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In this paper, we review several lines of recent work aimed at developing practical
methods for adaptive on-line stimulus generation for sensory neurophysiology.We consider
various experimental paradigms where on-line stimulus optimization is utilized, including
the classical optimal stimulus paradigm where the goal of experiments is to identify
a stimulus which maximizes neural responses, the iso-response paradigm which finds
sets of stimuli giving rise to constant responses, and the system identification paradigm
where the experimental goal is to estimate and possibly compare sensory processing
models. We discuss various theoretical and practical aspects of adaptive firing rate
optimization, including optimization with stimulus space constraints, firing rate adaptation,
and possible network constraints on the optimal stimulus. We consider the problem of
system identification, and show how accurate estimation of non-linear models can be highly
dependent on the stimulus set used to probe the network. We suggest that optimizing
stimuli for accurate model estimation may make it possible to successfully identify non-
linear models which are otherwise intractable, and summarize several recent studies of
this type. Finally, we present a two-stage stimulus design procedure which combines the
dual goals of model estimation and model comparison and may be especially useful for
system identification experiments where the appropriate model is unknown beforehand.
We propose that fast, on-line stimulus optimization enabled by increasing computer power
can make it practical to move sensory neuroscience away from a descriptive paradigm and
toward a new paradigm of real-time model estimation and comparison.
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INTRODUCTION
One classical approach in sensory neurophysiology has been to
describe sensory neurons in terms of the stimuli that are most
effective to drive these neurons. The stimulus that elicits the
highest response is often referred to as the optimal stimulus
(Albrecht et al., 1980; Stork et al., 1982; DiMattina and Zhang,
2008). Although the optimal stimulus provides a simple and
intuitive means of characterizing a sensory neuron, positively
identifying the optimal stimulus may be technically difficult for
high-dimensional stimuli, and simply knowing the optimal stim-
ulus without adequately exploring responses to other stimuli may
provide limited information about sensory function (Olshausen
and Field, 2005). Due to these practical and conceptual limita-
tions of characterizing neurons by the optimal stimulus, many
researchers have recently taken engineering-inspired approaches
to studying neural coding, for example, by characterizing neu-
rons in terms of the mutual information between sensory stimuli
and a neuron’s responses (Machens, 2002; Sharpee et al., 2004;
Machens et al., 2005; Chase and Young, 2008), by characterizing
iso-response surfaces in stimulus parameter spaces (Bölinger and
Gollisch, 2012; Horwitz and Hass, 2012), or by fitting predic-
tive mathematical models of neural responses to neurophysiology
data (Wu et al., 2006). However, just like the classical opti-
mal stimulus paradigm, these engineering-inspired methods also

give rise to non-trivial high-dimensional stimulus optimization
problems.

With recent advances in desktop computing power, it has
become practical to perform stimulus optimization adaptively in
real-time during the course of an experiment (Benda et al., 2007;
Newman et al., 2013). In this review, we consider several recent
lines of work on adaptive on-line stimulus optimization, focusing
on single-unit recording in vivo for systems-level sensory neu-
roscience. Other kinds of closed-loop neuroscience experiments
like dynamic patch clamping or closed-loop seizure interventions
are considered elsewhere (Prinz et al., 2004; Newman et al., 2013).
We first discuss the concept of the optimal stimulus and con-
sider how its properties may be constrained by the underlying
functional model describing a neuron’s stimulus–response rela-
tion. We then discuss how adaptive stimulus optimization has
been utilized experimentally to find complex high-dimensional
stimuli which optimize a neuron’s firing rate, including promis-
ing recent studies using evolutionary algorithms. We also discuss
a different kind of study where stimuli are “optimized” to elicit a
desired constant firing rate so that iso-response contours of the
stimulus–response function may be obtained, as well as stud-
ies seeking maximally informative stimulus ensembles. Finally,
we discuss how adaptive stimulus optimization can be utilized
for effective estimation of the parameters of sensory processing
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models, as well as for effective model comparison. In conclusion,
we suggest that adaptive stimulus optimization cannot only make
the classical optimal stimulus paradigm more tractable, but can
potentially move sensory neuroscience toward a fundamentally
new experimental paradigm of real-time model estimation and
comparison.

THE OPTIMAL STIMULUS
DEFINING THE OPTIMAL STIMULUS
In order for a sensory neuron to be useful to an organism,
there must be a consistent functional relationship between the
parameters of sensory stimuli and neural responses. Although
this relationship may be highly complex and non-linear, for any
set of stimuli defined by parameters x = (x1, . . . ,xn)T we may
think abstractly of the expected neural responses being described
by some function r = f (x). For simplicity and definiteness, in
this section we will focus our discussion of the optimal stimu-
lus on the most common case where r is a scalar quantity which
represents the firing rate of a single neuron, and will assume
that the expected firing rate is entirely a function of the stim-
ulus parameters, ignoring variables such as spiking history and
stimulus-specific adaptation by assuming that they are kept con-
stant (Ulanovsky et al., 2003; Bartlett and Wang, 2005; Asari and
Zador, 2009).

Given this formulation, the problem of finding the optimal
stimulus x0 is simply the problem of maximizing the function
f (x). Perhaps the simplest and most intuitive notion of the opti-
mal stimulus is that of a firing rate peak in stimulus parameter
space centered at x0, as illustrated in Figure 1A. Here f is max-
imized at x0, and for any stimulus perturbation Δx we have
f (x0 + Δx) < f (x0). However, for high-dimensional stimulus
spaces like image pixel space (Simoncelli et al., 2004) or auditory
frequency space (Yu and Young, 2000; Barbour and Wang, 2003a)
this intuitive notion of the optimal stimulus as a response peak is
hardly the only possibility. In the example shown in Figure 1B,
the neuron is tuned along one direction in the stimulus space,
but is untuned along an orthogonal direction. In this case, there

is not a single optimal stimulus x0 as in Figure 1A, but rather a
continuum of optimal stimuli lying along a ridge containing x0

(Figure 1B, thick green line). Another theoretical possibility is the
saddle-shaped response surface in Figure 1C, where depending on
the dimension chosen for exploration, the same stimulus x0 can
be either a firing rate peak or a valley.

For high-dimensional stimulus spaces, a full factorial explo-
ration is impossible since the number of stimuli needed grows
exponentially with the dimension, a problem referred to collo-
quially as the curse of dimensionality (Bellman, 1961). In many
experiments, stimulus spaces are explored in a restricted subset of
dimensions. The behaviors of neuron in the unexplored stimu-
lus dimensions may have various possibilities including the ones
considered above. One cannot assume that the stimulus–response
relationship must always be a single peak as in Figure 1A. Indeed,
one of the challenges of sensory neurophysiology is that with-
out prior knowledge about the neuron under study, there are no
constraints whatsoever on the possibilities for the optimal stim-
ulus, which must be found in a process of trial-and-error with
no way to conclusively prove global optimality (Olshausen and
Field, 2005). We now briefly discuss a recent theoretical study
describing possible constraints on the optimal stimulus which
arise from general anatomical properties of underlying functional
circuitry.

CONSTRAINTS FROM UNDERLYING FUNCTIONAL CIRCUITRY
Ultimately, the stimulus–response relationship function f (x) is
generated by the underlying neural circuitry connecting the sen-
sory periphery to the neuron under study, but in general this cir-
cuitry is highly complex (Felleman and Van Essen, 1991; Shepherd,
2003) and not generally known to the experimenter. Nevertheless,
recent theoretical work suggests that very basic anatomical proper-
ties of the neural circuitry may be able to provide experimentally
useful constraints on the possibilities for the optimal stimulus
(DiMattina and Zhang, 2008).

Consider the simple hypothetical sensory network shown in
Figure 2A (left panel) which receives synaptic inputs from two

FIGURE 1 | Hypothetical stimulus–response relationships for a sensory

neuron. The red circle represents the boundary of the set of permissible
stimuli. (A) Stimulus x0 is a firing rate peak which corresponds to the intuitive
notion of the optimal stimulus where any perturbation away from x0 results
in a decrease in the firing rate. (B) This neuron is tuned to one stimulus

dimension but is insensitive to the second dimension. Instead of a single
optimal stimulus x0 there is a continuum of optimal stimuli (green line).
(C) A neuron whose stimulus–response function around the point x0 is
saddle-shaped. Along one stimulus dimension x0 is a firing rate maximum,
and along the other stimulus dimension x0 is a minimum.
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FIGURE 2 | How the optimal stimulus properties of sensory neurons

may be constrained by network architecture. Panels (A,B) adapted
with permission from DiMattina and Zhang (2008). (A) A simple neural
network (left) and its responses to inputs x1, x2 (right). The optimal
stimulus for this network must lie on the boundary of any closed set of

stimuli (right panel, thick red line). (B) The functional network connecting
a single neuron (α or β) to the sensory periphery may have fewer units
in successive processing layers (convergent), even if the overall
number of neurons in successive processing layers is increasing
(divergent).

peripheral sensory receptors (filled black circles) which linearly
transduce stimulus the variables x1, x2 and pass their outputs
to a pair of interneurons, which in turn converge onto the out-
put neuron from which responses r are measured. Since there are
physical limits on the intensities of stimuli which can be generated
by laboratory equipment, we may reasonably assume that the col-
lection X of permissible stimuli is some closed subset of the real
plane consisting of an interior and boundary (rightmost panel,
thick red line). We may also reasonably assume that each neuron’s
input–output property is a described by an increasing gain func-
tion g(u). With these reasonable assumptions, it is simple to show
that that the gradient of the function f (x) implemented by this cir-
cuit cannot vanish, and thus an optimal stimulus which is a firing
rate peak as in Figure 1A is impossible. Therefore, it follows that
optimal stimulus must lie on the boundary of X (Figure 2A, right
panel), with the exact location depending on the synaptic weights
and other parameters of the network.

In general, it can be shown that for hierarchical neural networks
which can be arranged into layers that if the gain functions are
increasing, the number of neurons in successive layers is decreas-
ing or constant, and weight matrices connecting successive layers
are non-degenerate, then it is impossible for the optimal stimu-
lus for any neuron in this network to be a firing rate peak like
that illustrated in Figure 1A (DiMattina and Zhang, 2008). It
is important to note that this result requires that the stimuli be
defined in the space of activities of the input units to the neu-
ral network, such as image pixel luminances which are the inputs
to the network. One interesting corollary of this result is that if
the space X of permissible stimuli is bounded by a maximum
power constraint

∑n
i=1 x2

i ≤ E, the optimum firing rate will
be obtained for a stimulus x ∈ X having the greatest power or
contrast, since this stimulus will lie on the boundary. Indeed, for
many sensory neurons in the visual, auditory, and somatosen-
sory modalities, increasing the stimulus contrast monotonically
increases the firing rate response (Albrecht and Hamilton, 1982;
Cheng et al., 1994; Oram et al., 2002; Barbour and Wang, 2003b;
Ray et al., 2008), which is interesting considering that convergent

networks satisfying the conditions of the theorem can model the
functional properties of many sensory neurons (Riesenhuber and
Poggio, 1999, 2000; Lau et al., 2002; Prenger et al., 2004; Cadieu
et al., 2007).

At first, this result may seem to be of limited applicability since
it is well known that the numbers of neurons in successive pro-
cessing stages can be widely divergent (Felleman and Van Essen,
1991). However, the theorem applies only to the functional net-
work which connects a given neuron to the sensory periphery.
For instance, in the example shown in Figure 2B, the functional
network connecting neuron a to the input layer is a convergent
network with the number of units decreasing from layer to layer
(blue), whereas the full network is divergent with the number of
units increasing from layer to layer. Similarly, it is important to
note that the neural network to which we apply the theorem may
not be a literal description of the actual neural circuit, but simply
a mathematical description of the functional relationship between
the stimulus parameters and the neural response. For instance, a
standard functional model of the ventral visual stream postulates
a feedforward architecture similar to the models of complex cells
postulated by Hubel and Wiesel (Riesenhuber and Poggio, 1999,
2000), and the theorem can be applied to neurons in these models.
Similarly, divisive normalization models postulated for visual and
auditory neurons (Heeger, 1992b; Koelling and Nykamp, 2012)
can be re-written in a form to which the theorem applies and
shown to have a non-vanishing gradient (Koelling and Nykamp,
2012).

ADAPTIVE OPTIMIZATION OF FIRING RATE
Despite the conceptual difficulties with the notion of an optimal
stimulus, it provides sensory neuroscience with an intuitive
first-pass description of neural function when an appropriate
quantitative model is unknown. In this section, we discuss adaptive
stimulus optimization methods which have been utilized exper-
imentally for optimizing the firing rate of sensory neurons in
high-dimensional stimulus spaces where a full factorial explo-
ration would be intractable. Mathematically, the optimization
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problem may be specified as that of finding

x∗ = arg max
x∈X

f (x), (1)

where x∗ is the optimal stimulus, f is the (unknown)
stimulus–response function, and X is the set of allowable stim-
uli. Methods to optimize firing rate fall into two general categories:
those that ascend the local gradient of the stimulus–response func-
tion, and those which utilize genetic or evolutionary approaches.
We discuss each of these approaches and their relative merits, along
with issues of adaptation and constrained stimulus spaces.

LOCAL HILL-CLIMBING
Due to the inherent variability in neural responses (Tolhurst et al.,
1983; Rieke et al., 1997), optimizing the firing rate of sensory neu-
rons is a difficult stochastic optimization problem (Spall, 2003).
Early work on adaptive stimulus optimization was performed by
Harth and Tzanakou (1974), who applied a method of stochas-
tic gradient ascent known as ALOPEX, or “Algorithm of Pattern
Extraction” to neurons in the frog visual tectum (Tzanakou et al.,
1979). This method works by computing correlations between
random perturbations of the current stimulus and changes in
firing rate and using these correlations to iteratively update the
current stimulus to increase the expected firing rate, eventually
converging to the optimal stimulus. More recently, related meth-
ods have been employed to optimize the responses of neurons in
the primary visual (Foldiak, 2001) and auditory (O’Connor et al.,
2005) cortices, providing independent verification of previously
described receptive field properties like orientation selectivity
(Hubel and Wiesel, 1962) or inhibitory sidebands (Shamma et al.,
1993). Variations of ALOPEX have also been utilized to quickly
find the best frequency for auditory nerve fibers, an essential first
step in many auditory neurophysiology experiments (Anderson
and Micheli-Tzanakou, 2002).

In addition to these correlation-based approaches, numerous
other computational methods have been utilized for firing rate
optimization. One approach is to iteratively make local linear
or quadratic approximations to the neural responses around a
reference stimulus (Bandyopadhyay et al., 2007a; Koelling and
Nykamp, 2008, 2012), which can then be used to determine
a good search directions in the stimulus space. This approach
has been utilized by Young and colleagues in order to deter-
mine that the optimal stimulus for neurons in the dorsal cochlear
nucleus is a spectral edge centered at the neuron’s best frequency
(Bandyopadhyay et al., 2007b), consistent with suggestions from
previous studies (Reiss and Young, 2005). An alternative optimiza-
tion method which does not require estimating the local response
function gradient is the Nelder–Mead simplex search (Nelder and
Mead, 1965), which has been used to optimize the responses of
neurons in cat auditory cortex to four-tone complexes (Nelken
et al., 1994).

GENETIC ALGORITHMS
One limitation of the stimulus optimization methods above is
that they are local searches which iteratively update the location
of a single point (or simplex of points). Therefore, it is certainly
possible for optimization runs to end up stuck at local firing rate

maxima. Furthermore points of vanishing gradient do not neces-
sarily indicate maxima (Koelling and Nykamp, 2012), as we can see
from the examples in Figure 1. Furthermore, local search meth-
ods only identify a single optimal stimulus, and do not sample the
stimulus space richly enough to fully describe neural coding. One
possible alternative adaptive optimization method used in previ-
ous neurophysiological studies which can potentially surmount
both of these problems is a genetic algorithm (Goldberg, 1989). A
genetic algorithm works by populating the stimulus space widely
with many stimuli (analogous to “organisms”), which survive to
the next generation with a probability proportional to the firing
rate they elicit (analogous to their“fitness”). The parameters of the
surviving stimuli are combined at random in a factorial manner
(“crossing-over”) and mutated in order to produce a new gener-
ation of different stimuli based on the properties of the current
generation. Over several iterations of this algorithm, a lineage of
stimuli will evolve which maximizes the firing rate of the neuron
under study, and since the sampling of the stimulus space is non-
local, genetic algorithms are more likely to avoid the problem of
local maxima than hill-climbing methods.

Genetic algorithms were applied to neurophysiology stud-
ies by Winter and colleagues, who optimized the parameters of
amplitude-modulated tones defined in a four-dimensional space
in order to study neural coding in the inferior colliculus (Bleeck
et al., 2003). The optimal stimuli found by this method were in
agreement with tuning functions found by traditional methods,
thereby validating the procedure. More recently, a very power-
ful demonstration of genetic algorithms as a tool for adaptive
optimization was given by Connor and colleagues studying the
representation of two-dimensional shape in V4 (Carlson et al.,
2011) and three-dimensional shape in the inferotemporal cor-
tex (Yamane et al., 2008; Hung et al., 2012). The parameter space
needed to define three-dimensional shapes is immense and impos-
sible to explore factorially, with most of the stimuli in this space
being ineffective. Nevertheless, a genetic algorithm was success-
ful at finding shape stimuli having features which were effective
at driving neurons, with the optimization results being consistent
over multiple runs. Furthermore, because the genetic algorithm
cross-over step generates stimuli which factorially combine dif-
ferent stimulus dimensions, it did a sufficiently thorough job
of sampling the stimulus space to permit the investigators to fit
predictive models which accurately described the tuning of the
neurons to arbitrary shape stimuli (Yamane et al., 2008).

As reviewed above, the different methods developed for auto-
matically optimizing firing rate responses of sensory neurons
differ greatly, both in their general search strategy (i.e., gradient
ascent versus genetic algorithms) as well as their exact methods
for implementing that strategy (Nelken et al., 1994; Foldiak, 2001;
Koelling and Nykamp, 2012). Furthermore, it is important to note
that while genetic algorithms are a commonly chosen alternative
to gradient ascent in the existing literature (Bleeck et al., 2003;
Yamane et al., 2008; Chambers et al., 2012; Hung et al., 2012), a
wide variety of alternative optimization methods could in prin-
ciple be applied as well, such as simulated annealing (Kirkpatrick
et al., 1983), and particle swarm optimization (Kennedy and Eber-
hart, 1995). However, without direct comparisons of algorithms
on benchmark problems using numerical simulation, it is hard to
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directly and fairly compare these various methods. As automated
stimulus optimization becomes more widely used in physiological
experiments, systematic comparison of optimization methods on
benchmark problems is certainly an interesting avenue for future
research in computational neuroscience.

STIMULUS SPACE CONSTRAINTS
Quite often, one may wish to optimize neuronal responses in a
constrained stimulus space for constraints which are more com-
plex than simple upper and lower bounds on stimulus dimensions.
For many neurons one can always increase the firing rate simply by
increasing the stimulus energy or contrast (Albrecht and Hamil-
ton,1982; Cheng et al., 1994; Oram et al., 2002), so it is of interest to
optimize the stimulus with the constraint of fixed stimulus energy.
In Eq. 1, the optimal stimulus is defined over the set of all allow-
able stimuli, X, which depends on the constraints in the stimulus
space. When each component of the stimulus x = (x1,. . ., xn)T is
constrained between an upper bound and a lower bound (e.g., the
luminance of image pixels has a limited range of possible values),
the set X is a hypercube:

X = {
x : ai ≤ xi ≤ bi, i = 1, . . . , n

}
. (2)

With a quadratic energy constraint, the allowable stimulus set X
should become a hyper-sphere:

X =
{

x :
n∑

i=1

x2
i = E

}
. (3)

For example, Lewi et al. (2009) derived a fast procedure for opti-
mization for effective model estimation under stimulus power
constraints. Optimizing the stimulus in Eq. 1 subject to an energy
constraint is an optimization problem for which there are many
numerical methods for solutions (Douglas et al., 2000; Nocedal
and Wright, 2006).

In special cases where there is prior information about the func-
tional form of f (x), the constrained optimization problem may
permit numerically elegant solutions for finding optimal stim-
uli subject to non-linear constraints, as well as finding invariant
transformations of a stimulus which leave responses unchanged.
A recent study (Berkes and Wiskott, 2006, 2007) considered the
problem of optimizing the responses of any neuron whose func-
tional properties are given by an inhomogeneous quadratic form

f (x) = xTAx + bTx + c, subject to an energy constraint
xTx = E. This study presented a very efficient algorithm for com-
puting the optimal stimulus x∗ which requires only a bounded
one-dimensional search for a Lagrange multiplier, followed by
analytical calculation of the optimal stimulus. In addition, they
demonstrated a procedure for finding approximate invariant
transformations in the constrained stimulus space, which for com-
plex cells amount to shifts in the phase of a Gabor patch. As
quadratic models have become popular tools for characterizing
non-linear sensory neurons (Heeger, 1992a; Yu and Young, 2000;
Simoncelli et al., 2004; Berkes and Wiskott, 2005; Bandyopad-
hyay et al., 2007a), their algorithm offers a useful tool for sensory
neuroscience.

NEURAL RESPONSE ADAPTATION
It is well known that when the same stimulus is presented repeat-
edly to sensory neurons, they exhibit firing rate adaptation,
becoming less sensitive to that stimulus over time (Ulanovsky
et al., 2003; Asari and Zador, 2009). Similarly, responses to sensory
stimuli can often non-stationary and are affected by context pro-
vided by preceding stimuli (Bartlett and Wang, 2005). Adaptation
potentially presents a difficulty for stimulus optimization meth-
ods, since toward the end of the optimization run as the algorithm
converges on a (locally) optimal stimulus, a series of very similar
stimuli may be presented repeatedly, thereby leading to firing rate
adaptation. This phenomena has been observed in studies in the
published literature (Yamane et al., 2008) and presents a potential
obstacle to studies of adaptive stimulus optimization (Koelling
and Nykamp, 2012). Given the suppression of neural responses
to stimuli which occur with high probability (Ulanovsky et al.,
2003), one way of dealing with adaptation may be to intersperse
random stimuli with those generated by the optimization run, so
as to reduce adaptation effects. However, this may be an inefficient
method for dealing with adaptation, since it increases the num-
ber of stimuli needed in an experiment (Koelling and Nykamp,
2012).

Apart from these technical considerations, the problem of
firing rate adaptation illustrates a fundamental conceptual limita-
tion of phenomenological sensory neurophysiology. In particular,
it demonstrates that the act of probing a sensory neuron with
stimuli can potentially changes the response properties of the
neuron itself, possibly including its optimal stimulus. Therefore,
it may not be conceptually correct to characterize the stimulus
optimization problem as it is written in Eq. 1, but rather to char-
acterize it as a far more complicated optimization problem where
the function f (x, h(t)) to be optimized is constantly changing,
dependent on both the stimulus x and response history h(t).
In this case, the optimal stimulus for a given neuron may only
be well-defined with respect to a given history of stimuli and
responses.

One solution to this problem would be to have a mathemati-
cal model of the neuron’s stimulus–response function which takes
adaptation into account. Indeed, recent work has demonstrated
that bilinear models of sensory neurons incorporating adaptation
parameters can greatly improve predictions when compared stan-
dard linear receptive field models (Ahrens et al., 2008a). Other
work has shown that the failure of spectrotemporal receptive field
(STRF) models to account fully for neural responses to natural
stimuli may be accounted for by rapid synaptic depression (David
et al., 2009), further underscoring the importance of including
adaptation parameters in neural models. We discuss the issues of
neuronal adaptation and stimulus-response history further when
we discuss the estimation of neural models using active data
collection.

On the whole however, the problem of adaptation does not
seem to pose a fatal limitation to adapting firing rate optimization,
as it has been applied successfully in many recent studies (Foldiak,
2001; O’Connor et al., 2005). Furthermore, there are many neu-
rons in the brain for which adaptation effects are small and thus do
not pose a concern (Ingham and McAlpine, 2004). These meth-
ods are potentially of great importance for investigating neural
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coding of complex stimuli defined in high-dimensional spaces
(Yamane et al., 2008), and it is of great interest to better understand
how adaptation affects stimulus optimization and receptive field
characterization.

ISO-RESPONSE SURFACES AND MODEL COMPARISON
In high-dimensional stimulus spaces, the same response from a
sensory neuron can be elicited by a continuum of equally effective
optimal stimuli rather than a single optimal stimulus (Figure 1).
Therefore, in some experiments it may be of interest to find sets of
equivalent stimuli known as iso-response surfaces which yield the
same response. One possible way of formalizing an optimization
problem for this class of experiments is to formulate it as finding
stimuli

x∗ = arg min
x∈X

d(f (x), c), (4)

which d(· , ·) is some metric measure (e.g., squared error) quan-
tifying the discrepancy between the desired response c and the
neuronal response f (x). Multiple optimization runs from dif-
ferent starting locations and for different values of the desired
constant response c permit the experimenter to determine families
of iso-rate surfaces for the neuron under study. The geometri-
cal shapes of the iso-rate surfaces can help to determine how
stimulus variables x1,. . .,xn are integrated, and thus provide a
useful tool for comparison of hypothetical models. For instance,
linear integration of stimulus energy would yield iso-response sur-
faces which are hyperplanes of the form

∑n
i=1 xi = c, whereas

non-linear integration would yield non-planar iso-response sur-
faces. Figure 3 illustrates iso-response surfaces for two different
hypothetical sensory processing models.

The iso-response surface method was used by Gollisch et al.
(2002) to test several competing hypotheses about how spectral
energy is integrated in locust auditory receptors. The iso-response
contours to combinations of two or three pure tone stimuli
with fixed frequencies and variable amplitudes were of ellipti-
cal shape, consistent with an energy-integrator model of spectral
integration. Further work extended the iso-response method to
incorporate temporal integration, yielding a complete cascade
model of auditory transduction (Gollisch and Herz, 2005).

A more recent study applied this technique to study the integra-
tion of visual contrast over space in salamander retinal ganglion
cells, revealing a threshold-quadratic non-linearity in the recep-
tive field center as well as a subset of ganglion cells most sensitive
to spatially homogeneous stimuli (Bölinger and Gollisch, 2012).
The iso-response surface method has also been applied fruitfully
in mammalian sensory systems as well. A recent study by Horwitz
and Hass (2012) utilized this procedure to study integration of
color signals from the three retinal cone types in single neurons
in the primary visual cortex. It was found that half of the neurons
had planar iso-response surfaces, consistent with linear integra-
tion of cone signals. However, the other half showed a variety of
non-linear iso-response surfaces, including cup-shaped surfaces
indicating sensitivity to only narrow regions of color space.

Although the iso-response surface method has been applied
successfully in stimulus spaces of low dimensionality (two
or three dimensions), tracing out level hyper-surfaces in
higher-dimensional spaces may pose a formidable computational

challenge (Han et al., 2003; Willett and Nowak, 2007). In future
research, dimensionality reduction procedures might be useful for
extending the iso-response surface method to high-dimensional
stimulus spaces like pixel space or auditory frequency space (Yu
and Young, 2000), as well as for high-dimensional spaces defin-
ing complex naturalistic stimuli like 3D shapes or species-specific
communication sounds (DiMattina and Wang, 2006; Yamane
et al., 2008).

MAXIMALLY INFORMATIVE STIMULUS ENSEMBLES
It has been proposed that one of the major goals of sensory coding
is to efficiently represent the natural environment (Barlow, 1961;
Simoncelli, 2003). In this spirit, another class of closed-loop stim-
ulus optimization methods has been developed to find the optimal
ensemble of sensory stimuli for maximizing the mutual infor-
mation between stimuli and neural responses (Machens, 2002).
This method differs from efforts to find the optimal stimulus or
efforts to find iso-response surfaces because the goal is not to find
an individual stimulus x∗ which optimizes the desired criterion
(i.e., Eq. 1), but rather to find the optimal distribution p∗(x)
which optimizes the mutual information I(y; x), where y denotes
the observed neural response (typically the firing rate of a single
neuron). Mathematically, we write

p∗(x) = arg max
p(x) ∈ P

I(y; x) =
∫

X

∫
Y

p(y | x)p(x) ln
p(y | x)

p(y)
dxdy ,

(5)
where P is the space of probability densities on the stimulus space
X, and p(y | x) and p(y) are determined experimentally by observ-
ing neural responses to stimuli. In practice, one starts with an
assumption of a uniform distribution with finite support and
then applies the Blahut–Arimoto algorithm (Blahut, 1972; Ari-
moto, 1972) to iteratively update the sampling weights (Machens,
2002). This method has been applied experimentally to char-
acterize grasshopper auditory receptor neurons, demonstrating
optimality for processing behaviorally relevant species-specific
communication sounds (Machens et al., 2005; Benda et al., 2007).

ADAPTIVE OPTIMIZATION FOR SENSORY MODEL
ESTIMATION
An ideal gold standard for sensory neuroscience is to obtain a
complete and accurate functional stimulus–response model of the
neuron under study. In theory, once such a model is attained, one
can then numerically or analytically calculate from this model the
neuron’s optimal stimulus, its iso-response surfaces, and its maxi-
mally informative stimulus ensembles. That is, if one identifies the
system, one gets“for free”other information one may be interested
in. However, despite its conceptual appeal, the problem of system
identification is of great practical difficulty. This is because one
needs to specify an accurate yet experimentally tractable model
whose parameters can be estimated from data obtained during
the available observation time. Unfortunately, research in com-
putational neuroscience has shown that tractable (e.g., linear and
quadratic) models are not accurate, whereas more biologically
accurate models (deep, multiple layer neural networks incorporat-
ing dynamics, recurrence, etc.) often pose intractable parameter
estimation problems.
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FIGURE 3 | Examples of iso-responses surfaces for two hypothetical

sensory processing models. (A) Iso-response contours (left) of a sensory
neuron which linearly integrates stimulus variables x1, x2 ≥ 0. The response r
of this neuron is a summation of the outputs of two neurons in the lower

layer with a threshold-linear gain function (right). Colors in the contour plot
represent neural firing rates from low to high. (B) Iso-responses contours
(right) of a sensory neuron which non-linearly integrates stimulus variables
x1, x2 ≥ 0 with a threshold-quadratic gain function (right).

It is well known from the fields of statistics and machine
learning that one can more quickly and accurately estimate the
parameters of a function using adaptive data collection, where new
observations are generated in an iterative, adaptive manner which
optimize the expected utility of the responses given the goal of
estimating the model parameters (Lindley, 1956; Bernardo, 1979;
MacKay, 1992). Mathematically, the optimization problem is to
find at each iteration

x∗
n+1 = arg max

x ∈ X

U (E)
n (x), (6)

where U (E)
n (x) is the estimation utility function based on the data

of the first n stimulus–response pairs. There are many choices
for this function, including expected squared error (Müller and
Parmigiani, 1995), expected prediction error (Sugiyama, 2006),
and mutual information between stimuli and model param-
eters (Paninski, 2005). The generic name for this strategy is
optimal experimental design or OED (Federov, 1972; Atkinson
and Donev, 1992; Cohn et al., 1996), and it is often stud-
ied in a Bayesian framework (MacKay, 1992; Chaloner and
Verdinelli, 1995). Recent theoretical and experimental work has
shown that such methods can potentially be fruitfully applied
in neuroscientific experiments (Paninski, 2005; Paninski et al.,
2007; Lewi et al., 2009, 2011; DiMattina and Zhang, 2011).
Not only can optimal experimental design make the estimation

of high-dimensional models practical (Lewi et al., 2009), but
can also make it tractable to estimate highly non-linear models
which cannot be readily identified from random “white noise”
data of the kind typically used in system identification experi-
ments (DiMattina and Zhang, 2010, 2011). We first discuss the
application of such methods in psychology and cognitive sci-
ence, and then discuss recent theoretical and experimental work
on applications of OED methods to sensory neurophysiology
experiments

ADAPTIVE STIMULUS OPTIMIZATION IN PSYCHOLOGY AND
COGNITIVE SCIENCE
Psychophysics has long utilized adaptive data collection, with the
classic example being the staircase method for threshold esti-
mation (Cornsweet, 1962). More recently, an adaptive Bayesian
approach to threshold estimation (QUEST) which chooses new
stimuli for each trial at the current Bayesian estimate of the
threshold was developed (Watson and Pelli, 1983), and sub-
sequent work extended this approach to permit simultaneous
estimation of both the threshold and slope of the psychometric
function (Snoeren and Puts, 1997). Another line of work applied
an information-theoretic approach to estimating the slope and
threshold parameters, where stimuli were chosen at each trial to
maximize the expected information gained about the slope and
threshold parameters (Kontsevich and Tyler, 1999). More sophis-
ticated methods of this kind have been utilized for psychometric
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functions defined on two-dimensional stimuli (Kujala and Lukka,
2006), with these procedures being applied for estimating contrast
sensitivity functions (Lesmes et al., 2010) and color sensitivity of
human observers (Kujala and Lukka, 2006). In addition to finding
widespread application in sensory psychophysics, adaptive meth-
ods have also been used more broadly in the cognitive sciences
(Wixted and Ebbesen, 1991; Rubin and Wenzel, 1996; Nosof-
sky and Zaki, 2002; Opfer and Siegler, 2007; Kujala et al., 2010;
McCullough et al., 2010).

GENERALIZED LINEAR MODELS AND BIOPHYSICAL MODELS
More recently, investigators in computational neuroscience
have demonstrated that adaptive information-theoretic sampling
where stimuli are chosen to maximize the expected informa-
tion gain between a stimulus and the model parameters can be
a highly effective means of estimating the parameters of sen-
sory processing models (Paninski, 2005; Paninski et al., 2007).
A fast information-theoretic algorithm has been developed for
the generalized linear model which applies a static non-linearity
to the output (Lewi et al., 2009). The generalized linear model
has been utilized in numerous studies (Simoncelli et al., 2004)
and enjoys a likelihood function with no local maxima (Panin-
ski, 2004). Their algorithm relied on a Gaussian approximation
to the posterior density, permitting fast recursive updates, with
the calculations for finding the optimal stimulus growing only as
the square of the stimulus space dimensionality. Numerical sim-
ulations demonstrated that their procedure was asymptotically
efficient, with the empirically computed variance of the poste-
rior density converging to the minimum theoretically possible
variance.

One issue which potentially affects studies of stimulus opti-
mization is neuronal adaptation due to the stimulus history
(Ulanovsky et al., 2003; Asari and Zador, 2009). In sensory neu-
rons, this may be manifested as the system actually changing its
underlying parameters which we seek to estimate as the experi-
ment progresses. However, the procedure developed by Lewi et al.
(2009) was demonstrated to be robust to parameter drift in numer-
ical simulations, suggesting the ability to compensate for changes
to the system brought about by adaptation effects. Furthermore,
their model also permits the estimation of a spike-history filter,
allowing neuronal response history to influence predictions to new
stimuli.

A further study by this group applied this algorithm to fit-
ting generalized linear models to avian auditory neurons probed
with conspecific song samples, and it was found that accurate esti-
mation could be obtained using vastly fewer samples when they
were chosen adaptively using the algorithm then when they were
chosen non-adaptively (Lewi et al., 2011). Although this proce-
dure has yet to be applied in real on-line experiments, it provides
experimenters working on a variety of systems with a powerful
tool for quickly characterizing neurons whose responses are well
described by generalized linear models (Chichilnisky, 2001) or
related models (Pillow et al., 2008).

More recently, this group has also applied optimal experimental
design to the cellular neuroscience problem of accurately estimat-
ing voltages from dendritic trees using measurements suffering
from low signal-to-noise ratio (Huggins and Paninski, 2012).

Using simulated compartmental models, these authors demon-
strated that by adaptively choosing observation locations which
minimize the expected squared error of the voltage measurement,
a substantial improvement in accuracy was obtained compared to
random sampling. This procedure is potentially of great exper-
imental usefulness because techniques like two-photon imaging
permit spatially complete observations of dendrites, but with low
signal-to-noise ratios (Djurisic et al., 2008; Canepari et al., 2010).

MULTIPLE LAYER NEURAL NETWORKS
Since many sensory neurons are non-linear (Young et al., 2005; Wu
et al., 2006), it is of interest to characterize neurons using various
non-linear models, including quadratic and bilinear models (Yu
and Young, 2000; Berkes and Wiskott, 2006; Ahrens et al., 2008a,b),
neural networks (Lau et al., 2002; Prenger et al., 2004; Cadieu et al.,
2007) and basis function networks (Poggio and Girosi, 1990). A
generalized linear model is also a non-linear model because it
employs a static non-linearity at the output stage. Although a
generalized linear model allows limited non-linearities, it enjoys
tractable and consistent estimation procedures without problems
of local minima (Paninski, 2004). Identifying more complex non-
linear models like hierarchical neural networks from physiological
data tends to be harder due to problems like local minima and
plateaus in the error surface (Amari et al., 2006; Cousseau et al.,
2008; Wei and Amari, 2008; Wei et al., 2008).

For studies aimed at estimating generalized linear models, the
use of a fixed white-noise stimulus set is often quite effective and is
theoretically well-justified (Chichilnisky, 2001; Paninski, 2004; Wu
et al., 2006). However, recent theoretical work suggests that using
fixed stimulus sets like white noise may be deeply problematic for
efforts to identify non-linear hierarchical network models due to
continuous parameter confounding (DiMattina and Zhang, 2010).
This problem is illustrated for a very simple non-linear neural net-
work model shown in Figure 4A. In this example, the goal is to
recover the parameters (w,v) of the network by performing max-
imum likelihood (ML) estimation given noisy stimulus–response
observations. When the input stimuli x only drive the hidden unit
over a region of its gain function which can be well approximated
by a power function (Figure 4B, top), the estimates obtained
by ML for different datasets lie scattered along the continuum
vwα = C, as one would expect for a power law gain function
g(u) = Auα (Figure 4C, top). (Here the constant C = vTwα

T, where
wT and vT are the true values of the input and output weights.)
In contrast, when the input stimuli x drive the hidden unit over a
full range of its gain so that the power law approximation is poor
(Figure 4B, bottom), the true parameters are accurately recovered
for different datasets (Figure 4C, bottom).

A hypothetical experiment which suffers from this problem is
illustrated in Figure 5. We see that when the network in Figure 5A
is probed with random stimuli (Figure 5B, right), the hidden unit
is driven over a limited range of its gain function which may be
well approximated by an exponential, so that the sigmoidal gain
(Figure 5C, black curve) may de facto be replaced by a new expo-
nential gain function g(u) = Aeαu (Figure 5C, red curve). With
this new gain, it follows that a continuum of different values of
the output weight v and bias w0 lying on the curve veαw0 = C
will yield models whose responses to the training data are
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FIGURE 4 | Example of continuous parameter confounding in a simple

non-linear neural network model. Adapted with permission from DiMattina
and Zhang (2010). (A) A simple three layer neural network whose input and
output weight parameters (w,v ) we wish to estimate from noisy
stimulus–response data. Noise is drawn from a Poisson distribution. (B) Top:
The input stimuli x ∈ [−0.5, 0.5] only drive the hidden unit over a limited
region of its gain function (black curve) which may be well approximated by a

power law function (red dashed line). Bottom: The input stimuli x ∈ [−2,2]
drive the hidden unit over a larger region of its gain function which is poorly
approximated by a power law function. (C) Top: When trained with sets of
stimuli like that in the top of Figure 4B, the estimates (black dots) lie scattered
along the curve predicted by the power law confounding theory. Bottom:
When trained with sets of stimuli like those in the bottom panel of Figure 4B,
the true parameter values (red triangle) are more reliably recovered.

indistinguishable and therefore multiple estimates of these param-
eters from different random training sets will lie scattered along
this curve (Figure 5D). (Here the constant C = vTeαw0T where
V T and w0T are the true values of the output weight and hidden
unit bias.)

Adaptive stimulus optimization methods like information-
theoretic sampling (Paninski, 2005) can in principle overcome
this problem of continuous parameter confounding, as we see
in Figure 5D where the correct network parameters are reliably
recovered when optimally designed stimuli (Figure 5B, left) are
used. This simple example suggests that adaptive stimulus opti-
mization may make it tractable to reliably recover the parameters
of complex hierarchical networks needed to model non-linear
neurons, whereas it is much harder to recover these networks using
standard stimulus sets like white noise.

Many previous studies in the statistics and machine learn-
ing literature have demonstrated that faster convergence and
smaller generalization error may be obtained when neural net-
works are trained adaptively using optimally designed stimuli
(Lindley, 1956; MacKay, 1992; Cohn et al., 1994). Recently,
we have developed a practical method for implementing the
information-theoretic stimulus optimization approach derived for
generalized linear models (Lewi et al., 2009) for arbitrary non-
linear models like hierarchical neural networks. Although this
method employs numerous approximations, it has been shown
in simulated experiments to be effective at recovering non-linear

neural networks having multiple hidden units, and is fast enough
to utilize in real experiments (Tam et al., 2011; Dekel, 2012;
Tam, 2012).

ADAPTIVE OPTIMIZATION FOR SENSORY MODEL
COMPARISON
Quite often the appropriate model for describing a sensory neu-
ron or perceptual quantity is unknown. Therefore, an important
experimental goal may be to discriminate between two or more
competing models. Mathematically, the optimization problem is
to iteratively find stimuli

x∗
n + 1 = arg max

x

U (C)
n (x), (7)

which optimize a model comparison utility function Un
(C)(x),

one choice of which may be the expected reduction in model space
entropy (Cavagnaro et al., 2010; DiMattina and Zhang, 2011). This
equation may be regarded as the optimal comparison counterpart
of the equation for optimal estimation (Eq. 6). We now briefly dis-
cuss recent studies making use of adaptive stimulus optimization
for model selection.

PSYCHOPHYSICAL MODEL COMPARISON
Although standard model comparison methods like the Bayesian
Information Criterion (BIC; Schwarz, 1978) or predictive
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FIGURE 5 | Stimuli which are adaptively optimized for accurate

parameter estimation can be more effective than random stimuli for

recovering non-linear models. Adapted with permission from DiMattina and
Zhang (2011). (A) A simple center-surround neural network consisting of a
narrowly integrating excitatory output unit (E-unit) which receives inhibitory
input from a broadly integrating interneuron (I-unit). (B) Examples of optimally
designed (left) and random (right) stimuli. Note that the optimally designed
stimuli exhibit complex correlated structure. (C) Random stimuli (green dots)
only drive the E-unit over a limited range of its gain function (black curve)

which may be well approximated by an exponential function (red
dashed line). This is due to inhibition from the I-unit, as can be seen
by setting v I = 0 (crosses). By contrast, optimally designed stimuli
(blue dots) drive the gain function over its full range. (D) Estimates
attained from training with random stimuli (green dots) exhibit continuous
parameter confounding between the output weight and bias, as predicted by
the exponential theory (black curve). In contrast, estimates attained from
optimally designed stimuli accurately recover the true parameters (red
triangle).

cross-validation may be applied post hoc (Vladusich et al., 2006;
Wu et al., 2006), numerous studies suggest that performing exper-
iments using stimuli optimized for model comparison may be far
more effective (Atkinson and Fedorov, 1975a,b). One method for
model comparison developed recently for psychophysical experi-
ments is known as MAximum Differentiation (MAD) competition
(Wang and Simoncelli, 2008). Given two perceptual models

which relate stimulus parameters to a perceptual quantity, this
method generates a pair of stimuli which maximizes/minimizes
the response of one model while holding the other model’s
response fixed. Next, this procedure is repeated with the role of
the two models reversed. Testing human subjects on the two pairs
of synthesized stimuli can determine which model is “better” in
the sense of telling us which model’s max/min pairs are simpler to
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discriminate. This procedure has been fruitfully applied to com-
paring image quality assessment models which aim to predict
human perception of image quality (Wang and Bovik, 2006)

An information-theoretic method for model comparison was
recently derived by Cavagnaro et al. (2010). Given a set of mod-
els with the i-th model having prior probability P0(i), stimuli are
chosen to maximize the mutual information between the stim-
ulus and the model index i by minimizing the expected model
space entropy in a manner directly analogous to information-
theoretic model estimation (Paninski, 2005), except that in this
case the unknown variable is a discrete model index i rather
than a continuous parameter value θ. This method was applied
to competing models of memory retention from the cognitive
science literature (Rubin et al., 1999) and was shown to permit
much more accurate discrimination than standard non-adaptive
methods.

NEURAL MODEL COMPARISON
In general, the correct parameters of competing sensory process-
ing models are not known beforehand. Therefore, it is of interest
to consider how to conduct experiments which estimate and
discriminate competing models. Typically, investigators in neu-
rophysiology and neuroimaging have applied model-comparison
techniques post hoc (David and Gallant, 2005; Vladusich et al.,
2006; Penny, 2012), particularly in the system identification litera-
ture (Prenger et al., 2004; David and Gallant, 2005; Wu et al., 2006;
Sharpee et al., 2008; Rabinowitz et al., 2012; Schinkel-Bielefeld
et al., 2012). However, a fundamental limitation with post hoc
analysis is that it is not possible to generate and test critical stimuli
which are optimized for model comparison, as this is only pos-
sible while the system is under observation. This limitation can
only be overcome by fitting multiple models to a sensory neuron
during the course of an experiment and then using the fitted mod-
els to generate and present critical stimuli which are optimized to
best discriminate the models. Although previous work has pre-
sented stimuli on-line to test or verify a single model (deCharms
et al., 1998; Touryan et al., 2002), very little work in single-unit in
vivo sensory neurophysiology has presented stimuli optimized for
model comparison in real-time (Tam et al., 2011).

A recent study considered a two-stage approach for combining
the goals of model estimation and comparison in neurophysiology
experiments, illustrated schematically in Figure 6A (DiMattina
and Zhang, 2011). In the first stage, stimuli are adaptively opti-
mized for parameter estimation, with the optimal stimulus for
each model being presented in turn. In the second stage, stim-
uli are generated adaptively in order to optimally discriminate
competing models making use of an information-theoretic crite-
rion (Cavagnaro et al., 2010) or a likelihood-based criterion. In
the special case of two models f1 (x, θ1), f2 (x, θ2) and Gaussian
response noise, it can be shown that under a likelihood criterion
the best stimulus for model discrimination is the stimulus which
maximizes the quantity

[
f1 (x, θ1) − f2 (x, θ2)

]2
, and furthermore

this stimulus will maximally increase the BIC in favor of the best
model (DiMattina and Zhang, 2011).

Figure 6 illustrates a numerical experiment making use of this
two-stage procedure for the problem of discriminating an additive
and multiplicative model of neural responses (Figure 6B), where

the additive model is assumed to be the true model. After the
estimation phase, the BIC does not have a strong preference for
either model, only being correct about half the time (Figure 6C).
However, after presenting 500 stimuli optimized for discriminat-
ing the additive and multiplicative model and applying the BIC
to all available data, the correct (additive) model is preferred for
24 of 25 Monte Carlo trials (red curve). As a control, presenting
additional stimuli optimized for model estimation only improves
final model selection moderately (blue curve), while presenting
random stimuli does not at all improve model selection perfor-
mance (green curve). This procedure has now been applied in
neurophysiology experiments to generate critical stimuli to dis-
tinguish between two competing models of spectral processing by
single neurons in the primate inferior colliculus (Tam et al., 2011;
Tam, 2012).

DISCUSSION
With increasing computer power, it is becoming practical for neu-
roscience experiments to utilize adaptive stimulus optimization
where stimuli are generated in real-time during the course of
the experiment (Benda et al., 2007; Newman et al., 2013). Vari-
ous experiments have utilized adaptive stimulus optimization in
order to break the “curse of dimensionality” and find the optimal
stimulus for a sensory neuron in spaces which are too large for
factorial exploration (O’Connor et al., 2005; Yamane et al., 2008).
However, simply characterizing the optimal stimulus for a sen-
sory neuron provides at best only a partial description of neural
coding (Olshausen and Field, 2005). Therefore, in addition to
helping to find the optimal stimulus, adaptive stimulus optimiza-
tion makes it possible to pursue engineering-inspired approaches
to sensory neurophysiology which may yield greater functional
insights, for instance finding stimulus ensembles maximizing
information between stimuli (Machens, 2002; Machens et al.,
2005) and neural responses or fitting and comparing multiple
non-linear models to neural responses (Lewi et al., 2009; DiMat-
tina and Zhang,2011). Table 1 summarizes the various closed-loop
stimulus optimization paradigms discussed in this review, and
Figure 7 schematically illustrates the closed-loop experimental
approach.

The vast majority of the work to date has applied closed-
loop methods to studying scalar firing rate responses measured
from single neurons. However, as closed-loop approaches are con-
tinuing to develop, and as new techniques like optical imaging
(Ohki et al., 2005; Bock et al., 2011) are making it increasingly
feasible to observe large numbers of neurons simultaneously, it is
of great interest for future investigations to apply these methods
to neural populations and to measurements beyond scalar firing
rate. Here we briefly discuss some possible directions for future
research.

While the notion of the optimal stimulus is well-defined for
single neurons, it is not well-defined for neural populations.
However, an alternative approach to stimulus optimization for
a population of neurons is to find the stimulus at which the pop-
ulation is best at discriminating nearby stimuli, as opposed to
the stimulus yielding the highest firing rate response. Indeed,
it has been suggested by a number of investigators that high-
slope regions of tuning curves, where nearby stimuli are best
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FIGURE 6 | Stimuli which are adaptively optimized for model

comparison can lead to more accurate model selection. Adapted with
permission from DiMattina and Zhang (2011). (A) A hypothetical two phase
procedure for estimating and comparing multiple competing models. During
the estimation (E) phase, stimuli are optimized in turn for estimating each
model. During the comparison (C) phase, stimuli are optimized for comparing
all of the models. (B) Two candidate models were fit to data generated by a
true additive model whose input weights (w1 and w2) were 12 × 12 Gabor

patches shown at the right. The two competing models differ only in their
method of integrating subunit activities (additive versus multiplicative). (C) At
the end of the estimation phase (“Start”), the BIC does not consistently
prefer either model. Presenting additional stimuli optimized for model
discrimination yields almost perfect model selection (red curve), while
presenting additional random stimuli (green curve), or stimuli optimized for
model estimation (blue curve) either does not improve or only somewhat
improves model selection.

discriminated, are much more important in sensory coding than
tuning curve peaks (Seung and Sompolinsky, 1993; Harper and
McAlpine, 2004; Butts and Goldman, 2006; Bonnasse-Gahot
and Nadal, 2008). Under reasonable assumptions of independent
Poisson responses, the one-dimensional stimulus x at which a
neural population can best discriminate nearby stimuli x + δx is
the stimulus which maximizes the Fisher information IF (x) =∑N

i = 1

[
f ′
i (x)

]2
/ fi (x), where fi(x) is the tuning curve of the

i-th neuron (Dayan et al., 2001). It is relatively straightforward to
extend this Fisher information formalism to higher dimensional
stimulus spaces (Zhang and Sejnowski, 1999; Johnson et al., 2001;
Bethge et al., 2002). Local approximation of the Fisher informa-
tion matrix has been used in previous work aimed at stimulus
optimization in a single neuron (Bandyopadhyay et al., 2007b),

and this technique could readily generalize to find the stimulus
which is best discriminated from nearby stimuli by a population
code.

Extension of the definition of iso-response surfaces (Gollisch
et al., 2002) to multiple neurons is relatively straightforward.
In particular, if we can view each neuron as implementing a
function f (x) on the stimulus space, then the region of stim-
ulus space which simultaneously satisfies multiple constraints
f1 (x) = c1, · · · , fN (x) = cN should simply be the (possibly
empty) intersection of the regions of stimulus space satisfying
each individual constraint. It would be interesting to extend the
maximally informative ensemble approach (Machens, 2002) to
multiple neurons as well. One potential difficulty is that the num-
ber of possible responses which one needs to measure to compute

Table 1 | Summary of various closed-loop stimulus optimization approaches utilized in sensory systems neuroscience.

Optimization goal Equation Example references

Firing rate optimization 1 Nelken et al. (1994); O’Connor et al. (2005), Yamane et al. (2008); Koelling and Nykamp (2012)

Iso-response surfaces 4 Gollisch et al. (2002); Bölinger and Gollisch (2012), Horwitz and Hass (2012)

Maximally informative stimulus ensembles 5 Machens (2002); Machens et al. (2005)

On-line model estimation 6 Lewi et al. (2009, 2011), DiMattina and Zhang (2011)

On-line model comparison 7 Cavagnaro et al. (2010); DiMattina and Zhang (2011)
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FIGURE 7 | A schematic summary of closed-loop approaches in sensory neurophysiology. Neural responses to previous stimuli are used in order to
choose new stimuli, by maximizing an objective function for accomplishing a desired experimental goal (see alsoTable 1).

the probability distribution p(y|x) increases exponentially with
the number of neurons in the population. Indeed, this exponen-
tial increase in the number of symbols with the dimensionality
of the response space is a well-known problem with applications
of information-theoretic methods in neuroscience (Rieke et al.,
1997). It would be desirable to develop more efficient computa-
tional techniques for studying neuronal populations in the future
(Yarrow et al., 2012).

In addition to considering neural populations, another direc-
tion for extending the closed-loop paradigm is to consider neural
responses more sophisticated than firing rates, for instance
the temporal patterns of neural responses (Optican and Rich-
mond, 1987; Victor and Purpura, 1996), first spike latency
(VanRullen et al., 2005; Gollisch and Meister, 2008), or syn-
chronous responses in neural populations (Brette, 2012). Since
a temporal pattern is a vector but not a scalar, one needs to
extract a scalar quantity from a temporal pattern in order to
define the optimal stimulus. For example, synchrony can be
defined as a scalar quantity (Steinmetz et al., 2000) and can in
principle be optimized over a stimulus space in the same man-
ner as firing rate. The iso-response paradigm (Gollisch et al.,
2002) would generalize quite well to both spike pattern and
synchrony measures. In this case of spike pattern, the goal
would be to find the equivalence class of all stimuli which
could elicit a desired pattern of spiking, and theoretical efforts
have demonstrated that it is possible to design stimuli to pro-
duce a desired spike pattern (Ahmadian et al., 2011). Similarly,

for iso-synchrony curves one could find equivalence classes of
stimuli yielding the same degree of synchrony in the popu-
lation by utilizing algorithms similar to those developed for
firing rate.

One of the most powerful applications of the closed-loop
paradigm is the ability to move sensory neurophysiology toward
a model-based paradigm, where experiments are performed with
the goal of identifying and comparing multiple competing non-
linear models (Paninski, 2005; Lewi et al., 2009; DiMattina and
Zhang, 2011; Tam et al., 2011). One advantage of model iden-
tification is that successful identification gives the experimenter
a variety of biologically important information about the neu-
ron or neuronal population “for free.” That is, once one has
determined an accurate model for a sensory neuron, the opti-
mal stimulus for maximizing firing rate, the iso-response surfaces,
or the stimulus ensemble maximizing information transmission
can be predicted from this model, and these predictions can
be tested experimentally. However, the model-based approach is
not without its difficulties, as many sensory neurons are poorly
described by tractable linear and quadratic models and may be
better described by more complex models like basis functions and
neural networks. Recent work has demonstrated that in principle,
adaptive stimulus optimization methods long utilized in machine
learning and psychophysics can be applied in sensory neurophysi-
ology for purposes of model estimation and comparison (Paninski,
2005; Lewi et al., 2009; DiMattina and Zhang, 2011). In particular,
our recent study has presented a practical two-stage experimental
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method for generating stimuli which are optimal for estimat-
ing the parameters of multiple non-linear models and then
generating stimuli on-line in order to critically compare the
predictions of different models (DiMattina and Zhang, 2011).
This method is presently being applied in ongoing auditory
neurophysiology studies (Tam et al., 2011; Dekel, 2012; Tam,

2012), and may be applicable to a broad variety of sensory
systems.
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