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Understanding how the brain implements social behavior on one hand, and how social
processes feedback on the brain to promote fine-tuning of behavioral output according
to changes in the social environment is a major challenge in contemporary neuroscience.
A critical step to take this challenge successfully is finding the appropriate level of analysis
when relating social to biological phenomena. Given the enormous complexity of both the
neural networks of the brain and social systems, the use of a cognitive level of analysis (in an
information processing perspective) is proposed here as an explanatory interface between
brain and behavior. A conceptual framework for a cognitive approach to comparative social
neuroscience is proposed, consisting of the following steps to be taken across different
species with varying social systems: (1) identification of the functional building blocks
of social skills; (2) identification of the cognitive mechanisms underlying the previously
identified social skills; and (3) mapping these information processing mechanisms onto
the brain. Teleost fish are presented here as a group of choice to develop this approach,
given the diversity of social systems present in closely related species that allows for
planned phylogenetic comparisons, and the availability of neurogenetic tools that allows
the visualization and manipulation of selected neural circuits in model species such as the
zebrafish. Finally, the state-of-the art of zebrafish social cognition and of the tools available
to map social cognitive abilities to neural circuits in zebrafish are reviewed.
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INTRODUCTION: A COGNITIVE APPROACH TO COMPARATIVE
SOCIAL NEUROSCIENCE
In social species animals interact frequently with their conspecifics
and have to adjust the expression of their social behavior according
to previous social experience and to social context. This behavioral
flexibility in the social domain (aka social competence; Taborsky
and Oliveira, 2012) allows the animal to navigate daily changes
in the social environment and should be viewed as an adaptive
performance trait that impacts the Darwinian fitness of the ani-
mal, for example by allowing it to avoid getting involved in costly
social interactions or being ejected from its social group (Oliveira,
2009, 2012). Understanding social competence at the proximate
level is a major challenge in contemporary neuroscience. The new
field of social neuroscience has emerged in the past two decades
in an attempt to understand how biological systems in general,
and the brain in particular, implement social behavior on one
hand, and how social processes feedback on biological mecha-
nisms and the brain, on the other (Cacioppo and Decety, 2011).
One major challenge in this new field is finding the appropri-
ate level of analysis when relating social to biological phenomena.
Given the enormous complexity of both the neural networks of the
brain and social systems, mapping adaptive social behaviors in the
real world onto putative underlying neural circuits in the brain
is a daunting task (Adolphs, 2010). One promising approach to
this challenge is to use the cognitive level of analysis as an interface
level of explanation between brain and behavior, which enables the

development of manageable theories of social behavior that can
generate testable predictions of observable behavior. Cognition is
used here in an information processing perspective, that is as a
set of neuronal processes concerned with the acquisition, reten-
tion, and use of information, that enables the animal to integrate
input information with stored information, when making ecolog-
ically relevant decisions (Shettleworth, 2001; Dukas, 2004). These
encompass a wide array of cognitive processes such as: perception,
learning, memory, attention, and decision making. It should be
stressed that the use of the term cognition as proposed here is
neither in opposition to association learning explanations of ani-
mal behavior in the associative vs. cognitive debate (e.g., Byrne
and Bates, 2006; Heyes, 2012a), nor does it equate with intel-
ligence, intentionality or consciousness, as sometimes suggested
in anthropomorphic accounts of animal behavior (e.g., Ristau,
1991).

Arguably, it has been proposed that the mechanisms controlling
the organism interactions with other behavioral agents (i.e., social
interactions) differ from those involved in the interactions of the
organism with its physical environment, and therefore the term
social cognition has been created to refer specifically to cognitive
processes involved in social interactions (e.g., Zuberbuhler and
Byrne, 2006). Social phenomena that have been examined under
the label of social cognition include recognition of individuals
or social categories, social partner preferences, development and
management of social relationships (attachment, reconciliation,
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alliances), triadic relationships (requesting transitive inference),
learning new skills from conspecifics (social learning), social
coordination, manipulation, and deception, and theory of mind
among many others (Jensen et al., 2011). Most research on
comparative social cognition has focused mainly on declara-
tive human-like cognitive abilities apparently needed to navigate
highly complex social systems such as those of primates (e.g., “the-
ory of mind,” Premack and Woodruff, 1978; Penn and Povinelli,
2007; “Machiavellian intelligence,”Whiten and Byrne, 1988, 1997),
and not so much on the basic information processing mecha-
nisms that make up the building blocks of the behavioral control
systems involved in social behavior irrespective of its complex-
ity (Barrett et al., 2007). This approach is limiting since highly
complex social systems do not necessarily request highly com-
plex individual cognitive abilities, as can be illustrated by insect
societies or by elaborated mutualistic relationships in cleaner
fish (Chittka and Niven, 2009; Bshary, 2011), and as a conse-
quence most “simple-minded” species have not been considered
in comparative studies of social cognition. Moreover, function-
ally similar social phenomena may rely on different underlying
mechanisms in different species (e.g., different cognitive mech-
anisms underlying transitive inference, see below for details).
Therefore, a more productive approach to comparative social cog-
nition would be the adoption of a rationale that can be applied
universally across species with varying degrees of complexity of
their social structures and that takes into account the underlying
mechanisms.

In this paper, I propose a conceptual framework for com-
parative social neuroscience based on: (1) the identification
of the functional building blocks of social behavior and the
underlying cognitive mechanisms across different species with
varying social systems, and (2) how these information pro-
cessing mechanisms are inbuilt in the brain, which is viewed
as an information processing organ. Following Krogh’s princi-
ple, that “for many problems there is an animal on which it
can be most conveniently studied” (Krebs, 1975), teleost fish
are presented here as a golden model to develop this approach
given the diversity of social systems present in closely related
species that allows for planned phylogenetic comparisons of cog-
nitive abilities (e.g., MacLean et al., 2012), and the availability
of genetic tools that allows the visualization and manipulation
of selected neural circuits in model species such as the zebrafish
(e.g., Muto and Kawakami, 2011).

COGNITIVE MODULES OF SOCIAL COMPETENCE
The first step of the conceptual framework proposed here is to
identify the information processing problems posed by the social
domain of the environment in order to identify the cognitive abili-
ties underlying social skills. For instance, what are the mechanisms
required for an individual to tolerate the presence of conspecifics,
to recognized different classes of conspecifics and assess their
behavior, to use public information available in social environ-
ments and to choose the appropriate responses from the available
behavioral repertoire? Once we identify these building blocks of
social competence we can investigate their phylogenetic distribu-
tion and how they map onto neural networks underlying behavior.
The putative building blocks of social competence are identified

and discussed below (see Table 1 and Figure 1 for summary and
selected examples in teleost fish, respectively).

SOCIAL VALUE AND SOCIAL PREFERENCES
Approach/ avoidance is a basic behavioral mechanism present in all
animals. Given that an a priori condition for social groups to form
is that individuals show a predisposition to approach conspecifics
and tolerate their presence, this prosocial tendency has to over-
come the one for social withdrawal. At the cognitive level prosocial
behavior relies on a value system that attributes valence (on a
negative–positive continuum) and salience (on a low to high con-
tinuum) to social agents (Paul et al., 2005), such that conspecifics
tend to have reward value (i.e., high salience, positive valence;
Thiel et al., 2008) hence eliciting approach responses. However,
different conspecifics may pose different challenges/opportunities,
hence not all group members are expected to have the same social
value. Some might be competitors, others potential partners or
mates. These differences in reward value of different conspecifics
lead to social preferences (e.g., mate choice preferences; Ryan et al.,
2007), which in turn may lead to social bonding, when individuals
establish long-lasting relationships.

COGNITIVE APPRAISAL
Given the wide array of social signals conveyed in multiple sen-
sory modalities it is postulated that a general appraisal mechanism
that assesses the valence and salience of social stimuli across dif-
ferent sensory modalities and functional domains must operate.
According to this view the evaluation of valence and salience of
social information is not just a result of direct effects of percep-
tual information (e.g., image of conspecific elicits approach), but
rather a function of what that perceptual information means to
the organism at that moment in time (e.g., image of conspecific
is appraised and its valence elicits appropriate response, such as:
if dominant avoid; Paul et al., 2005; Mendl et al., 2010). This sub-
jective value of social stimuli is assessed through a set of stimulus
evaluation checks which include intrinsic valence of the stimuli,
novelty (as defined by suddenness, familiarity, and predictabil-
ity), prediction error and controllability (Paul et al., 2005; Mendl
et al., 2010). Despite the fact that some of these checks have been
described in animals (e.g., predictability in fish; Galhardo et al.,
2011), a systematic study of stimulus evaluation checks in ani-
mals is still lacking. Cognitive appraisal classifies social stimuli in
terms of their valence, salience and the organism capacity for con-
trol, therefore decoupling stimulus and response and allowing the
animal to give a flexible response.

SOCIAL RECOGNITION AND MEMORY
For the expression of both prosocial behavior and social prefer-
ences individuals need to discriminate between classes of social
agents, namely conspecifics from heterospecifics and between
conspecifics with different social valences. Different forms of
social recognition might occur, from individual recognition, where
individuals are recognized by unique cues (Tibbetts and Dale,
2007), to the recognition of social classes of individuals, such
as kin (Hepper, 1986) or social rank conveyed by status badges
(Johnstone and Norris, 1993). Individual recognition is expected
to evolve in semi-permanent groups where individuals engage
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Table 1 | Social skills, their putative underlying cognitive mechanisms and selected examples of their occurrence in teleost fish.

Social skill Cognitive mechanisms* Species Reference

Prosociality

social reward Innate response; Selective attention Zebrafish, Danio rerio Al-Imari and Gerlai (2008)

Social preferences

Shoal mate preference

Mate choice

Pair bond

discrimination learning

discrimination learning

recognition learning and social memory

Zebrafish, Danio rerio

Peacock blenny, Salaria pavo

African cichlid, Tropheus moorii

Engeszer et al. (2007)

Fagundes et al. (2007)

Egger et al. (2006)

Cognitive appraisal

Predictability S-S learning Mozambique tilapia, Oreochromis

mossambicus

Galhardo et al. (2011)

Social recognition and memory

Individual recognition

Kin recognition

Social status

Familiarity

Single stimulus learning + long-term

memory

Cleaner wrasse, Labroides dimidiatus

Zebrafish, Danio rerio

Mozambique tilapia, Oreochromis

mossambicus

Tebbich et al. (2002)

Gerlach and Lysiak (2006)

Barata et al. (2007)

Social inference

Social eavesdropping

Transitive inference

Audience effects

Deception

Selective attention, S–R learning

Associative strength, ordinal representation

Selective attention, S–R learning

Selective attention, S–R learning

Siamese fighting fish, Betta splendens

African cichlid, Astatotilapia burtoni

Siamese fighting fish, Betta splendens

Cleaner wrasse, Labroides dimidiatus

Oliveira et al. (1998)

Grosenick et al. (2007)

Doutrelant et al. (2001)

Pinto et al. (2011)

Social learning

Stimulus enhancement

Observational conditioning

Copying

Single stimulus learning

S–S learning

S–R learning

Zebrafish, Danio rerio

Zebrafish, Danio rerio

Sailfin molly, Poecilia latipinna

Lindeyer and Reader (2010)

Suboski et al. (1990)

Witte and Ryan (2002)

Intertemporal choice

Spatial discounting Reversal learning Guppies, Poecilia reticulata Muhlhoff et al. (2011)

*Following the terminology used by Shettleworth (2010)

in repeated interactions, since it reduces the costs associated
with agonistic interactions and it stabilizes dominance hierarchies
(Barnard and Burk, 1979; Pagel and Dawkins, 1997). Any kind
of social recognition requires memory for conspecifics so that the
acquired discrimination of different individuals or classes of indi-
viduals is carried forward in time in a computational way that
is accessible for retrieval by the animal at a future time. There
is some evidence that social memory is independent of asocial
memory. For example, AVP V1b receptor knockout mice have
impaired memory for social odors, despite having normal olfac-
tory ability and other memory functions (e.g., spatial memory;
Wersinger et al., 2004).

SOCIAL INFERENCE
In a social group, individuals may gain information by observing
social interactions between third parties, thus avoiding the poten-
tial costs involved in direct agonistic interactions (McGregor and
Peake, 2000). Bystanders may use the information about interact-
ing partners in order to adjust their future behavior in subsequent
interactions with the observed individuals (social eavesdrop-
ping; Peake, 2005). Similarly, the presence of bystanders may
influence current behavior of interacting individuals that will try
to manipulate the information available to bystanders (audience

effects; Matos and Schlupp, 2005). In social groups information
obtained from observing relationships between third parties (e.g.,
A > B and B > C) can be used to infer unknown relationships
among group members (e.g., A > C; Paz-Y-Miño et al., 2004;
Grosenick et al., 2007). Therefore, together with individual recog-
nition, transitive inference can stabilize hierarchies in groups with
repeated interactions among individuals, since the relative domi-
nance of unfamiliar individuals can be estimated from observing
these interacting with familiar ones. Thus, transitive inference
(i.e., if A > B and B > C then A > C) is a skill that is expected
to develop with increasing social complexity. Indeed, in two
independent comparative studies of transitive inference abilities
in closely related species differing in sociality, it was found in
both cases that the more highly social of the two species per-
formed better in the transitive inference task (corvids: Bond et al.,
2003; prosimian primates: MacLean et al., 2008). It should be
pointed out that transitive inference can be achieved using dif-
ferent cognitive mechanisms (transfer of associative strength, i.e.,
value transfer vs. representation of ordinal list), hence it does not
necessarily require high-order reasoning abilities (Von Fersen et al.,
1991; Allen, 2006); see also (De Lillo et al., 2001) for a description
of neural network that solves a transitive inference task using a
simple error-correcting rule.
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FIGURE 1 | Examples of two complex social abilities in teleost fish.

(A) Transitive inference in a cichlid fish (Astatotilapia burtoni ; left panel)
experimental set-up for transitive inference training; the bystander male is
placed in the middle compartment and allowed to observe a sequence of
paired fights among neighboring conspecifics; in each fight the scheduled
loser male is placed in the territory of the scheduled winner (e.g., A wins
over B), so that the following sequence of fights is produced: A > B, B > C,
C > D, D > E; in order to test for transitive inference of social dominance
focal males were given a preference test between the pairs AE and BD
(where A > E and B > D; right panel) focal males prefer to associate with the
lower ranking male from each dyad both in familiar (filled bars) and in novel
contexts (open bars), suggesting tha males are able to infer the relative

rankings (i.e., A > E and B > D) from the observed dominance hierarchy
A > B > C > D > E (reproduced with permission from Grosenick et al., 2007).
(B) Spatial discounting in guppies (Poecilia reticulata; upper panel)
experimental set-up for the study of spatial discounting; subjects
were given a choice between two vs. six items (food items in the food-
reward condition and conspecifics in the social-reward condition); the six
items (food or conspecifics) were placed at increasing distances (20, 40,
60, 80, 100, 120cm), whereas the two items were always located at
20 cm from the starting place; (lower panel) in choice tests subjects
show a preference for the larger reward that decreases with the
distance to the larger reward (reproduced with permission from
Muhlhoff et al., 2011).

SOCIAL LEARNING
Public information is readily available in social networks, which
allows individuals to acquire adaptive information produced by
others without paying the costs typically associated with exploring
the environment to learn about its contingencies (e.g., Burns et al.,
2011; Mery, 2013). Extracting potentially useful information from

observing or interacting with other behavioral agents or their
products (aka social learning; Heyes, 1994; Galef and Laland,
2005) has been considered to rely on social-domain specific
cognitive modules and in learning mechanisms that are distinct
from those used in individual learning by trial and error. How-
ever, recent research challenges these assumptions and it has
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been proposed that asocial and social learning share the same
basic learning mechanisms, namely single stimulus learning (e.g.,
habituation and sensitization vs. local/stimulus enhancement),
stimulus–stimulus learning (Pavlovian conditioning vs. observa-
tional conditioning), or stimulus–response learning (instrumental
learning vs. copying/ imitation; Heyes, 2012b). For example, it
has been pointed out that prediction error (i.e., the difference
between predicted and obtained outcomes), that is considered to
be the learning signal asocial associative learning, is not directly
experienced in social learning. However, a new form of obser-
vational prediction error has been proposed recently that acts as
a learning signal based on externally observed information (e.g.,
Burke et al., 2010). Social learning is usually use strategically by
animals depending on who and when rules, so that they optimize
the trade-off between the accuracy and the costs of personal vs.
social information (Kendal et al., 2009).

INTERTEMPORAL CHOICE
In order to maintain social relationships individuals have some-
times to choose a smaller immediate reward to guarantee larger
future benefits. This trade-off between two or more pay-offs
at different points in time is called temporal discounting. For
example, in the cleaning mutualism between the cleaner wrasse
(Labroides dimidiatus) and its reef fish clients, cleaners feed
against their preference (ectoparasites instead clients’ mucus)
in order to secure the possibility for numerous future inter-
actions (Grutter and Bshary, 2003), hence exhibiting temporal
discounting.

TRAFFIC RULES
Group-living animals need to synchronize and coordinate their
behavior in order to maintain the functionality of the social group
(e.g., in collective motion a group member needs to move with
the group in order to keep the benefits of group membership
such as predator avoidance). This behavioral synchronization and
coordination of individuals within social groups has lead to the
emergence of collective patterns that can be impressive, such as the
aerial movements of bird flocks, or the spatial behavior of insect
swarms, fish schools, ungulate herds, and even human crowds. In
most of these cases complex collective patterns can be explained
by individual decision-making rules and by the way information
flows between group members (Sumpter, 2006; Couzin, 2009).
For example, fish schools can be modeled using individual-based
models that follow as few as three rules: avoid individuals that are
too close, align with individuals at intermediate distance, and move
toward those further away (Parrish and Turchin, 1997; Parrish
and Viscido, 2005). Therefore, simple heuristics at the level of
the individual may explain the emergence of self-organized social
patterns without the need of complex cognitive abilities. This does
not mean, however, that the cognitive abilities mentioned above
are not needed for optimized social behavior in varying social
environments.

More complex social systems are predicted to impose a higher
cognitive demand, hence recruiting quantitatively more resources
of the abovementioned social skills or promoting qualitative
progress of new social skills (e.g., “theory of mind” in humans and
questionably in non-human primates; Byrne and Bates, 2010).

Evidence supporting this view came from comparative work in
primates that established an association between brain size (in
particular neocortex), social complexity (as measured by social
group size or by occurrence of long-term relationships), and
social skills (as a proxy of cognitive complexity), which has been
interpreted as evidence for positive selection on executive brain
size driven by social complexity (aka “Social brain hypothesis;”
Dunbar, 1998; Reader and Laland, 2002; Byrne and Corp, 2004;
Dunbar and Shultz, 2007). Although originally developed in pri-
mates (Dunbar, 1992; Barton, 1996), the social brain hypothesis
has been extended to other taxa, including non-primate mammals
(e.g., Perez-Barberia et al., 2007), birds (e.g., Burish et al., 2004;
Emery et al., 2007), fish (e.g., Pollen et al., 2007; Gonzalez-Voyer
et al., 2009) and insects, on which the relationship between social-
ity and a brain area size was first described (see review in Lihoreau
et al., 2012). However, it has been pointed out that apparently
complex social skills may require little information-processing
capabilities (Chittka and Niven, 2009) and that even qualitative
enhancements in information-processing behind behavioral inno-
vations may be achieved with minor changes in the connectivity
of neural networks (see below). Therefore, future research on
the co-evolution of brain and social cognition/behavior should
move beyond comparative analyses of brain size and focus on
unraveling the neural circuitry underlying specific social cognitive
abilities.

FUNCTIONAL ARCHITECTURE OF THE SOCIAL BRAIN
The second step of the proposed conceptual framework is to map
the cognitive processes involved in social competence onto the
brain. There is ample evidence indicating that complex cognitive
functions are associated with distributed brain networks, rather
than with single brain regions, such that their behavioral mani-
festations are better reflected by the overall pattern of activation
across the different loci of the network than by the activity of
any of the single nodes (McIntosh, 2000; Sporns, 2010). These
networks are also dynamic so that each node (i.e., brain region)
may participate in multiple cognitive functions by rapid functional
connectivity reconfigurations (Sporns, 2010). The combination
of functional specialization in domain-specific modules with the
integration at the neural network level provides coherence to men-
tal states and to behavioral (motor) decision making, allowing
for the expression of complex and flexible behavior. Each func-
tional network may exhibit a variety of states, as defined by the
configuration of activated nodes, each of which expressing the
network encoded knowledge regarding a specific input. The exis-
tence of social domain-specific modules within these networks
has been demonstrated both at the sensory and central levels
as can be illustrated by the parallel stream of social odor pro-
cessing by the mammalian vomeronasal system relative to asocial
odors processed by the main olfactory system (Døving and Trotier,
1998), or by the specialized face recognition areas in the brains
of humans, macaques (Macaca mulatta) and sheep (Kendrick
and Baldwin, 1987; Kanwisher and Yovel, 2006; Tsao et al., 2006,
2008).

Recently, the occurrence of an evolutionary conserved social
decision-making network in vertebrates has been proposed, based
on conserved patterns of expression of developmental genes and
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neurochemical systems in the telencephalon (O’Connell and Hof-
mann, 2011, 2012). This vertebrate social decision-making net-
work would be composed of two interconnected sister networks:
the basal forebrain reward system and the social behavior net-
work (sensu; Goodson, 2005). The reward system would provide
value information to other domain-specific modules in the net-
work so that the valence and salience of social stimuli can be
integrated in social decision-making, allowing for the reinforce-
ment of adaptive behaviors through natural rewards (Kelley and
Berridge, 2002). The social behavior network would be involved in
the regulation of multiple forms of social behavior and includes the
extended medial amygdala, the lateral septum, the preoptic area,
the anterior hypothalamus, the ventromedial hypothalamus, and
the periaqueductal gray in mammals and their homologs in non-
mammals (Newman, 1999; Goodson, 2005; Goodson and Kabelik,
2009; O’Connell and Hofmann, 2011; see Figure 2). Functional
evidence for the presence of the social behavior network is diffi-
cult to obtain since it requires the simultaneous recording of neural
activity in multiple brain regions. Given the difficulty of obtain-
ing large-scale electrophysiological recordings indirect measures
of neural activity, such as the expression of immediate early genes
(e.g., c-fos, egr-1) or the activity of cytochrome oxidase, in relation
to the expression of different social behaviors, have been used to
test this hypothesis. In recent years this type of studies has been
accumulating evidence in favor of the social brain network hypoth-
esis. In the African cichlid Astatotilapia burtoni subordinate males
given the opportunity to rise in social rank show higher expres-
sion of immediate early genes in all nodes of the social behavior
network when compared either to stable subordinate or domi-
nant males (Maruska et al., 2013). In the green anole lizard (Anolis
carolinensis) repeated exposure to video-playbacks of aggressive
displays of conspecific males induced changes in functional con-
nectivity within the network (Yang and Wilczynski, 2007). And in
estrildid finches, different nodes of the network are differentially
activated in response to the presence of a conspecific, in a way
that is related to inter-specific differences in sociality (Goodson
et al., 2005). Despite this evidence for the association of this brain
network with social behavior, a systematic approach to the study
of the relationship between specific social phenomena (e.g., indi-
vidual recognition, social inference, etc.) and network state, that
would potentially allow the identification of specific social cog-
nitive modules and their integration, is still missing. So far the
study of these processes in relation to large-scale brain activity has
been mainly restricted to humans and other primates for which
functional brain imaging techniques (e.g., MRI, PET) are available
(e.g., Sallet et al., 2011; Kumaran et al., 2012). However, given the
unique role of the neocortex in human and non-human primate
social cognition the relevance of this type of data for testing the
wider social brain network hypothesis outlined above has been
limited (Adolphs, 2009).

At the evolutionary level the combination of functional seg-
regation and integration in neural networks also provides a
simple explanation for qualitative enhancements in information-
processing leading to behavioral innovations with gains in flex-
ibility, that may coexist with ancestral stereotyped responses.
For example, in honeybees vertical functional modules, such
as those specialized in processing conspecific odors, provide

rapid and stereotyped responses, while central integration across
multiple interconnected domain-specific modules provides novel
and adaptive solutions (Menzel and Giurfa, 2001).

Finally, it must be stressed that evidence supporting the occur-
rence of this putative social behavior network does not mean that
that the nodes of this network are exclusively involved in social
decision-making. On the contrary, it is expected each node to be
shared by multiple brain networks (e.g., stress and social behavior
networks).

TELEOSTS AS MODELS FOR COMPARATIVE SOCIAL
COGNITION
A successful comparative research program in cognitive social
neuroscience has two key requirements: (1) the possibility for
cladistic research on the evolution of social behavior and cog-
nition aiming to uncover how pre-existing cognitive modules may
evolve quantitatively (e.g., increase in memory storage capacity)
and how networks may be reconfigured leading to the emer-
gence of qualitatively new solutions to adaptive problems; and
(2) the possibility for reductionist research on the mapping of
cognitive function into neural networks, which requires model
organisms with appropriate social behavior and with an avail-
able “tool box” for the analysis of neural circuits. Therefore, the
combination of comparative behavioral work on selected species
in naturalistic settings covering the expected diversity in cogni-
tive abilities with neuroethological research on a phylogenetically
related model organism is a promising approach. Teleost fish fulfill
both requirements and therefore they offer an excellent opportu-
nity to fulfill such a research program on comparative cognitive
social neuroscience.

First, they offer a unique possibility for planned phylogenetic
comparisons on social skills and underlying cognitive modules.
With over 29,000 species described so far, teleost fish are the most
diverse of the vertebrate taxa, and this diversity also translates
into a wide variation within closely related groups of species in
modes of social organization (e.g., variation in mating systems
and parental care type in African cichlids, Machado et al., 2009).
Fish also excel in social plasticity, as can be illustrated by the pro-
found behavioral and phenotypic changes induced by the social
environment, which ranges from fish of different social status
displaying different neurobehavioral profiles to socially driven sex-
change (Godwin, 2010; Fernald, 2012). Complex social behavior
is also present among teleost fish, as is the case of transitive infer-
ence shown by cichlid fish (Grosenick et al., 2007), or strategic
behavior, including deception, punishment, reconciliation, part-
ner choice, manipulation, and social prestige, displayed by the
obligatory cleaning wrasse (Labroides dimidiatus) on the context
of cleaning mutualism (Bshary, 2011). So complex forms of social
behavior are present in fish and they offer ample opportunity for
comparative work both at the inter- and intra-specific levels.

Second, a number of model organisms have been developed
among teleost fish (e.g., zebrafish, medaka) for which neurobi-
ological and genetic tools are becoming increasingly available.
Among the current teleost model organisms zebrafish offers the
best conditions for research in social neuroscience due to a com-
bination of relevant social behavior with availability of relevant
tools for studying brain function in relation to behavior.
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FIGURE 2 |The brain social behavior network (BSBN) presents different

activation states associated with the expression of different social

behaviors both at the intra- (A) and interspecific level (B). (A) Pattern of
activation of the BSBN in the green anole lizard (Anolis carolinensis), as
measured by the activity of cytochrome oxidase (μmol/min/g tissue), elicited
by the exposure to videoplaybacks of an aggressive display, a non-social
stimulus (moving balls) or no stimulation (adapted from Yang and Wilczynski,
2007). (B) Divergent patterns of activation of the BSBN, as measured by
the expression of the immediate early gene c-fos (arbitrary units), elicited

by the exposure to a conspecific in closely related songbird species with
divergent social systems: territorial (violet-eared waxbill, Uraeginthus
granatina), gregarious (Angolan blue waxbill, Uraeginthus angolensis),
highly colonial species (zebra finch, Taeniopygia guttata). Note the
higher activation of EmA, AH, VMH, and LS in the territorial species
(adapted from Goodson et al., 2005). EmA, extended medial
amygdala; LS, lateral septum; PAG, periaqueductal gray; VMH,
ventromedial hypothalamus; AH, anterior hypothalamus; POA,
pre-optic area.

SOCIAL ZEBRAFISH
Zebrafish are highly social animals that live in groups with
structured social relationships including shoaling, dominance
hierarchies, and territoriality (Spence et al., 2008; Spence, 2011).
Furthermore, social behavior in zebrafish shows considerable flex-
ibility as recently shown by the occurrence of acute winner and
loser effects (i.e., winner/loser effects; Oliveira et al., 2011), where
short-term social interactions are effective in inducing changes
in social behavior that are paralleled by massive changes in the
profile of gene expression in the brain (Oliveira et al., unpub-
lished data). This richness and flexibility of social behavior predicts
that at least some of the social cognitive modules discussed above
must be present in zebrafish. Below the available evidence for the
occurrence of some of these modules in zebrafish will be discussed.

SOCIAL VALUE IN ZEBRAFISH
The sight of conspecifics has rewarding value in zebrafish and can
be used as a reinforcer in an associative learning task (Al-Imari
and Gerlai, 2008). Given the rewarding value of conspecifics it
is not surprising that zebrafish form aggregations (shoals) from
early in development and that shoaling behavior, as measured
by the cohesion of the social aggregation (i.e., distance between
each pair of shoal members), increases with age (Engeszer et al.,
2007; Buske and Gerlai, 2011). Shoal cohesion varies with social
context, increasing in the presence of a predator and decreasing
during feeding, which is coherent with the function of shoals in
reducing predation risk and enhancing foraging efficiency (Miller
and Gerlai, 2007). The maturation of shoaling during develop-
ment is paralleled by an increase in whole brain dopaminergic
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and serotonergic activity (Buske and Gerlai, 2012). However,
the exposure to conspecific images only induces an increase in
brain dopamine, but not in serotonin levels, suggesting a spe-
cific involvement of the dopaminergic system in social reward in
zebrafish (Saif et al., 2013). This result is in agreement with the well
established role of dopamine in the reward circuitry of mammals
(Schultz, 2010). However, in anamniotes a midbrain dopaminergic
population similar to the ventral tegmental area (VTA), that plays
a key role in the mammalian mesolimbic reward system, is miss-
ing (Smeets et al., 2000), and the identification of a homologous
dopamine reward circuit in fish has remained elusive for many
years. The identification of dopaminergic cell groups in the ventral
diencephalon projecting to the subpallium (Rink and Wullimann,
2001, 2002), raised the hypothesis that this ascending dopaminer-
gic pathway could be homologous to the mammalian mesostriatal
pathway. However, recent data on the expression of developmental
factors in larval zebrafish made clear that the ventral diencephalic
dopaminergic neurons, that have ascending projections to the
telencephalon (i.e., dopaminergic groups DC2 and DC4), are
homologous to the A11 mammalian diencephalic dopaminer-
gic cell group (Lohr et al., 2009), rather than to the midbrain
mammalian dopaminergic group (i.e., A10). Morever, a detailed
projectome of the dopaminergic circuitry in zebrafish showed that
most subpallial dopaminergic inputs originate in a local subpal-
lial system that also connects to the ventral telencephalon (Tay
et al., 2011). In summary, a the ventral diencephalic-subpallial
dopamine system has been characterize in zebrafish that is a good
candidate for the dopamine reward system in fish. However, it
cannot be seen as homologous to the mammalian dopaminer-
gic mesolimbic pathway, which apparently emerged later in the
evolution of dopaminergic modulatory systems (Yamamoto and
Vernier, 2011).

SOCIAL PREFERENCES IN ZEBRAFISH
Although conspecifics act as social rewards zebrafish are not
equally attracted to all conspecifics, exhibiting shoaling pref-
erences that emerge during the juvenile phase (Engeszer et al.,
2007). These shoaling preferences are visually mediated, so that
when given a choice between shoal mates with different col-
oration patterns, individuals prefer to shoal with those sharing
the same coloration pattern as the fish with whom they were
raised (Engeszer et al., 2007). Once established shoaling prefer-
ence remains stable and it is not reversed by changing their social
environment (Engeszer et al., 2007). In accordance to this finding,
once adults wild type zebrafish do not exhibit a shoaling preference
based on visual cues for different phenotypic variants (e.g., leop-
ard danios; Spence and Smith, 2007); transgenic red fluorescent
Glofish (Snekser et al., 2006). Other characteristics of the shoal
than the phenotype of shoal mates are also relevant for the expres-
sion of shoaling preferences in zebrafish, that tend to prefer larger
and more active shoals (Pritchard et al., 2001; Ruhl and McRobert,
2005). In mammals social preferences and social bonding are
known to be moderated by oxytocin and arginine-vasopressin
(Donaldson andYoung,2008). Interestingly, it has been shown that
their homologs in fish, isotocin and arginine-vasotocin, respec-
tively, also regulate social preference in zebrafish (Braida et al.,
2012), suggesting a conserved mechanism for prosocial behavior

involving these two neuropeptides. Social preferences can also
be expressed in the sexual context, as mate choice preferences
according to which individuals do not mate randomly but pre-
fer males with specific characteristics (Spence and Smith, 2006).
Female mating preferences for larger males have been described in
zebrafish (Pyron, 2003). Given that fin size can increase perceived
body size the preference of female zebrafish for longer fins as also
been tested but yielded negative results (Kitevski and Pyron, 2003;
Gumm et al., 2009).

SOCIAL RECOGNITION IN ZEBRAFISH
As mentioned before a prerequisite for individuals to express social
preferences is the ability to recognize individuals or classes of indi-
viduals. Zebrafish use both visual and olfactory cues in social
recognition. Studies on zebrafish reared in social isolation and on
cross-reared intra-specific phenotypes showed that visually medi-
ated species recognition is based on a mechanism of phenotype
matching against a learned template early in life (McCann and
Matthews, 1974; McCann and Carlson, 1982; Engeszer et al., 2004).
Olfaction also plays a role in species recognition as well as in kin
recognition in zebrafish, again through a process of phenotype
matching (Gerlach and Lysiak, 2006). Olfactory kin recognition
is based on imprinting with a 24 h critical period on day 6 post-
fertilization during which exposure to kin necessary and sufficient
(Gerlach et al., 2008). Neither exposure to own chemical cues nor
exposure to non-kin in the critical period results in imprinting.
Although individual recognition has not been investigated yet in
zebrafish, the occurrence of dominance hierarchies in both sexes
(Grant and Kramer, 1992; Delaney et al., 2002; Spence and Smith,
2005; Paull et al., 2010), suggests that it may be present.

COGNITIVE APPRAISAL IN ZEBRAFISH
Cognitive appraisal and cognitive bias are recent research areas
that only now are starting to be explored in zebrafish. In our lab
we have collected preliminary evidence suggesting that in dyadic
agonistic interactions it is the perception that the individual has of
the event rather than its objective structure that triggers the physi-
ological and genomic responses differentially observed in winners
and losers (Oliveira et al., unpublished data). These results are
in accordance with previous work on cichlid fish that showed
that ambiguous agonistic interactions between fish and their own
image on a mirror (i.e., where the expression of aggressive behavior
is decoupled from the experience of gaining or losing social status)
failed to elicit the physiological responses observed in winners and
losers of real opponent fights (Oliveira et al., 2005).

SOCIAL LEARNING IN ZEBRAFISH
So far the use of public information in zebrafish has been docu-
mented mainly in the context of response to aversive stimuli. A
first suggestion of social learning in zebrafish comes from data
showing that groups of zebrafish learn an avoidance response
to an electric shock faster than single individuals (Gleason et al.,
1977). However, the better performance while in a social group
may be explained by other mechanism, including motivational
factors related to the stress of being in isolation. In another set of
studies social facilitation of fear response to a predator cue was
established (Suboski et al., 1990; Hall and Suboski, 1995). Like
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many other ostariophysian fishes zebrafish release an alarm sub-
stance to the water when injured which causes a fright response in
other fish (Waldman, 1982; Speedie and Gerlai, 2008). This innate
fear response can be conditioned by pairing a conditioned stim-
ulus (CS; e.g., innocuous odor or red light) with the exposure to
the alarm substance unconditioned stimulus (US; Suboski et al.,
1990; Hall and Suboski, 1995). Conditioned individuals can be
subsequently used as demonstrators to naïve fish in trained-naïve
mixed groups in the presence of the CS alone (i.e., red light in
the absence of the alarm substance). In these conditions all fish of
the mixed groups exhibited the alarm response indicating social
transmission of the conditioned response from the demonstra-
tors to the naïve fish. Moreover, when sorted out from the mixed
groups, naïve individuals kept the response to the CS, indicating
the acquisition of the response to the predator cue by observa-
tional conditioning in naïve individuals (Suboski et al., 1990; Hall
and Suboski, 1995). More recently, it has been shown that zebrafish
can learn escape routes from trained demonstrators, and that the
presence of demonstrators in groups of naïve individuals increased
the escape response (i.e., escaped faster) from an approaching
trawl. Moreover, observers successfully became demonstrators for
further groups of naïve fish and escape responses were experi-
mentally propagated across three generations of social learning
(Lindeyer and Reader, 2010). Interestingly, route traditions (i.e.,
preference for a particular escape route) were not kept along the
chain of social transmission, suggesting a mechanism of social
facilitation that increases escape response without learning the
specific route followed by the demonstrator. Social learning in
zebrafish may also be impacted by attributes of the demonstra-
tor. Zebrafish shoals are structured social networks with different
individuals having a differential involvement in social interactions
(Vital and Martins, 2011), so that central individuals in the net-
work (aka Keystone individuals; Sih et al., 2009) can be recognized.
Such keystone individuals play important roles in social groups,
acting as learning models and as leaders in group movement (King
and Cowlishaw, 2009; Bode et al., 2011). In a recent study keystone
and non-key (i.e., less central in the social network) individuals
in zebrafish shoals were identified, individually trained in an aver-
sive response task and returned to their shoal. Shoals with trained
keystone individuals escaped aversive stimuli more rapidly than
those with trained non-key individuals, supporting the hypoth-
esis that social roles play a critical role in social learning also in
zebrafish. Apart from the social learning abilities described above,
zebrafish also exhibit a wide range of asocial learning abilities
in different ecological domains (e.g., Gerlai, 2011; Karnik and
Gerlai, 2012), therefore offering the possibility for contrasting
the mechanisms underlying learning in the social and physical
domains.

INTERTEMPORAL CHOICE IN ZEBRAFISH
Temporal discounting has not been studied in fish so far. However,
spatial discounting (i.e., when animals choose between smaller
and closer vs. larger and distant rewards) for social rewards has
been recently demonstrated in guppies (Muhlhoff et al., 2011).
Both types of discounting require impulse control which is usually
tested using reversal learning paradigms. A recent study estab-
lished the occurrence of reversal learning in zebrafish, hence

opening the possibility for the occurrence of intertemporal choices
in this species (Parker et al., 2012).

TRAFFIC RULES IN ZEBRAFISH
Fish groups can be classified either as “shoals” or as “schools”,
depending on the degree of synchronization and polarization
among group members. Thus, shoals are aggregations of individ-
uals [with four body lengths (BLs) commonly used as a criterion
for shoal membership in cyprinid species; Pitcher et al., 1983],
whereas schools are highly synchronized and coordinated shoals
with polarized orientation of individuals (Pitcher and Parrish,
1993). Both types of groups are present in zebrafish, with schools
being faster and less dense than zebrafish shoals, and occurring at
lower densities (Miller and Gerlai, 2012). Zebrafish groups may
vary in size and are characterized by a high degree of changes
in individual relative position within the group and by motion
pathways with a high rate of changes in direction (Miller and
Gerlai, 2007, 2008, 2011; see also Viscido et al., 2004 for data
on the giant danio, Danio aequipinnatus). The average distance
among zebrafish shoal mates is approximately of 20 cm, and
it responds to environmental factors, increasing in the presence
of food and predators to over 30 cm (Miller and Gerlai, 2007).
Considering that adult zebrafish BL varies between 3 and 4 cm,
the average distance between any shoal mates corresponds to
5–6.6 BLs, which is above the proposed threshold of four BLs for
shoal membership. However, this distance to the nearest neigh-
bor is stable over time suggesting temporal shoal cohesion in
zebrafish (Miller and Gerlai, 2007, 2008, 2011). Although many
traffic rules have been developed to explain schooling and shoal-
ing behavior in fish (e.g., Parrish and Turchin, 1997; Parrish and
Viscido, 2005), only recently one of these models have been tested
in zebrafish. This model showed that zebrafish follows a simple
rule in social decision-making based on Bayesian estimation that
uses the behaviors of other individuals to improve the estimation
(Arganda et al., 2012), therefore confirming the idea that simple
heuristics may explain apparently complex collective behavior also
in zebrafish.

TOOLS FOR STUDYING BRAIN FUNCTION IN ADULT
ZEBRAFISH
A significant number of genetic and neuroanatomy tools and
resources are becoming available for zebrafish, making it a
tractable species to study brain behavior relationships. Detailed
brain atlases are now available for adult zebrafish (Wullimann
et al., 1996), and homologies, based on topological and func-
tional data, between zebrafish and mammalian brain areas have
been established (Wullimann and Mueller, 2004). More recently,
magnetic resonance imaging (MRI) techniques were developed
for zebrafish and a detailed MRI three-dimensional atlas is
now available for adult zebrafish (Ullmann et al., 2010c,d). The
use of MRI will potentially allow non-invasive acquisition of
brain morphological data and provides more precise estimates
of brain area size than those obtained by classical histological
methods, which are prone to tissue deformations due to dis-
section or histological processing (Ullmann et al., 2010b). This
technique has a high potential not only for intra-specific stud-
ies with a model organism like the zebrafish, but also for
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inter-specific comparative studies of brain volumes in relation
to social behavior (Pollen et al., 2007). As an example of the
rapid development of the field recently 3D MRI atlases became
available for two more fish species (i.e., Tilapia, Oreochromis
mossambicus: Simões et al., 2012; and barramundi, Lates calcarifer:
Ullmann et al., 2010a).

The functional study of neural circuits in zebrafish has ben-
efited from the development of optogenetic and transgenic tech-
niques that together allow the close monitoring of activity in neural
networks and experimental gain and loss of function manipula-
tions to assess causal relationships between specific neural patterns
and specific behaviors (Baier and Scott, 2009; Portugues et al.,
2013). Imaging of neural activity in the brain of both larvae
and adults (explants in the later case) has been achieved using
genetically encoded calcium indicators, of which successive ver-
sions of GCaMP have been the more widely used (Baier and
Scott, 2009; Portugues et al., 2013). The use of these fluorescent
reporters requires the restrain of the animal during image acqui-
sition which limits the behavioral tasks that can be investigated.
In order to overcome this limitation a virtual reality system has
been recently developed for zebrafish larvae, in which the lar-
vae is stationary but the putative motor output is recorded from
the motor neuron axons in the tail and is used in real time to
drive movement in the virtual environment (Ahrens et al., 2012).
Gain and loss of function studies at the level of cell type or small
groups of neurons have used opsin photoswitchable probes, such
as channelrhodopsin (ChR2) and halorhodopsin (NpHR), that
activate neurons in a reversible way in response to light pulses
of specific wave-lengths (e.g., Douglass et al., 2008; Arrenberg
et al., 2009). Loss of function studies have also used chemical
or photo inducible probes (e.g., Tetanus toxin, nitroreductase,
Killer red) to selectively silence specific neurons in neural circuits
(e.g., Koide et al., 2009). Viral transfection and transgenesis have
been used as two alternative ways to restrict the expression of
the abovementioned reporters and manipulators of neural activ-
ity to specific components of the neural networks (Zhu et al.,
2009). In particular the Gal-UAS binary transgenic system has
been used successfully to specify genetically targeted cell popu-
lations and to relate them to specific behaviors, even in adults
(e.g., Agetsuma et al., 2010; Okamoto et al., 2012; Muto et al.,
2013).

In contrast to the optogenetics toolbox available to study brain
function in larval zebrafish, the available tools for adults are far
more limited. With the ossification of the skull during develop-
ment the efficacy of optogenetic techniques decreases and at most
they can still be used in vivo in the juvenile phase. On the other
hand, the repertoire of social behavior is very limited in larvae,
whose ethogram is limited to locomotor action patterns involved
in swimming and in prey capture (Budick and O’Malley, 2000).
Thus, a major challenge for future research on zebrafish social
neuroscience is to try to match in development the efficient use
of optogenetic tools with the availability of relevant behavior. For
doing this the period during which optogenetic tools can be effi-
ciently used will have to be moved forward in development on one
hand, and on the other a detailed characterization of the ontogeny
of the cognitive abilities underlying social skills is needed in order
to identify how early different cognitive abilities can be successfully

studied in zebrafish. Whenever the use of the zebrafish optoge-
netic toolbox becomes available to the study of social abilities, it
will offer an unprecedented opportunity to characterize the neural
networks underlying social cognitive modules, and to experimen-
tally manipulate particular nodes of the network and infer their
potential role on domain-specific modules on a vertebrate model.
Until then mapping of the neural activity that underlies cognitive
processes in adult zebrafish is still recurring to the expression of
immediate early genes as markers of neural activity (e.g., Lau et al.,
2011).

PROSPECTS
The field of social neuroscience has emerged in the past two
decades as a vibrant and very successful branch of twenty-first cen-
tury neuroscience, and understanding the relationship between
social cognition and the social brain became a hot topic. How-
ever, different research traditions coexist within the field with
parallel research programs. Researchers from a more Biomedi-
cal or Human Psychology background have been mainly focused
on human social behavior and on translational research (e.g., Cole
et al., 2007; Norman et al., 2012). Primatologists and comparative
psychologists have focused on testing the occurrence of “uniquely
human” cognitive abilities (e.g., theory of mind, deception, coop-
eration) in a small subset of “cognitively complex” animals such
as primates, dolphins, and more recently corvids and elephants
(Connor, 2007; Byrne and Bates, 2009, 2010; Bugnyar, 2011).
Finally, behavioral ecologists and neuroethologists focus their
research on understanding the functional value and the under-
lying neural mechanisms of social cognitive skills in a wide range
of “simple-minded” animals (e.g., insects, fish), that are seen as
adaptive traits that help survival and successful breeding (Bshary
et al., 2002; Chittka and Niven, 2009; Bshary, 2011; Chittka and
Skorupski, 2011; Taborsky and Oliveira, 2012). In recent years sig-
nificant efforts to integrate these different research streams have
been made, namely through the organization of thematic discus-
sions and meetings. Although challenging due to the multitude
of concepts, methodologies, and conflicting points of view (e.g.,
associative vs. cognitive explanations of animal behavior), an inte-
gration of these traditions would be a major breakthrough for the
understanding of the basic proximate and ultimate mechanisms
of social cognition and behavior. The present paper was written in
that spirit and would finish by identifying some outstanding ques-
tions and future challenges in the field that would benefit from
an integrated approach and that the adoption of the conceptual
framework proposed here will hopefully help to address:

(1) The creation of a common cognitive lexicon and taxonomy
so that clear concepts are shared – the occurrence of complex
social behaviors does not necessarily request complex cognitive
abilities; therefore functionally similar cognitive abilities that rely
on different underlying mechanisms should be recognized (e.g.,
transitive inference and transitive inference-like abilities).

(2) The modularity of social cognition – experimental
approaches are needed to clarify the conflicting results between
intra- and inter-specific analyses of social cognitive modularity.
Group living species whose social behavior can be easily recreated
in captivity, with relatively short inter-generation times (when
compared to the 6 weeks of the mice that is the standard model
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for behavioral genetics) and easy to breed in the lab, can be success-
fully used in the future to address this question using experimental
evolution paradigms, as suggested by a recent study on artificial
selection for larger brains in guppies (Poecilia reticulata) that had
an impact on cognitive skills within two generations (Kotrschal
et al., 2013).

(3) The distributed nature of information processing in neural
networks should be taken into account when trying to map cogni-
tive processes onto brain activity; therefore comparative analyses
should move beyond the comparison of brain sizes and focus on
inter-specific convergence/divergence in functional connectivity
in the social decision making neural network.

In answering all these questions I foresee a relevant role
for species that offer the possibility to integrate imaging of

brain activity with relevant behavioral tasks, as is the case of
zebrafish.
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