. In
Figure 9B, the dashed line indicates where ipsilateral norms are
one-fourth the size of contralateral norms. For type I and type
O neurons, median contralateral and ipsilateral norms (for con-
tralateral norms greater than 0.6) are roughly approximated by
this line. The norms of 2nd-order weights behave similarly (not
shown).

EFFECT OF SOUND LEVEL ON SPECTRAL REPRESENTATIONS
A neuron that provides a robust rate-based spectral representa-
tion should respond over as wide a range of discharge rates as
possible in response to changing spectral features. The neuron
should also adapt the range of response rates to changing stimulus
level (Rees and Palmer, 1988; Dean et al., 2008). Each column of
Figure 10A shows rate responses of a type I neuron to the RSS
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FIGURE 9 | Relative contribution of ipsilateral and contralateral

weights. (A) Comparison of the prediction quality (fv) for a full 2nd-order
binaural model (abscissa) and a model which assumes a purely contralateral
input [i. e., SI (f ) = 0 for all f, ordinate]. Data from one experiment showing
little or no effect of the ipsilateral inputs are included in this plot. (B) Plot of
the amplitude of the 1st-order weight vector in the contralateral ear
(abscissa) vs. the weight amplitude in the ipsilateral ear (ordinate). The
amplitudes of the weights are measured as the norm of 1st-order weight
vectors (the square root of the sum of the weights squared). The solid
diagonal line indicates where weight vector norms are equal in amplitude.
The dashed line indicates where ipsilateral norms are one-fourth the size of
contralateral norms. Note the use of logarithmic axes in (B). Also note that
data points shown in (A) and (B) were aggregated across all sound levels of
stimulus presentation.

stimulus set at two sound levels. The neuron in the left column
responds at both sound levels with the full range of rates available
to the neuron at the given sound level. By contrast, the neuron
in the right column responds at the higher level over roughly
half its full rate range due to rate saturation. To evaluate differ-
ences in the range of rate responses across sound level, we use
the fractional rate ratio (FRR), which is defined as ([Rate at 97.5
percentile] – [Rate at 2.5 percentile])/[Rate at 97.5 percentile].
Here, the percentiles (horizontal dashed lines in Figure 10A) are
used to reduce the effect of occasional rate outliers. FRRs for these
examples are 0.97 and 0.98 in the left column and 1.0 and 0.50 in

the right column. FRR is normalized by the maximum rate at a
particular level—not the maximum rate across all levels. The lat-
ter would produce an increase in FRR at low levels that reflects the
strength of the response rather than the neuron’s use of the range
of rates available to it.

As shown in Figure 10B, the dynamic range of rate responses
are well-maintained in CNIC neurons across sound levels. Here,
FRR is plotted against sound level for individual neurons (sym-
bols), and heavy colored lines indicate the median FRRs for each
neuron type. Median FRRs are also shown for low, medium, and
high spontaneous rate ANFs (dashed lines) responding to the
same stimulus set.

In type I and type V neurons, the largest FRRs occur at low
sound levels and decline monotonically at higher levels. The
FRRs, which tend to be larger for type I than for type V neurons,
are generally comparable to those of low and medium sponta-
neous rate ANF. Type O neurons have the opposite behavior,
showing higher FRRs at high sound levels. FRR values across
the three groups are statistically different at the levels between
−30 and 0 dB attenuation (P < 0.001 ranksum with Bonferroni
correction).

When normalized by their peak value, median contralateral
weight vector norms (i. e., amplitudes) of type I, type V, and type
O neurons similarly increase at low sound levels and gradually
peak between 40 and 30 dB attenuation (Figure 10C; solid col-
ored lines). In a comparison of these amplitudes with those of
ANFs (black dashed lines), median amplitudes of type I and O
neurons correspond closely with those of high SR fibers at low
sound levels. This finding suggests that high SR fibers alone can
account for the responses of CNIC neurons to RSS stimuli at
low sound levels., However, median amplitudes of high SR fibers
decrease rapidly above 50 dB attenuation (presumably as a con-
sequence of rate saturation; Young and Calhoun, 2005) whereas
CNIC amplitudes continue to peak. The relationship between
weight vector amplitudes and attenuation level at these higher
sound levels more closely resembles that of low- and medium-
SR fibers. Thus, weight vector amplitudes of CNIC neurons seem
to reflect the behavior of the most responsive groups of AN fibers
at each sound level.

DISCUSSION
THE WEIGHT-FUNCTION MODEL
Unlike STRFs, weight-function maps computed in this study do
not describe the temporal selectivity of CNIC neurons. Rather,
weight functions can be viewed as a frequency marginal of the
STRF, providing an average of STRFs across the time dimension
(Kim and Young, 1994). In neurons where STRFs are separable—
that is, where STRFs can be written as the product of a frequency
function, A(f), and time function, B(t), [i. e., A(f)B(t)]—weight
functions can be viewed as similar to the frequency function
A(f). At lower sound levels, STRFs of most CNIC neurons have
been found to be separable (Qiu et al., 2003; Lesica and Grothe,
2008a), but as stimulus levels increase, STRFs lose separability
(Lesica and Grothe, 2008a). This observation may mirror the
complex shape changes observed in RSS-derived weight func-
tions, particularly among type V and O neurons. A clear example
of neurons with inseparable characteristics that can’t be modeled
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FIGURE 10 | Relationships between rate dynamic range, weight

amplitude, and stimulus level. (A) Rate responses of two type I neurons
to RSS stimuli. Each column contains data from one neuron, presented at
two sound levels, as given by the legends. Horizontal dashed lines indicate
rates at the 2.5 and 97.5 percentiles of the distribution of rates. FRR is
calculated from these rates, see text. (B) FRRs of type I, O, and V
populations at different attenuations of the RSS stimuli. Symbols mark the
FRR of one neuron’s responses at the indicated sound level. Abscissa
positions of the data points are dithered by ±3 dB to improve clarity. Solid
colored lines are the median FRRs for the neuron types in 10 dB bins.

(Continued)

FIGURE 10 | Continued

Black dashed lines are the median FRRs of 355 ANFs with high
spontaneous rate (Hi SR) and low-to-medium spontaneous rate (LM SR)
[from Young and Calhoun (2005)]. Low and medium SR fibers have been
combined because they exhibit identical behavior. (C) Median norms of
1st-order weight vectors for CNIC neurons (contralateral only; colored lines)
and ANFs [dashed lines; from Young and Calhoun (2005)]. For each neuron
type, median norms have been scaled to a maximum value of 1 for
comparison. Median norms peak at the following values, in spikes/s/dB:
type I, 2.4; type V, 1.4; type O, 1.4; low-SR ANF, 3.0; medium-SR ANF, 3.0;
and high-SR ANF, 2.9.

with weight functions are those with directional responses to fre-
quency sweeps (Andoni and Pollak, 2011). In addition, a strictly
spectral model is not useful in describing responses to stimuli
with substantial amplitude or frequency modulation (Delgutte
et al., 1998; Lesica and Grothe, 2008b; Zheng and Escabi, 2008).

Despite these limitations, the weight-function model has
advantages over other approaches to broadband characterization
of auditory neurons. One is that it is easy to express the responses
in terms of nonlinear stimulus dimensions that are natural for
the auditory system, i.e., log frequency and log sound level. The
appropriateness of log frequency is clear from the layout of fre-
quencies on the basilar membrane and in central auditory maps.
The appropriateness of log sound level is suggested by amplitude
compression in the response of the basilar membrane [reviewed
by Robles and Ruggero (2001)] and by the fact that discharge rate
is locally linear with dB amplitude in AN fibers (Sachs et al., 2006)
and neurons in the cochlear nucleus (May et al., 1998). Further
evidence is the fact that computing STRFs with a logarithmic
stimulus-amplitude scale results in better fits in prediction tests
compared to a linear or power scale (Escabi et al., 2003; Gill et al.,
2008).

The actual functional form of the best-fitting input nonlinear-
ity was determined from data by Ahrens et al. (2008) in auditory
cortex neurons. Their input nonlinearities were expressed as func-
tions on a log stimulus amplitude scale, i.e., as an additional
nonlinearity beyond the logarithm. In most cases, the functions
were linear over some portion of the log scale, consistent with
the model used here, but modified by rectification and some-
times saturation at low and high levels. Another approach to
describing input nonlinearities, which was mentioned in the
introduction (Bandyopadhyay et al., 2007), is to incorporate an
intensity nonlinearity into a 1st-order weight function for neu-
rons in dorsal cochlear nucleus. In this case, the nonlinearity is
frequency-dependent and cannot be represented with a single
input nonlinearity.

IMPORTANCE OF SECOND-ORDER FILTERS
Previous studies of CNIC neurons have yielded conflicting per-
spectives on the importance of 2nd-order filters. In the bat,
2nd-order filters have been shown to be important in describing
CNIC neuron responses (Andoni and Pollak, 2011); by contrast,
in the cat, 2nd-order filters have been found not to be useful
(Atencio et al., 2012). Reasons for these differences are not clear.
However, the results of the current study clearly support the view
that 2nd-order filters are important in the CNIC. As shown in
Figure 7B, the accuracy of the spectral integration model for
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CNIC neurons is improved with the addition of 2nd-order terms.
In fact, in 93% of neurons studied, the addition of one or two
judiciously chosen 2nd-order weights increased fv-values to lev-
els not achievable through the addition of 1st-order weights alone
(data not shown). The latter observation indicates that improve-
ments in prediction accuracy depend specifically on 2nd-order
terms and do not merely reflect the inclusion of a larger number
of model parameters. Similar improvements to 1st-order mod-
els achieved through the inclusion of 2nd-order terms have been
described for temporal responses in auditory cortex (Pienkowski
et al., 2009).

The improvement in prediction performance achieved with
2nd-order filters may simply reflect the addition of static nonlin-
earities that match the curvature of a neuron’s rate-level function.
In models based on the STRF, prediction quality is often improved
by following the linear STRF with a static nonlinear function—
one that matches the amplitude of the STRF output to the
neuron’s response rate (e.g., Escabi et al., 2005; Nagel and Doupe,
2006; Lesica and Grothe, 2008a; Sharpee et al., 2008; Atencio et al.,
2012). In these so-called “linear-nonlinear models,” the nonlin-
ear segment often bears the shape of a parabola that is dominated
by a 2nd-order term. In the current study, the 2nd-order filters
are equivalent to such models insofar as the 2nd-order filter and
1st-order weight functions demonstrate the same frequency selec-
tivity. This was sometimes observed in the CNIC, as with the
type O neuron in Figure 3D (blue filter, bottom left). However, in
almost all cases, 2nd-order filters exhibited frequency selectivity
that differed significantly from that of 1st-order weight func-
tions (see part D of Figures 2 through 4). This suggests that a
response function in the CNIC often cannot be described by sim-
ply appending a single nonlinear filter to a linear one. This finding
has important functional implications, as it reveals a complexity
in the frequency selectivity of CNIC neurons that is not captured
by a 1st-order model alone.

However, the 2nd-order terms in weight functions are not
universally useful, as was found for responses to HRTF filtered
noise (Figure 8C). Although the addition of 2nd-order terms
improved RSS response predictions, this was not true for HRTF
response predictions. In fact, on average, weight-function models
predicted HRTF responses better without the 2nd-order terms.
Errors resulting from the inclusion of 2nd-order terms may reflect
inaccuracies in modeling the average rate responses to those stim-
uli. When 2nd-order terms were added, errors in average rate
were found to be larger than gains in the rate fluctuations. This
suggests that the estimation of 2nd-order terms is more stimulus-
dependent than the estimation of 1st-order terms. This interpre-
tation is consistent with the general finding that STRF models
perform better for the stimulus type to which they are fit (e.g.,
Theunissen et al., 2000; Machens et al., 2004). A similar result was
recently obtained while trying to predict the binaural responses of
neurons in the nucleus of the brachium of the inferior colliculus
(Slee and Young, 2013). Here, the responses to binaural VS were
well-predicted by an RSS model with only1st-order terms.

BINAURAL INTERACTION
As in previous studies of decerebrate cats (Davis et al., 1999; Chase
and Young, 2005), CNIC neurons in the present sample were

found to be binaural: that is, monaural stimuli presented to either
ear yielded a response with a clear BF. Frequency selectivity in
binaural CNIC neurons is often studied using monaural stimuli,
where stimuli are presented either to the contralateral ear alone or
in free field. But auditory neurons rarely encounter stimuli that
are truly monaural in a natural environment. Studies involving
binaural free-field stimulation, which are often based on a more
natural stimulus presentation, may also be problematic in that
they usually do not account for the varying dichotic nature of the
stimuli. As such, responses dependent on the interaction of con-
tralateral and ipsilateral inputs—e. g., sensitivity of neurons to
interaural level differences (Delgutte et al., 1999)—are often not
analyzed in a systematic manner that is frequency-specific.

In this work, independent RSS stimuli were presented to
the two ears simultaneously. This binaural stimulus presen-
tation enabled interactions between contralateral and ipsi-
lateral inputs—as well as contralateral and ipsilateral fre-
quency selectivity—to be investigated in a controlled manner.
Furthermore, frequency selectivity, which was computed in the
form of weights, could be compared between the two ears.
For type I and O neurons, contralateral weights were almost
always found to be larger in magnitude than ipsilateral weights
(Figure 9B), suggesting that the responses of these neurons are
more strongly influenced by spectra presented to the contralat-
eral ear. Studies of CNIC neurons based on STRFs corroborate
this finding, indicating that ipsilateral STRFs—which were found
to be significant for only 36% of CNIC neurons studied—usually
provide weak spectral representations (Qiu et al., 2003). For some
binaural CNIC neurons, the contralateral weight functions alone
appear sufficient to describe rate responses (e. g., the points on
the diagonal line in Figure 9A), suggesting that these neurons
are weakly responsive to ipsilateral RSS inputs. Prediction test-
ing does suggest, however, that inputs from the ipsilateral ear
contribute significantly to the responses of many CNIC neurons.
Figure 9A indicates that spectral integration models that ignore
inputs to the ipsilateral ear may yield errors in a large number
of neurons. Difficulties reported in using STRFs to predict CNIC
responses may reflect, to some extent, omission of ipsilateral
inputs.

The consistently small size of binaural interaction weights (i.
e., bjk, the sixth term in Equation 1) suggests that binaural inter-
actions, as they pertain to stimulus spectra (i. e., interaural level
differences), are primarily additive rather than multiplicative.
This conclusion is subject to the reservation that binaural inter-
actions related to interaural time differences are not addressed
here.

LEVEL-TOLERANT TUNING
The tuning of response areas—whether derived from noise or
tone stimuli—becomes more level tolerant across the ascend-
ing pathway from the cochlea to the auditory cortex. For tones,
neurons show sharper tuning in CNIC than in the cochlea (mea-
sured by Q40; Ramachandran et al., 1999; McLaughlin et al.,
2007), and fully level-tolerant tone response maps have only
been reported in auditory cortex (Sutter, 2000; Sadagopan and
Wang, 2008). Tuning to broadband stimuli is more level tolerant
than tuning to tones, even at the level of the auditory nerve
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(Carney and Yin, 1988; Young and Calhoun, 2005) where level
tolerance is believed to reflect cochlear suppression. In this study,
we show weight-function maps that are more level tolerant than
auditory nerve maps (Figure 6B), and tuning in type I and O
neurons that is fully level tolerant. Experiments based on antag-
onists to inhibitory neurotransmitters (Yang et al., 1992; Lebeau
et al., 2001), small cochlear lesions (Snyder and Sinex, 2002), and
stimulus-driven adaptation suggest that sharpening of tone tun-
ing can be attributed to inhibitory inputs at frequencies away
from BF. The level tolerance observed in CNIC weighting func-
tions is likely also shaped by this inhibition. From a functional
perspective, level tolerance is significant: it suggests that CNIC
neurons are capable of maintaining selectivity for narrow spectral
features—such as those found in HRTFs—across a wide range of
stimulus levels.

RESPONSE TYPES IN THE CNIC
The results shown here add to the current understanding of neu-
ral response types in the cat CNIC. The classification scheme
applied in this study is based on spectral tuning for tones
(Ramachandran et al., 1999; Greene et al., 2010), analysis of
masking patterns (Ramachandran et al., 2000), and binaural
processing (Davis et al., 1999; Ramachandran and May, 2002).
The validity of this scheme is supported by the fact that class
definitions incorporate multiple aspects of a neuron’s response
properties. Moreover, similar response types have been described
in a number of animal species (when effects of anesthesia and
stimulus design are taken into account; for example: bat, Yang
et al., 1992; guinea pig, Lebeau et al., 2001; mouse, Egorova
et al., 2001; rat, Hernández et al., 2005). The relative preva-
lence of the three response types does varies widely across species
(Davis, 2005). Neurons resembling types I and V are found in
all species, but the prevalence of type O neurons, which are
most common in cats, varies significantly. This suggests that
there are significant species differences in the representation of
sound in IC.

In contrast to tone maps, the shapes of weight-function maps
as described in this study do not clearly define the response types
nor allow them to be differentiated. In type I neurons, weight-
function maps usually exhibit on-BF positive (excitatory) peaks
for the contralateral ear and on-BF negative troughs (inhibition)
for the ipsilateral ear (as in Figure 2). It can also be stated that in
type O and type V neurons, contralateral and ipsilateral weight-
function maps usually contain areas of inhibition near BF that are
more prominent than those for type I neurons (as in Figures 3,
4). However, patterns of excitation and inhibition observed in
weight-function maps—within a single response type—vary sig-
nificantly, particularly within the type V and O classes. As a

result, weight-function maps do not in themselves support a well-
defined classification scheme. Likewise, studies of STRFs have yet
to define a classification scheme for auditory neurons in CNIC or
elsewhere [although see Woolley et al. (2009) in bird cortex].

On the other hand, results of this study do support the func-
tional relevance of the type I, V, and O classification scheme.
Specifically, the nature of spectral sensitivity differs for the three
classes. As demonstrated in Figures 7, 8, each of the neuron types
is sensitive to spectral shape, as rate responses vary with changes
in stimulus spectrum. For type I neurons, a low-order model con-
taining only 1st- and 2nd-order terms typically accounts for most
of the variance in rate responses—and thus spectral sensitivity—
at stimulus levels up to 50–60 dB above threshold. By comparison,
a low-order model is a less accurate description of type V and O
rate responses, except at the lowest stimulus levels (Figure 8). The
nature of spectral encoding therefore appears to be different for
type I, V, and O neurons.

Differences in spectral encoding between type I, V, and O
neurons support the idea of parallel representations of auditory
stimuli (Yu and Young, 2000; Escabi and Schreiner, 2002; Woolley
et al., 2009). Type I neurons, like chopper neurons in the ven-
tral cochlear nucleus, produce linear representations of spectral
shape. The weight function model did successfully capture the
variation in rate responses across a set of untrained, functionally
relevant VS stimuli (see Figures 8B,C). On the other hand, type
O and V neurons exhibit nonlinear relationships between spectral
level and discharge rate that imply other functional possibilities.
One possibility is that “nonlinear” neurons may be encoding spe-
cific features of the stimulus—e. g., spectral notches or rising
spectral edges, as are present in VS stimuli—in a manner not
easily explained with a linear spectral integration model. Such
neurons have been observed in the dorsal cochlear nucleus and
CNIC (Davis et al., 2003; Escabi et al., 2005; Reiss and Young,
2005). Alternatively, the responses of nonlinear neurons may be
more strongly influenced by properties of the stimulus other
than the spectra, such as features encoded in the time domain.
For example, type V neurons seem to be specialized for encod-
ing interaural time differences (Ramachandran and May, 2002;
Chase and Young, 2005), which were not controlled in RSS stim-
uli presentations. A full exploration of the link between response
nonlinearity, feature selectivity, and temporal sensitivity remains
to be done.
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