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In the last three decades it became evident that the GABAergic system plays an essential
role for the development of the central nervous system, by influencing the proliferation
of neuronal precursors, neuronal migration and differentiation, as well as by controlling
early activity patterns and thus formation of neuronal networks. GABA controls neuronal
development via depolarizing membrane responses upon activation of ionotropic GABA
receptors. However, many of these effects occur before the onset of synaptic GABAergic
activity and thus require the presence of extrasynaptic tonic currents in neuronal precursors
and immature neurons. This review summarizes our current knowledge about the role of
tonic GABAergic currents during early brain development. In this review we compare the
temporal sequence of the expression and functional relevance of different GABA receptor
subunits, GABA synthesizing enzymes and GABA transporters. We also refer to other
possible endogenous agonists of GABAA receptors. In addition, we describe functional
consequences mediated by the GABAergic system during early developmental periods and
discuss current models about the origin of extrasynaptic GABA and/or other endogenous
GABAergic agonists during early developmental states. Finally, we present evidence that
tonic GABAergic activity is also critically involved in the generation of physiological as well
as pathophysiological activity patterns before and after the establishment of functional
GABAergic synaptic connections.
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The GABAergic system is critically involved in neuronal devel-
opment (e.g., Ben-Ari, 2002; Ben-Ari et al., 2007; Wang and
Kriegstein, 2009; Kilb, 2012), influencing virtually all develop-
mental steps from neurogenesis (LoTurco et al., 1995) to the
establishment of neuronal connectivity (Wang and Kriegstein,
2008). Since many of these events occur before the onset of synap-
togenesis, a tonic, extrasynaptic GABAergic transmission may be
important. In the following sections we will first describe the
development of the GABAergic system, with special emphasize
on all elements that support the particular role of extrasynap-
tic transmission. Subsequently, we will describe the influence
of GABA on various developmental events and present evidence
for a critical role of non-synaptic signaling in these processes.
In addition, we will summarize observations that demonstrate
an important role of extrasynaptic GABAergic transmission in
the developing brain after the formation of GABAergic synapses
and after onset of GABAergic synaptic transmission. And finally,
we like to discuss the origin and nature of additional endoge-
nous GABAergic agonists that mediate extrasynaptic effects during
development.

Most studies mentioned in this review describe the develop-
ment and influence of the GABAergic system during prenatal
phases and the first postnatal week in rodents. This period is
to some extent comparable to prenatal development in humans
(Romijn et al., 1991), although a general comparison of pre-
and perinatal stages between rodents and humans is complicated

due the relatively advanced human brain development and the
complex expansion pattern of different cortical areas during onto-
and phylogenesis (Clancy et al., 2007; Hill et al., 2010). In addi-
tion, we like to emphasize that substantial developmental progress
occurs during the first postnatal week in rodents and that at
one given day of early development, neurons in different cortical
regions and layers differ by 2–3 days in their developmental stage.

DEVELOPMENT OF EXTRASYNAPTIC AND SYNAPTIC
GABAergic TRANSMISSION
Cells in the developing nervous system respond to GABA at sur-
prisingly early stages. The first evidence for this has been found in
dissociated cells from the earliest phases of neurogenesis in the tur-
tle brain, which show bicuculline sensitive responses upon GABA
application (Shen et al., 1988). In rodents neuronal progenitors in
the ventricular zone at embryonic day (E) 15 (LoTurco et al., 1995;
Owens et al., 1999) as well as postmitotic migrating neurons (Heck
et al., 2007) already reliably show GABAergic responses (Figure 1).
In accordance with this early onset of GABAergic responses, the
expression of GABAA receptors also starts during very early brain
development.

GABAA receptors are heteropentameric molecules composed
of 19 possible subunits (α1–6, β1–3, γ1–3, δ, ε, ϕ, π, and
ρ1–3). The subunit composition determines GABA affinity, chan-
nel conductance and kinetics, pharmacology and subcellular
localization of the receptors (Farrant and Kaila, 2007). A few
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FIGURE 1 | GABAergic currents during early development.

(A) Whole-cell recordings from cells in ventricular zone of embryonic rats
(E16) revealed dose-dependent GABAergic currents. (B) Photomicrograph
of a biocytin-stained migrating neuron in a P1 rat. (C) Whole-cell recordings
show that in migrating neurons a short (2–3 ms) application of 1 mM GABA
(triangles) induced fast inward currents, while bath application of 1 μM
muscimol induced a long lasting tonic current and led to a marked
desensitization of phasic responses. The typical responses shown below
the continuous trace are marked by asterisks. Pictures taken with kind
permission from Owens et al. (1999) (A) and Heck et al. (2007) (B,C).

functional consequences of subtype compositions relevant for
this review are (i) in particular the γ2 subunit determines
the synaptic allocation of GABAA receptors, while δ subunit
containing receptors are exclusively located at extrasynaptic sites,

(ii) α4–6 and ρ subunit containing receptors have been found
predominantly at extrasynaptic localizations, while α1–3 con-
taining receptors are supposed to constitute the synaptic GABAA

receptors, and (iii) δ subunit and ρ subunit containing receptors
typically reveal a high GABA affinity and a slow and incomplete
desensitization, appropriate for a tonic activation by interstitial
GABA (reviewed in Farrant and Nusser, 2005; Farrant and Kaila,
2007).

In situ hybridization experiments in the neocortex revealed
expression of GABAA receptors as early as at E13 with the appear-
ance of β3 subunits in the neuroepithelium (Araki et al., 1992).
At E14/E15 α3, α4 are expressed in the developing cortical lay-
ers (Araki et al., 1992; Laurie et al., 1992). Between E15 and E17
γ2 subunit mRNA is detected in the neocortex, with the high-
est expression levels in the cortical plate (CP; Araki et al., 1992;
Laurie et al., 1992; Van Eden et al., 1995). At E17 there is evi-
dence that even α6 subunits, which are in the adult brain nearly
exclusively located in the cerebellum (Luddens et al., 1990), are
expressed in the cortical neuroepithelium (Poulter et al., 1992). In
contrast, the α1 subunits characteristic for many mature GABAA

receptors are expressed relatively late between E19 and P0 (Poulter
et al., 1992; Van Eden et al., 1995), while δ subunit expression is
observed only postnatally (Laurie et al., 1992). These observations
are supported by northern blot analyses which reveal expres-
sion of α2 and α4 at E18 in total brain homogenates, while α1
expression starts only after birth (MacLennan et al., 1991). On
the other hand, for precursors of GABAergic interneurons trav-
eling from the lateral ganglionic eminence to the cerebral cortex
a stringent up-regulation of α1 and γ1–3 subunits occurs after
they enter the cortex, which is directly linked to an increase of
GABA affinity (Carlson and Yeh, 2011). To our knowledge no
study has been published for rodents that investigated the prena-
tal appearance of different GABAA receptor subunits on protein
level. However, in rodents at the day of birth (P0) an intense
α2 receptor immunoreactivity has been observed in the neocor-
tex, while α1 receptors immunoreactivity is low, but detectable
(Fritschy et al., 1994). In the primate neocortex a significant
expression of α2, α4, and α5 was observed during prenatal devel-
opment (Hornung and Fritschy, 1996; Huntsman et al., 1999),
while α1 subunits appear shortly before birth and are substantially
up-regulated in the first postnatal year (Hornung and Fritschy,
1996).

In the rodent hippocampus expression of mRNA for α2 and
α5, but also γ2 subunits start at E15, while δ subunit mRNA was
detected only after birth (Killisch et al., 1991; Laurie et al., 1992;
Poulter et al., 1992). At E19 it has been found that neuroepithelial
cells or early postmitotic cells in the hippocampus express pre-
dominantly α4 and α5 containing GABAA receptors (Maric et al.,
1999). Expression of α1 subunit mRNA appear only postnatally
(Laurie et al., 1992; Poulter et al., 1992). Immunohistochemical
studies in the perinatal hippocampus revealed a nearly absence
of α1 subunits, while α2 subunits were highly abundant (Fritschy
et al., 1994).

Ionotropic GABA receptors constituted of ρ subunits (also
termed GABAC receptors) have a high GABA affinity, slow
activation and inactivation kinetics and show little desensitization
(Bormann, 2000). In accordance with these properties, they can

Frontiers in Neural Circuits www.frontiersin.org September 2013 | Volume 7 | Article 139 | 2

http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


“fncir-07-00139” — 2013/9/2 — 14:43 — page 3 — #3

Kilb et al. Tonic GABAergic currents during development

mediate extrasynaptic GABAergic effects (Alakuijala et al., 2006).
Expression of ρ subunits has been found in lower neocortical lay-
ers of the E15 mouse brain (Fukui et al., 2008) and in the early
postnatal hippocampus (Rozzo et al., 2002). In accordance with
the early expression of ρ subunits only in lower neocortical layers,
functional ρ subunit containing GABAA receptors are detected in
the intermediate zone (IZ), while they are not expressed in the
CP (Denter et al., 2010; Figure 2). The pharmacological prop-
erties of these receptors indicate that they most probably are ρ

subunits containing heteropentamers, as has been also suggested
for interneurons in the adult hippocampus and juvenile CA1 pyra-
midal neurons (Semyanov and Kullmann, 2002; Hartmann et al.,
2004).

In summary, these studies demonstrate that in the cerebral
cortex and hippocampus classical GABAA and ρ subunit con-
taining GABA receptors are expressed at early developmental
stages, and that these receptors probably contain α2–α5 and ρ,
but also γ2 subunits. Although the expression of γ2 subunits
typically corresponds to a postsynaptic localization of GABAA

receptors, the relatively high expression levels of α4/α5 and ρ

subunits are compatible with extrasynaptic GABAA receptors. In
contrast, there is compelling evidence that δ subunits, which are
typical for classical extrasynaptic receptors in the immature brain
(Farrant and Nusser, 2005), are lacking during early embryonic
development.

During embryonic and early postnatal development ionotropic
GABA receptors mediate in pyramidal neurons depolarizing

membrane responses (Mueller et al., 1984; Ben-Ari et al., 1989;
Owens et al., 1996; Lamsa et al., 2000; Achilles et al., 2007;
Valeeva et al., 2013). These depolarizing GABAergic responses
are caused by Cl− efflux via GABAA receptors due to the high
intracellular Cl− concentration in developing neurons (Ben-
Ari et al., 2012), and play an essential role for the trophic
actions of GABA during early development (Ben-Ari, 2002;
Represa and Ben-Ari, 2005; Wang and Kriegstein, 2009; Kilb
et al., 2011; but see Cancedda et al., 2007). In GABAergic
interneurons GABAA receptor activation mediate comparable,
slightly depolarizing actions in interneurons during early post-
natal stages as well as in the adult brain (Banke and McBain,
2006).

In addition to ionotropic GABA receptors, metabotropic
GABAB receptors are also important elements of the immature
GABAergic system. Functional GABAB receptors are heterodimers
consisting of GABAB1R and GABAB2R subunits and are mainly
located distant to release sites, suggesting an extrasynaptic activa-
tion (Ulrich and Bettler, 2007). A co-localized protein expression
of both GABAB receptor subunits, and thus presumably also func-
tional GABAB receptors, has been found in hippocampal and
cortical regions after E15 (Behar et al., 2001; López-Bendito et al.,
2002; Li et al., 2004). Accordingly, evidence for a functional impli-
cation of GABAB receptors on different developmental events has
been demonstrated in the immature neocortex and hippocam-
pus (Behar et al., 2001; López-Bendito et al., 2003; Kirmse and
Kirischuk, 2006; McClellan et al., 2007). In the first postnatal week

FIGURE 2 | Functional expression of ρ subunit containing GABAA

receptors in the intermediate zone. Microfluorimetric registration of Ca2+
transients induced by application of 100 μM GABA and 100 μM of the ρ

subunit specific agonist cis-4-amino-crotonic acid (CACA) in neurons from the
intermediate zone (A) and cortical plate (B). Note that CACA induced Ca2+

transients occurred only in the intermediate zone (A1,B1) that the ρ subunit
containing GABAA receptor antagonist (1,2,5,6-tetrahydropyridin-4-yl)-met-
hylphosphinic acid (TPMPA) was inefficient in the cortical plate (A2,B2) and
that the GABAA antagonist bicuculline (BMI) completely abolished GABAergic
Ca2+ transients in the CP (A3,B3). Modified from Denter et al. (2010).
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a reliable presynaptic effect of GABAB receptors is observed in the
rodent neocortex and hippocampus, while a postsynaptic current
is less developed (Luhmann and Prince, 1991; Fukuda et al., 1993;
Gaiarsa et al., 1995).

A peculiar observation of the in situ hybridization studies for
GABAA receptor subunits was the early expression of γ2 subunits,
which are implicated in synaptic clustering of GABAA receptors,
during early embryonic stages. However, γ2 subunits mediate the
postsynaptic clustering of GABAA receptors via an interaction with
the scaffolding proteins gephyrin and collybistin (Kneussel and
Betz, 2000; Mukherjee et al., 2011). While gephyrin is expressed
at high levels in the neuroepithelium already at E14, collybistin
expression was observed in the cortical anlage only in regions
with postmitotic neurons, which strongly suggests that GABAA

receptors cannot form postsynaptic clusters in the ventricular and
subventricular zones and on migrating neurons (Kirsch et al.,1993;
Kneussel et al., 2001).

GABA required for the activation of these GABA receptors can
originate either from GABAergic neurons or GABAergic fibers.
GABAergic interneurons are generated in rodents mainly in the
medial and caudal ganglionic eminence and migrate tangentially
to the neocortex and hippocampus (Anderson et al., 1997; Plea-
sure et al., 2000; Miyoshi et al., 2010), where they, depending
on their origin, differentiate in the diverse types of GABAergic
interneurons (Tricoire et al., 2011). In the human neocortex a
substantial fraction of the GABAergic interneurons is, however,
generated in the ventricular zone of the dorsal pallium (Petan-
jek et al., 2008; Yu and Zecevic, 2011). The first GABA positive
neurons are detectable in the primordial plexiform layer of the
cortical anlage already at E12 (Del Rio et al., 1992). In subsequent
embryonic stages GABAergic neurons are abundant in all layers
of the developing cortex between the marginal zone and the sub-
ventricular zone (Lauder et al., 1986; Van Eden et al., 1989; Cobas
et al., 1991; Del Rio et al., 1992). In the human neocortex the first
GABAergic neurons were detected at gestational week 6.5 even
before the appearance of the CP (Zecevic and Milosevic, 1997).
In the rodent hippocampus GABAergic interneurons were first
detected between E14 and E16 in the inner marginal zone, the sub-
plate and the subventricular zone (Soriano et al., 1994; Kanold and
Luhmann, 2010). In addition to this early appearance of GABAer-
gic neurons, a dense network of GABAergic fibers originating from
extracortical regions reach the cortical anlage during these early
embryonal stages even before the appearance of GABAergic neu-
rons (Lauder et al., 1986; Del Rio et al., 1992; Ma and Barker,
1995).

GABA is mainly produced by the glutamic acid decarboxy-
lases (GAD), which is expressed in two major isoforms. GAD-65
is considered to mediate the production of GABA intended for
synaptic release, while GAD-67 is supposed to maintain cyto-
plasmic GABA levels (Soghomonian and Martin, 1998). In the
rodent neocortex expression of GAD-67 is detectable at E15
(Ma and Barker, 1995) in the germinal zone of the cortical
anlage, while GAD-65 occurs delayed and is observable only after
P6 (Kiser et al., 1998). In the hippocampus both GAD-65 and
GAD-67 protein could be detected at E18, with both isoforms
expressed mainly at somatic locations during prenatal develop-
ment (Dupuy and Houser, 1996). Expression of GAD has also

been found in fetal human brain before gestational week 15
(Das and Ray, 1997), when GAD-67 is the prominent isoform
(Chan et al., 1997). Thus in particular a somatic generation of
GABA can appear during early stages of corticogenesis. In con-
trast, the GABA degrading enzymes GABA transaminase and
succinate semialdehyde dehydrogenase reveal low expression lev-
els in the pre- and early postnatal rodent neocortex (Pitts and
Quick, 1967; Kristt and Waldman, 1986), suggesting that a sub-
stantial portion of GABA is distributed within the CNS via the
interstitium.

For synaptic release GABA must be accumulated in transmit-
ter vesicles by the vesicular inhibitory amino acid transporter
(vIAAT) or vesicular GABA transporter (vGAT; Wojcik et al.,
2006). At P0 the expression of vGAT in the neocortex is rather
low and mostly restricted to fibers (Minelli et al., 2003). In the
rodent hippocampus GABAergic inputs were observed before
birth in about 75% of pyramidal neurons at P0 and in 65%
of interneurons (Tyzio et al., 1999; Hennou et al., 2002), indi-
cating the early appearance of functional GABAergic synapses,
but also that synaptic spillover may be a source of extrasynap-
tic GABA receptor activation. No GABAergic synaptic responses
were observed in proliferative regions of the cerebral cortex
(Owens et al., 1999). On the other hand, reliable tonic GABAer-
gic currents were found in the embryonic neocortical neurons in
the ventricular zone (LoTurco et al., 1995) and the CP (Owens
et al., 1999), and in neuronal cultures of embryonic hippocam-
pal neurons (Valeyev et al., 1998). These observations indicate
that GABAergic responses precede synaptic GABAergic transmis-
sion, strongly suggesting that non-synaptic transmission plays
an important role during prenatal development. Indeed, there
is compelling evidence that during these stages a substantial
part of basal, but also of stimulated GABAergic transmission
occur via non-vesicular release (Demarque et al., 2002). The tonic
GABAergic currents observed in neuronal cultures of embry-
onic hippocampal neurons suggest that hippocampal neurons
itself can be a source of GABA in these cells (Valeyev et al.,
1998). Subsequent in vitro experiments revealed that isolated neu-
rons from the CP can release GABA in sufficient large amounts
to obtain micromolar concentrations in the supernatant (Behar
et al., 2001). In immature neocortical slices an extracellular
GABA concentration of 250–500 nM, and thus sufficiently high
to activate high affinity ionotropic GABA receptors or GABAB

receptors has been found (Cuzon et al., 2006; Dvorzhak et al.,
2010).

Possible candidates for a non-vesicular GABA release are GABA
transporters (GATs). In the adult nervous system these trans-
porters mediate the uptake of GABA from interstitial space, show
mainly a neuronal localization of the GAT-1 isoform and mainly
glial localization of GAT-3 isoform (Borden, 1996). Accordingly
these two subtypes are responsible for controlling extracellu-
lar GABA from vesicular and non-vesicular sources, respectively
(Song et al., 2013). However, these transporters can also act in
reverse mode and thus release GABA from cells (Richerson and
Wu, 2003; Kirischuk and Kilb, 2012). In particular the high
intracellular Cl− concentration in immature neurons, which
directly influences GAT mediated GABA transport by determin-
ing the reversal potential of this Cl− dependent transmembrane
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transporter, can result in less efficient uptake or even a reversal
of the transport mode (Kirischuk and Kilb, 2012). In the mouse
brain GAT-1 expression starts at E14 in the medial ganglionic
eminence and is detected at E16 in the neocortical subventricu-
lar zone (Evans et al., 1996). GAT-3 is already expressed in the
neocortical subventricular zone at E14 (Evans et al., 1996). In con-
trast, in the developing hippocampus GAT-1 expression is low
at early postnatal age, with GAT-3 expression dominating (Evans
et al., 1996). Interestingly, between the end of the first postnatal
week and the end of the first postnatal month a transient somatic
location of GAT-1 expression has been demonstrated in the rat
neocortex and hippocampus (Yan et al., 1997). In addition, in
the immature rat cortex GAT-1 is abundant in astrocytes and
GAT-3 in neurons (Yan et al., 1997; Minelli et al., 2003), despite
the mainly neuronal localization of GAT-1 and the mainly glial
localization of GAT-3 in the adult CNS (Borden, 1996; Conti
et al., 2004). Both observations suggest a substantial shift in the
functional role of GAT during development. A direct implication
of GAT-1 for GABA release has been demonstrated in tangen-
tially migrating precursors of GABAergic interneurons (Poluch
and Konig, 2002), where glutamatergic activation leads to a non-
vesicular GABA release by a Na+-increase driven reversal of the
GAT-1 transporter (Pin and Bockaert, 1989). On the other hand, in
cortical neuroblasts the activity dependent GABA release does not
depend on GATs (Liu et al., 2005), indicating that additional, cur-
rently unknown pathways may contribute to non-vesicular GABA
release during early development. And finally, it has been shown
for the early postnatal hippocampus and neocortex that GAT-1
is already effectively removing GABA from the extracellular space
and thereby directly regulates tonic GABAergic currents and affects
intrinsic neuronal activity (Sipila et al., 2004, 2007; Bragina et al.,
2008).

Overall, these studies suggest that in the immature neo-
cortex and hippocampus all essential elements for functional
GABAergic transmission appear at very early stages, while the
elements for reliable synaptic GABA release and GABAA recep-
tor clustering occur at later developmental stages. In summary,
these findings indicate that activation of extrasynaptic GABAergic
receptors underlies the diverse trophic actions of GABA during
early neuronal development.

INFLUENCE OF EXTRASYNAPTIC GABAergic
TRANSMISSION ON CRITICAL EVENTS DURING
PRE- AND EARLY POSTNATAL DEVELOPMENT
GABA has been considered as a major neurotrophic factor during
embryonic development (Varju et al., 2001; Owens and Kriegstein,
2002; Represa and Ben-Ari, 2005; Wang and Kriegstein, 2009).
Different developmental events, ranging from proliferation to the
establishment of mature synaptic circuits depend on GABA, with
a substantial portion of these events occurring without a major
contribution of synaptic processes.

Application of GABAergic agonists increases DNA synthe-
sis and the proliferation of neuroblasts in the ventricular zone,
whereas it decreases proliferation in the subventricular zone
(LoTurco et al., 1995; Haydar et al., 2000). Most probably the
majority of these neuronal progenitors in the ventricular zone are
radial glial cells (Noctor et al., 2001), on which functional GABAA

receptors have been reported (Noctor et al., 2002). While alter-
ations in proliferation induced by the external GABA application
demonstrate that GABA has the potential to directly interfere with
neurogenesis, the observation that inhibition of GABAA recep-
tors induces the opposite effect clearly shows that endogenously
released GABA regulates neurogenesis in ventricular and sub-
ventricular zones (LoTurco et al., 1995; Haydar et al., 2000). In
addition to GABAA receptors, it has been also shown that GABAB

receptors are involved in controlling neurogenesis (Fukui et al.,
2008) and gliogenesis (Luyt et al., 2007). It can be assumed that
extrasynaptic GABAergic transmission influences these processes,
since in both layers synaptic GABA release has not been reported so
far. This mechanism has been documented in adult neurogenesis,
where GABAergic neuroblasts in the subventricular zone release
GABA via non-vesicular mechanisms, which in turn impede the
proliferative activity of glia-derived progenitor cells (Liu et al.,
2005). In addition, it could be shown that during adult neuro-
genesis α4 subunit containing GABA receptors are involved in the
regulation of neurogenesis (Duveau et al., 2011), which also sug-
gests that extrasynaptic transmission is essential. Neurogenesis in
the neocortex is also impeded by glutamate, and this glutamatergic
inhibition of proliferation of glutamatergic pyramidal neurons is
supposed to serve as a feedback mechanism to control the num-
ber of excitatory neurons (Wang and Kriegstein, 2009). However,
because in rodents the ventricular and subventricular zones of the
cortical anlage do not give rise to GABAergic interneurons, the
functional role of GABAergic control of proliferation is probably
more complicated.

In the mammalian brain the neurotransmitter phenotype of
neurons is determined by different transcription factors and is
normally established with neurogenesis (Ma, 2006). The obser-
vation that granule cells of the dentate gyrus can switch their
neurotransmitter phenotype in an activity dependent manner
(Romo-Parra et al., 2003), suggest that during neuronal develop-
ment the expression of transcription factors may also be affected
by neurotransmitters and their receptors. In the central ner-
vous system of Xenopus it has already been shown that GABA
can directly influence neurotransmitter specification via GABAB

receptors (Root et al., 2008), however, for mammalian species it has
not been demonstrated yet whether GABA receptors can influence
the neurotransmitter phenotype.

A variety of in vitro and in vivo studies reported that GABA
is an important determinant of neuronal migration, acting as
chemoattractant, regulating cell mobility and influencing ini-
tiation and termination of the migration process (Behar et al.,
1996; Heng et al., 2007; Manent and Represa, 2007). A selec-
tive inhibition of GABAA receptors enhances radial migration in
neocortical organotypic slice cultures (Behar et al., 2000; Heck
et al., 2007) and in vivo induces severe cortical malformations
leading to upper cortical heterotopia (Heck et al., 2007), suggest-
ing that GABAA receptors provide a stop signal for migrating
neurons (Figure 3A). In contrast, specific inhibition of ρ sub-
unit containing GABAA receptors or a simultaneous inhibition
of both subclasses of GABAA receptors impedes radial migration
(Behar et al., 2000; Denter et al., 2010), suggesting that ρ sub-
unit containing GABAA receptors support the migration out of
deeper cortical layers (Figure 3B). Functional ρ subunit containing
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FIGURE 3 | Influence of GABAA receptors on migration. (A) Migration
defect induced by GABAA receptor inhibition in vivo. Digital photograph of
50-μm-thick Nissl-stained coronal sections showing a heterotopia (arrow) of
a P7 rat treated with a BMI loaded Elvax implant at P0. Scale bars
correspond to 200 μm. (B) Schematic drawing illustration the effect of
classical and ρ subunit containing GABAA receptors on radial migration in
the developing neocortex. The gray gradient represents the outside
directed GABA gradient. In the intermediate zone (IZ) migrating neurons
express classical GABAA and ρ subunit containing GABAA receptors. In the
cortical plate (CP) only classical GABAA receptors are found. Due to the
outside directed GABA gradient the low-affinity classical GABAA receptors
are only activated in the CP, where they contribute to termination of
migration (STOP sign). The lower GABA concentration in the IZ is only
sufficient to activate the high affinity ρ subunit containing GABAA
receptors, which is necessary to support migration in the IZ (GO sign).
Modified from Heck et al. (2007) (A) and Denter et al. (2010) (B).

GABAA receptors are only found in the subcortical regions of the
developing cortex that lack evidence for synaptic release (Denter
et al., 2010), indicating that they are predominantly activated by
non-synaptically released GABA. Since so far no synaptic inputs
on migrating neurons have been demonstrated, it has been sug-
gested that the stop signal for migrating neurons is mediated by the
higher interstitial GABA concentrations in superficial layers of the
developing cortex (Behar et al., 2000). Despite the different effects
of both subclasses of GABAA receptors on radial migration, the

effect of ionotropic GABA receptors on migration is most prob-
ably mediated by depolarization-induced Ca2+ transients, which
are essential for the induction and maintenance of radial migra-
tion (Komuro and Rakic, 1996, but see Cancedda et al., 2007).
In addition, it has been demonstrated that GABA facilitates the
tangential migration of GABAergic interneurons to the appropri-
ate neocortical locations via GABAA receptors (Cuzon et al., 2006;
Inada et al., 2011). Metabotropic GABAB receptors stimulate the
transition of radially migrating neurons from the IZ to the CP
(Behar et al., 2001) and mediate the migration of interneurons
to their appropriate locations in the neocortex during embryonic
stages (López-Bendito et al., 2003). In the immature hippocampus
GABAA receptors promote radial migration (Manent et al., 2005).
Importantly, neuronal migration is unaffected in animals in which
the synaptic release is completely suppressed (Manent et al., 2005),
again emphasizing the essential role of non-synaptically released
GABA acting on extrasynaptic receptors for neuronal migration
in the hippocampus.

GABA also exerts a direct effect on neurite growth and
axon elongation (see Sernagor et al., 2010 for review). A vari-
ety of studies demonstrated that GABA application promotes the
outgrowth and ramification of dendrites in neocortical and hip-
pocampal neurons (e.g., Barbin et al., 1993; Maric et al., 2001).
This dendrite promoting effect of GABA relies on depolarizing
GABAergic responses and subsequent Ca2+ signals (Maric et al.,
2001; Cancedda et al., 2007; Wang and Kriegstein, 2008). Dendritic
ramification is inhibited by GABAergic antagonists (Maric et al.,
2001), indicating that endogenous GABA is required for normal
neurite formation. The cell culture studies of Maric et al. (2001)
convincingly showed that not only blocking GABAA receptors,
but also inhibition of GAD severely impairs dendrite formation,
which strongly suggests that an autocrine release of GABA act-
ing on extrasynaptic GABAA receptors is required for this effect.
In cell cultures from embryonic cortical neurons axonal growth
is also accelerated by GABAA receptor activation via Ca2+ and
calmodulin-dependent kinase 1 activation (Ageta-Ishihara et al.,
2009). Since this effect is reversed by GABAA receptor antagonists
and axon extension partly occurs before the appearance of synaptic
GABA release, it has been suggested that tonic GABAergic effects
also contribute to the facilitating GABA effect on axon extension
(Sernagor et al., 2010). Activation of presynaptic GABAB receptors
is required to stabilize developing GABAergic synapses of basket
cells in the mouse occipital neocortex (Fu et al., 2012). On the
other hand, it has been shown that already in the immature hip-
pocampus and neocortex tonic activation of presynaptic GABAB

receptors reduces GABA release (Safiulina and Cherubini, 2009;
Dvorzhak et al., 2010).

Subsequent developmental events are also directly influenced
by GABAergic signaling. For example it has been shown that
depolarizing GABAergic responses are essential for synaptoge-
nesis (Wang and Kriegstein, 2008). But because these events
occur mostly after the onset of synaptogenesis and after the
functional expression of GABAergic synaptic inputs (e.g., Owens
et al., 1999; Tyzio et al., 1999; Hennou et al., 2002; Kilb et al.,
2004), synaptic GABAergic effects may dominate these events.
However, it has been shown that this GABAergic influence on
synaptogenesis is closely linked to N-methyl-D-aspartate (NMDA)

Frontiers in Neural Circuits www.frontiersin.org September 2013 | Volume 7 | Article 139 | 6

http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


“fncir-07-00139” — 2013/9/2 — 14:43 — page 7 — #7

Kilb et al. Tonic GABAergic currents during development

receptors (Wang and Kriegstein, 2008). In immature neurons the
Mg2+ block from NMDA receptors is released by an GABAergic
depolarization before 2-amino-3-(3-hydroxy-5-methyl-isoxazol-
4-yl)propanoic acid (AMPA) mediated synaptic inputs appear
(Leinekugel et al., 1997), leading to spontaneous correlated net-
work activity, which is typical for the developing brain (Ben-Ari
et al., 1989; Garaschuk et al., 1998; Dupont et al., 2006) and which
probably plays an essential role for the maturation of neuronal
networks (see Khazipov and Luhmann, 2006; Ben-Ari et al., 2007;
Kilb et al., 2011 for review). But since tonic GABAergic currents
are essential to drive such events in the immature hippocampus
(Sipila et al., 2005), it can be assumed that tonic GABAergic cur-
rents continue to contribute to the trophic GABA action even after
the onset of GABAergic synaptic transmission.

In summary, these studies provide convincing evidence that
tonic GABAergic currents control the genesis, migration and dif-
ferentiation of neurons during early development. All these events
occur either before the onset of synaptic GABAergic transmission
or in neurons that do not receive synaptic inputs, indicating that
extrasynaptic GABAergic signaling is essential for these processes.
Beside this correlative indication, the studies by Maric et al. (2001);
Liu et al. (2005), and Manent et al. (2005) provide strong evidence
for the important role of non-synaptically released GABA on neu-
rogenesis, migration, and differentiation. An additional evidence
for the dominating role of non-vesicular released GABA on cortical
development is the observation that no anatomical abnormalities
are detected in the neocortex of vGAT knockout mice, in which
synaptic GABA release is absent (Wojcik et al., 2006). Similarly, a
normal neocortical appearance, dendritic arborization and even
synaptic structure has been described in perinatal mice after com-
plete suppression of synaptic release in munc-18 knockout mice
(Verhage et al., 2000; Demarque et al., 2002), again emphasizing
the role of non-vesicular release and extrasynaptic receptors for
early neuronal development.

TONIC CURRENTS REGULATE EXCITATION AFTER GABAergic
SYNAPTOGENESIS
Tonic GABAergic currents also strongly influence the activity of
the immature nervous system after the onset of synaptic activity. As
discussed above, in particular the different subunit composition of
GABAA receptors or distinct distribution and transport modes of
GATs can contribute to these age-dependent effects. For instance
in the rodent hippocampus α5 subunit expression (Ramos et al.,
2004) and, correspondingly, tonic GABAergic currents (Holter
et al., 2010) are up-regulated during the first postnatal week. Due
to the depolarizing GABAergic responses during these stages (Ben-
Ari et al., 2012), these tonic GABAergic currents increase the
excitability of the immature hippocampus (although GABAergic
responses can mediate shunting inhibition even at depolariz-
ing potentials; Kolbaev et al., 2011). Accordingly, early network
oscillations in the hippocampus, which depend on glutamatergic
transmission and membrane properties of intrinsically bursting
pyramidal neurons (Ben-Ari et al., 1989; Bolea et al., 1999; Sip-
ila et al., 2006), are driven by a tonic GABAergic depolarization
of these cells (Sipila et al., 2005). In the early postnatal hip-
pocampus tonic GABAergic currents, mediated by α5 and γ2
subunit containing GABA receptors, enhance the excitability of

pyramidal neurons, but not of interneurons (Marchionni et al.,
2007). Interestingly, in the adult hippocampus moderate tonic
currents are more prominent in interneurons and can even pro-
mote excitation in these cells (Semyanov et al., 2003), although
GABAA receptor activation mediate similar, slightly depolarizing
actions in interneurons at both developmental stages (Banke and
McBain, 2006). Due to this slight depolarizing action, moderate
tonic currents mediate an excitatory action in mature hippocam-
pal interneurons, while shunting inhibition dominates at larger
tonic conductances a (Song et al., 2011).

In the immature hippocampus a moderate increase in tonic
GABAergic currents mediated by α5 containing receptors pro-
mote epileptiform discharges under low-Mg2+ condition, which
are insufficient to induce epileptiform discharges in this prepa-
ration (Kolbaev et al., 2012; Figure 4). In the hippocampus of
early postnatal rats a tonic activation of GABAB receptors does
not control basal or stimulated GABA release (Caillard et al.,
1998), although the GABAB specific agonist Baclofen reduces
the amplitude of GABAergic postsynaptic currents, indicating
the functional expression of GABAB receptors in this structure
(Caillard et al., 1998). In contrast, it has been shown that a tonic
activation of GABAB receptors decreases neurotransmitter release
in GABAergic synapses in early postnatal hippocampus and neo-
cortex (Safiulina and Cherubini, 2009; Dvorzhak et al., 2010). This
observation indicates that ambient GABA can mediate a stringent
feedback control via GABAB receptors during a developing stage
when GABA can generate excitatory responses (Ben-Ari, 2002;
Valeeva et al., 2010). In addition, these presynaptic GABAB recep-
tors may also limit the amount of ambient GABA originating
from synaptic release. However, in summary these results demon-
strate that a tonic activation of GABAA receptors can increase the
excitability in early postnatal circuits.

ORIGIN AND NATURE OF ENDOGENOUS GABAergic
AGONISTS
The important role of GABA for neuronal development was chal-
lenged by the observation that even a complete knockout of both
GAD-65 and GAD-67 did not induce gross disturbances in the
neocortex and hippocampus until P0, albeit a virtually absence
of GABA in the brains of these animals (Ji et al., 1999). Although
this study may refute the importance of GABA as neurotrophic
substance during prenatal development, it can also indicate that
other factors can compensate the lack of GABA or even represent
an additional important trophic neurotransmitter during early
corticogenesis.

In this respect it is important to reconsider that most studies
investigating tonic currents identify such current by the blockade
of GABAA receptors and thus cannot provide any information
about the nature of the endogenous ligand of extrasynaptic GABA
receptors. One intriguing candidate for such a substance is tau-
rine, which is an agonist of GABAA, GABAB, and glycine receptors
(Albrecht and Schousboe, 2005). In rat and human fetal brain tau-
rine is the most abundant neurotransmitter (Das and Ray, 1997;
Benitez-Diaz et al., 2003). In early postnatal cortex a glycinergic
agonist, presumably taurine, is released upon electrical stimula-
tion in a Ca2+ and action potential independent manner (Flint
et al., 1998) and in the presence of a hypoosmolar solution (Flint
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FIGURE 4 |Tonic GABAergic currents can promote epileptiform activity

in the early postnatal hippocampus. (A) Whole cell recording of a CA3
pyramidal neuron in the P4–7 hippocampus. The experiment was performed
in the continuous presence of 40 μM dl-2-amino-5-phosphopentanoic acid
(APV), 10 μM 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX), and 1 μM
gabazine (GBZ) to block synaptic components. Note that bath application
of 1 μM 4,5,6,7-tetrahydroisooxazolo[5,4-c]pyridin-3-ol hydrochloride
(THIP) induced a small tonic current and that the GABAA antagonist

picrotoxin uncovers a tonic GABAergic component. (B) Field potential
recording illustrating that bath application of 1 μM THIP in low-Mg2+
solution induced epileptiform discharges. (C) Statistical analysis
demonstrating that 1 μM THIP significantly increased the incidence of
epileptiform discharges (compared to the control condition in low-Mg2+
solution). This proconvulsive THIP effect was prevented in the presence
of the α5 selective antagonist L-655,708. Modified from Kolbaev et al.
(2012).

et al., 1998; Kilb et al., 2008), indicating that taurine can be release
in the immature central nervous system (CNS) mainly by non-
synaptic processes. Possible release pathways are volume-sensitive
organic osmolyte channels or a reversal of the taurine transporter
(Ando et al., 2012). Analysis of the chemoattractant diffusible
factors released by the CP neurons also identified taurine as a
possible candidate (Behar et al., 2001) and it has been shown by
the same authors that taurine modulates radial migration via acti-
vation of GABAB receptors (Behar et al., 2001). In accordance with
these in vitro studies, migration deficits have been found in kit-
tens born from taurine-deficient mothers (Palackal et al., 1986).
Taurine may, however, act mainly as an agonist for glycine recep-
tors, which have been found in the immature CNS (Wu et al.,
1992; Flint et al., 1998; Kilb et al., 2002; Okabe et al., 2004); which
are supposed to be mainly activated by non-synaptically released
taurine (Mori et al., 2002) and which are also directly involved
in early developmental events like migration (Nimmervoll et al.,
2011).

However, the exact concentrations of interstitial GABA and
taurine are unknown, since most reports document only total neu-
rotransmitter contents. Considering the lack of vGAT and synaptic
release during early development and the high intracellular tau-
rine concentration, the abundance of taurine in the interstitial
space may be considerably higher than that of GABA. On the
other hand, the amount of taurine released by CP neurons is sim-
ilar to the GABA release (Behar et al., 2001), indicating that at
least in this niche GABA will by its substantially higher affinity to
both GABAA and GABAB receptors mediate a more pronounced
effect.

Overall, the observations summarized in this review indi-
cate (i) that the molecular constituents of the GABAergic system
are present at very early developmental stages before the onset
of synaptogenesis, (ii) that tonic GABAergic currents are act-
ing in the developing CNS, (iii) that GABA mediates a trophic

action on neurogenesis, neuronal migration and differentiation in
developmental niches which lack synaptic GABAergic signaling,
and (iv) that tonic GABAergic currents regulate neuronal activ-
ity even after the establishment of reliable GABAergic synaptic
transmission. In summary, all these studies provide compelling
evidence for the important role of extrasynaptic GABAergic sig-
naling during early neuronal development. Accordingly, it has
been found that substances, which interfere with the GABAer-
gic system during such early developmental stages, and thus affect
mostly non-synaptic processes, disturb the proper development of
the central nervous system. For example, antiepileptic drugs act-
ing on GABA mechanisms lead to hippocampal and neocortical
dysplasias, most probably by disturbing proliferation and radial
migration (Manent et al., 2007). Similarly, prenatal exposure to
ethanol, which is supposed to act partially via an activation of δ

subunit containing receptors (Brickley and Mody, 2012), leads to
a decreased proliferation (Jacobs and Miller, 2001) and migra-
tion (Cuzon et al., 2008) of cortical neurons. These examples
demonstrate that the important role of extrasynaptic GABAergic
signaling during neuronal development has to be considered in
therapeutical intervention during pregnancy. On the other hand,
the early expression of different elements of the GABAergic sys-
tem during very early stages of neuronal development emphasizes
the close interaction between genetic programs and functional
responses of neuronal progenitors or neuroblasts. To elucidate
how genetic programs determine the electrical properties of the
developing nervous system and how, vice versa, the tonic activa-
tion of neurotransmitter receptors influence the transcription of
genes will be essential questions for the further comprehension of
early neuronal development.
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