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Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic
dopaminergic pathway. Changes in DA mesolimbic neurotransmission have been found
to modify behavioral responses to various environmental stimuli associated with reward
behaviors. Psychostimulants, drugs of abuse, and natural reward such as food can cause
substantial synaptic modifications to the mesolimbic DA system. Recent studies using
optogenetics and DREADDs, together with neuron-specific or circuit-specific genetic
manipulations have improved our understanding of DA signaling in the reward circuit, and
provided a means to identify the neural substrates of complex behaviors such as drug
addiction and eating disorders. This review focuses on the role of the DA system in drug
addiction and food motivation, with an overview of the role of D1 and D2 receptors in the
control of reward-associated behaviors.
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INTRODUCTION

Dopamine (DA) is the predominant catecholamine neurotrans-
mitter in the brain, and is synthesized by mesencephalic neurons
in the substantia nigra (SN) and ventral tegmental area (VTA). DA
neurons originate in these nuclei and project to the striatum, cor-
tex, limbic system and hypothalamus. Through these pathways,
DA affects many physiological functions, such as the control of
coordinated movements and hormone secretion, as well as moti-
vated and emotional behaviors (Hornykiewicz, 1966; Beaulieu and
Gainetdinov, 2011; Tritsch and Sabatini, 2012).

Regulation of the DA system in reward-related behaviors has
received a great deal of attention because of the serious conse-
quences of dysfunction in this circuit, such as drug addiction
and food reward linked obesity, which are both major public
health issues. It is now well accepted that following repeated
exposure to addictive substances, adaptive changes occur at
the molecular and cellular level in the DA mesolimbic path-
way, which is responsible for regulating motivational behavior
and for the organization of emotional and contextual behaviors
(Nestler and Carlezon, 2006; Steketee and Kalivas, 2011). These
modifications to the mesolimbic pathway are thought to lead
to drug dependence, which is a chronic, relapsing disorder in
which compulsive drug-seeking and drug-taking behaviors per-
sist despite serious negative consequences (Thomas etal., 2008).
Recent findings suggest that glutamatergic and GABAergic synap-
tic networks in the limbic system are also affected by drugs of
abuse, and that this can alter the behavioral effects of addic-
tive drugs (Schmidt and Pierce, 2010; Liischer and Malenka,
2011). Considerable evidence now suggests that substantial synap-
tic modifications of the mesolimbic DA system are associated with
not only the rewarding effects of psychostimulants and other
drugs of abuse, but also with the rewarding effects of natural
reward, such as food; however, the mechanism by which drugs of
abuse induce the modify synaptic strength in this circuit remains
elusive. In fact, DA reward signaling seems extremely complex,
and is also implicated in learning and conditioning processes, as

evidenced by studies revealing a DAergic response coding a pre-
diction error in behavioral learning, for example (Wise, 2004;
Schultz, 2007, 2012), thus suggesting a need for a fine dissec-
tion at a circuit level to properly understand these motivated
reward-related behaviors. Recent studies using optogenetics and
neuron-specific or circuit-specific genetic manipulations are now
allowing a better understanding of DA signaling in the reward
circuit.

In this review, I will provide a short summary of DA signaling
in reward-related behaviors, with an overview of recent studies
on cocaine-addiction behaviors as well as some on food reward in
the context of the role of D1 and D2 receptors in regulating these
behaviors.

DOPAMINE RECEPTORS

Dopamine interacts with membrane receptors belonging to the
family of seven transmembrane domain G-protein coupled recep-
tors, with activation leading to the formation of second mes-
sengers, and the activation or repression of specific signaling
pathways. To date, five different subtypes of DA receptors have
been cloned from different species. Based on their structural and
pharmacological properties, a general subdivision into two groups
has been made: the D1-like receptors, which stimulate intracellular
cAMP levels, comprising D1 (Dearry etal., 1990; Zhou et al., 1990)
and D5 (Grandy etal., 1991; Sunahara etal., 1991), and the D2-
like receptors, which inhibit intracellular cAMP levels, comprising
D2 (Bunzow et al., 1988; Dal Toso etal., 1989), D3 (Sokoloff et al.,
1990), and D4 (Van Tol etal., 1991) receptors.

D1 and D2 receptors are the most abundantly expressed DA
receptors in the brain. The D2 receptor has two isoforms generated
by alternative splicing of the same gene (Dal Toso etal., 1989;
Montmayeur etal., 1991). These isoforms, named D2L and D2S,
are identical except for an insert of 29 amino acids present in the
putative third intracellular loop of D2L, an intracellular domain
thought to play a role in coupling this class of receptor to specific
second messengers.
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D2 receptors are localized presynaptically, revealed by D2
receptor immunoreactivity, mRNA, and binding sites present
in DA neurons throughout the midbrain (Sesack etal., 1994),
with lower level of D2 receptor expression in theVTA than in
the SN (Haber etal., 1995). These D2-type autoreceptors rep-
resent either somatodendritic autoreceptors, known to dampen
neuronal excitability (Lacey etal., 1987, 1988; Chiodo and Kap-
atos, 1992), or terminal autoreceptors, which mostly decrease
DA synthesis and packaging (Onali etal., 1988; Pothos etal,
1998), but also inhibit impulse-dependent DA release (Cass and
Zahniser, 1991; Kennedy et al., 1992; Congar etal., 2002). There-
fore, the principal role of these autoreceptors is the inhibition
and modulation of overall DA neurotransmission; however, it
has been suggested that in the embryonic stage, the D2-type
autoreceptor could have a different function in DA neuronal
development (Kim etal., 2006, 2008; Yoon etal., 2011; Yoon
and Baik, 2013). Thus, the cellular and molecular role of these
presynaptic D2 receptors needs to be explored further. The
expression of D3, D4, and D5 receptors in the brain is consid-
erably more restricted and weaker than that of either D1 or D2
receptors.

There is some difference in the affinity of DA for D1-like
receptors and D2-like receptors, mostly reported on the basis
of receptor-ligand binding assay studies using heterologously
expressed DA receptors in cell lines. For example, D2-like recep-
tors seem to have a 10- to 100-fold greater affinity for DA than
the D1-like family, with the D1 receptor reported to have the
lowest affinity for DA (Beaulieu and Gainetdinov, 2011; Tritsch
and Sabatini, 2012). These differences suggest a differential role
for the two receptors given that DA neurons can have two dif-
ferent patterns of DA release, “tonic” or “phasic” based on their
firing properties (Grace etal., 2007). It has been suggested that
low-frequency, irregular firing of DA neurons tonically gener-
ates a low basal level of extracellular DA (Grace etal., 2007),
while burst firing, or “phasic” activity is crucially dependent
on afferent input, and is believed to be the functionally rel-
evant signal sent to postsynaptic sites to indicate reward and
modulate goal-directed behavior (Berridge and Robinson, 1998;
Schultz, 2007; Grace etal., 2007). Therefore, bursting activ-
ity of DA neurons, leading to a transient increase in the DA
level, is thought to be a key component of the reward circuitry
(Overton and Clark, 1997; Schultz, 2007). Consequently, the
D1 receptor, which is known as the low-affinity DA receptor,
is thought to be preferentially activated by the transient, high
concentrations of DA mediated by phasic bursts of DA neu-
rons (Goto and Grace, 2005; Grace etal., 2007). In contrast,
it is hypothesized that D2-like receptors, which are known to
have a high affinity for DA, can detect the lower levels of tonic
DA release (Goto etal., 2007). However, given that measure-
ments of receptor affinity rely on ligand binding assays from
heterologously expressed DA receptors, and do not reflect the
receptor’s coupling capacity to downstream signaling cascades,
it is difficult to infer whether D2-like receptors are preferen-
tially activated by basal extracellular levels of DA in vivo. Thus,
it remains to be elucidated how these two different recep-
tors participate in different pattern of DA neuronal activity
in vivo.

SIGNALING PATHWAYS MEDIATED BY D1 AND D2
RECEPTORS

The D1- and D2-like receptor classes differ functionally in the
intracellular signaling pathways they modulate. The D1-like
receptors, including D1 and D5, are coupled to heterotrimeric
G-proteins that include the G proteins Gog and Gale, with acti-
vation leading to increased adenylyl cyclase (AC) activity, and
increased cyclic adenosine monophosphate (cAMP) production.
This pathway induces the activation of protein kinase A (PKA),
resulting in the phosphorylation of variable substrates and the
induction of immediate early gene expression, as well as the
modulation of numerous ion channels. In contrast, D2-class
DA receptors (D2, D3, and D4) are coupled to Ga; and Go,
proteins, and negatively regulate the production of cAMP, result-
ing in decreased PKA activity, activation of K* channels, and
the modulation of numerous other ion channels (Kebabian and
Greengard, 1971; Kebabian and Calne, 1979; Missale etal., 1998;
Beaulieu and Gainetdinov, 2011).

One of best-studied substrates of PKA is the DA- and cAMP-
regulated phosphoprotein, Mr ~32,000 (DARPP-32), which is an
inhibitor of protein phosphatase, and is predominantly expressed
in medium spiny neurons (MSNs) of the striatum (Hemmings
etal., 1984a). It appears that DARPP-32 acts as an integrator
involved in the modulation of cell signaling in response to DA in
striatal neurons. It has been demonstrated that phosphorylation
of DARPP-32 at threonine 34 by PKA activates inhibitory function
of DARPP-32 over the protein phosphatase (PP1; Hemmings et al.,
1984a,b). In D1 receptor expressing striatal neurons, D1 receptor
stimulation results in an increased phosphorylation of DARPP-32
in response to PKA activation, while stimulation of D2 receptors
in D2 receptor-expressing neurons reduces the phosphorylation
of DARPP-32 at threonine 34, presumably as a consequence
of reduced PKA activation (Bateup etal., 2008). However, it
appears that a cAMP-independent pathway also participates in
the D2-receptor-mediated regulation of DARPP-32, given that
dephosphorylation of threonine 34 by the calmodulin-dependent
protein phosphatase 2B (PP2B; also known as calcineurin), which
is activated by increased intracellular Ca®*following D2 recep-
tor activation (Nishi etal.,, 1997). These findings suggest that
DA exerts a bidirectional control on the state of phosphoryla-
tion of DARPP-32, a DA-centered signaling molecule. Therefore,
one can imagine that overall, under DA tone, these signaling
pathways mediated by the two classes of receptors can influ-
ence neuronal excitability, and consequently synaptic plasticity,
in terms of their synaptic networks in the brain, given that their
precise signaling varies depending on the cell type and brain region
in which they are expressed (Beaulieu and Gainetdinov, 2011;
Girault, 2012).

In the case of D2 receptors, the situation is further complicated,
as D2 receptors are alternatively spliced, giving rise to isoforms
with distinct physiological properties and subcellular localizations.
The large isoform appears to be expressed dominantly in all brain
regions, although the exact ratio of the two isoforms can vary
(Montmayeur etal., 1991). In fact, the phenotype of D2 recep-
tor total knockout (KO) mice was found to be quite different
from that of D2L KO mice (Baik etal., 1995; Usiello etal., 2000),
indicating that the two isoformsmight have different functions in
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vivo. Recent results from Moyer et al. (2011) support a differential
in vivo function of the D2 isoforms in human brain, showing a role
of two variants of D2 receptor gene with intronic single-nucleotide
polymorphisms (SNPs) in D2 receptor alternative splicing, and
a genetic association between these SNPs and cocaine abuse in
Caucasians (Moyer et al., 2011; Gorwood etal., 2012).

DA-MEDIATED SIGNALING IN ACTIVATION OF
MITOGEN-ACTIVATED PROTEIN KINASES

One signaling pathway of particular interest in neurons is the
mitogen-activated protein kinases, extracellular-signal regulated
kinases (ERK), which are activated by D1 and D2 receptors. It
is now widely accepted that ERK activation contributes to dif-
ferent physiological responses in neurons, such as cell death and
development, as well as synaptic plasticity, and that modulating
ERK activity in the CNS can result in different neurophysiologi-
cal responses (Chang and Karin, 2001; Sweatt, 2004; Thomas and
Huganir, 2004). Additionally, ERK activation can be regulated by
various neurotransmitter systems, a process that can be complex
but is finely tuned depending on the differential regulation of the
signaling pathways mediated by the various neurotransmitters.
Therefore, it is interesting to see what the physiological output
of ERK signaling upon DA stimulation through these receptors
would be.

Results obtained from heterologous cell culture systems sug-
gest that both D1- and D2-class DA receptors can regulate ERK1
and 2 (Choi etal., 1999; Beom etal., 2004; Chen etal., 2004;
Kim etal., 2004; Wang etal., 2005). DI receptor-mediated ERK
singling involves an interaction with the NMDA glutamtate recep-
tor (Valjent etal., 2000, 2005), which has been mostly described
in the striatum. D1 receptor stimulation is not able to mediate
ERK phosphorylation in itself, but rather requires endogenous
glutamate (Pascoli etal., 2011). With D1 receptor activation, acti-
vated PKA can mediate the phosphorylation of DARPP-32 at
its Thr-34, as mentioned above. Phosphorylated DARPP-32 can
act as potent inhibitor of the protein phosphatase PP-1, which
dephosphorylates another phosphatase, the striatal-enriched tyro-
sine phosphatase (STEP). Dephosphorylation of STEP activates its
phosphatase activity, thus allowing STEP to dephosphorylate ERK
(Paul etal., 2003). DARPP-32 also acts upstream of ERK, possi-
bly by inhibiting PP-1, preventing PP-1 from dephosphorylating
MEK, the upstream kinase of ERK (Valjent etal., 2005). Thus, D1
receptor activation acts to increase ERK phosphorylation by pre-
venting its dephosphorylation by STEP, but also by preventing the
dephosphorylation of the upstream kinase of ERK. In addition,
the cross talk between D1 and NMDA receptors contributes to the
ERK activation. For example, a recent study showed that stimu-
lation of D1 receptors increases calcium influx through NMDA
receptors, a process that involves phosphorylation of the NMDA
receptor NR2B subunit by a Src-family tyrosine kinase (Pascoli
etal., 2011). This increased calcium influx activates a number of
signaling pathways, including calcium and calmodulin-dependent
kinase II, which can activate ERK via the Ras-Raf-MEK cascade
(Fasano etal., 2009; Shiflett and Balleine, 2011; Girault, 2012).
Consequently, DI receptor-mediated ERK activation employs a
complex regulation by phosphatases and kinases in addition to
the cross talk with glutamate receptor signaling (Figure 1).

D1R Doparr:il; 1/
AC “6 Jl’

Phosphorylation of target substrates

FIGURE 1| D1 receptor-mediated ERK activation signaling pathway.
D1 receptormediated ERK singling involves interaction with the NMDA
glutamtate receptor (see text), which is expressed predominantly in the
striatum. The stimulation of D1 receptors is not able to mediate ERK
phosphorylation per se, but rather requires endogenous glutamate (Pascoli
etal., 2011). Stimulation of D1 receptors increases calcium influx through
NMDA receptors, which involves phosphorylation of the NMDA receptor
NR2B subunit by a Src-family tyrosine kinase (Pascoli etal., 2011). This
increased calcium influx activates a number of signaling pathways,
including calcium and calmodulin-dependent kinase Il (CamKIl), which can
activate ERK via the Ras-Raf-MEK cascade (Fasano etal., 2009; Shiflett and
Balleine, 2011; Girault, 2012). Upon D1 receptor activation, activated PKA
can mediate phosphorylation of DARPP-32 and phosphorylated DARPP-32
can act as potent inhibitor of the protein phosphatase (PP-1), which
dephosphorylates another phosphatase, the striatal-enriched tyrosine
phosphatase (STEP). Dephosphorylation of STEP activates its phosphatase
activity, thus allowing STEP to dephosphorylate ERK. DARPP-32 also acts
upstream of ERK, possibly by inhibiting PP-1, which prevents PP-1 from
dephosphorylating MEK, the upstream kinase of ERK. Thus, D1 receptor
activation increases ERK phosphorylation by preventing its
dephosphorylation by STEP but also by preventing the dephosphorylation
of the upstream kinase of ERK, indicating that D1 receptormediated ERK
activation involved a complex regulation by phosphatases and kinases in
addition to the cross talk with glutamate receptor signaling.
Phosphorylation status is only notified for DARPP32 and STEP in this figure.

D2 receptor-mediated ERK activation has been reported in
heterologous cell culture systems (Luo etal., 1998; Welsh etal,,
1998; Choi etal., 1999). D2 receptor-mediated ERK activation
was found to be dependent on Ga; protein coupling, and it
appears thatit requires the transactivation of receptor tyrosine
kinase, which activates downstream signaling to finally acti-
vate ERK (Choi etal., 1999; Kim etal., 2004; Wang etal., 2005;
Yoon etal., 2011; Yoon and Baik, 2013). Arrestin has been also
suggested to contribute to D2 receptor-mediated ERK activa-
tion (Beom etal., 2004; Kim etal., 2004), which can activate
MAPK signaling by mobilizing clathrin-mediated endocytosis
in a B-arrestin/dynamin-dependent manner (Kim etal., 2004).
A further possibility of D2 receptorscoupling to Gq proteins
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FIGURE 2 | D2 receptor-mediated ERK activation signaling pathway.
D2 receptormediated ERK activation is dependent on Go; protein coupling.
It also appears that D2 receptor-mediated ERK activation requires the
transactivation of receptor tyrosine kinase, which consequently activates
downstream signaling involving matrix metalloproteinases (MMPs) with
ectodomain shedding of EGFR ligand, for example, to finally activate ERK
(Choi etal., 1999; Kim etal., 2004; Wang etal., 2005; Yoon etal., 2011; Yoon
and Baik, 2013). The involvement of arrestin has also been suggested to
contribute to D2 receptormediated ERK activation (Beom etal., 2004; Kim
etal., 2004), which can activate MAPK signaling by mobilizing clathrin-
mediated endocytosis in a -arrestin/dynamin-dependent manner (Kim
etal., 2004).

cannot be ruled out; in this case, Gq protein-mediated PKC
activation could also induce ERK activation (Choi etal., 1999;
Figure 2).

In view of the physiological role of this DA receptor-mediated
ERK signaling, it has been shown that in mesencephalic neurons,
DA activates ERK signaling via mesencephalic D2 receptors, which
in turn activates the transcription factors such as Nurrl, a tran-
scription factor critical for the development of DA neurons (Kim
etal., 2006). Furthermore, our recent work demonstrated that
STEP or Wnt5a can be involved in this regulation, by interacting
with D2 receptors (Kim etal., 2008; Yoon etal., 2011). In light of
these findings, it is intriguing whether this signaling can play a role
in DA neurotransmission in the adult brain.

However, in the dorsal striatum, administration of the typical
anti-psychotic D2-class receptor antagonist haloperidol stimu-
lated the phosphorylation of ERK1/2, while the atypical anti-
psychotic clozapine, which is also a D2-class antagonist, reduced
ERK1/2 phosphorylation, showing that haloperidol and clozapine
induce distinct patterns of phosphorylation in the dorsal striatum
(Pozzi etal., 2003). Thus, the physiological relevance of this D2
receptor- medlated ERK signaling remains as an open issue.

Taken together, it is evident that Dland D2 receptors induce
ERK activation via distinct mechanisms, and one can imagine
that activation of these receptors can have different consequences,

depending on the location and physiological status of the neurons
expressing them.

ROLE OF D1 AND D2 RECEPTORS IN DRUG INDUCED
BEHAVIORS

The role of D1 and D2 receptors in reward-related behaviors has
been investigated pharmacologically using subtype specific ago-
nists and antagonists, as well as by the analysis of receptor gene
KO mice. Recent progress in optogenetics and the use of viral
vectors with different genetic manipulations now allow a refined
examination of the functional importance of these receptors in
vivo (Table 1).

COCAINE-INDUCED BEHAVIORAL SENSITIZATION

Exposure to a psychostimulant such as cocaine induces a pro-
gressive and enduring enhancement in the locomotor stimulant
effect of subsequent administration, a phenomenon known as
sensitization (Robinson and Berridge, 1993; Vanderschuren and
Kalivas, 2000; Kalivas and Volkow, 2005; Steketee and Kalivas,
2011). The process of behavioral sensitization includes two dis-
tinct phases; initiation and expression. The initiation phase refers
to the period during which the increased behavioral response fol-
lowing daily cocaine administration is associated with an increase
in extracellular DA concentration. Behavioral sensitization con-
tinues to increase after the cessation of cocaine administration,
and this procedure produces long-lasting sensitization, known as
the expression of sensitization (Vanderschuren and Kalivas, 20005
Thomas etal., 2001; Steketee and Kalivas, 2011). The expression
phase is characterized by a persistent drug hyper-responsiveness
after cessation of the drug, which is associated with a cascade
of neuroadaptation (Kalivas and Duffy, 1990; Robinson and
Berridge, 1993). While this phenomenon has been studied mostly
in experimental animals, the neuronal plasticity underlying behav-
ioral sensitization is believed to reflect the neuroadaptations that
contribute to compulsive drug cravings in humans (Robinson and
Berridge, 1993; Kalivas et al., 1998). It has been suggested that the
mesolimbic DA system from the VTA to the nucleus accumbens
(NAc) and prefrontal cortex is an important mediator of these
plastic changes, in association with the glutamatergic circuitry
(Robinson and Berridge, 1993; Kalivas et al., 1998; Vanderschuren
and Kalivas, 2000).

Animals behaviorally sensitized to cocaine, amphetamine,
nicotine, or morphine (Kalivas and Duffy, 1990; Parsons and Jus-
tice, 1993) show enhanced DA release in the NAc in response to
drug exposure. In addition to changes in neurotransmitter release,
DA binding to its receptors plays a key role in behavioral sensi-
tization (Steketee and Kalivas, 2011). For example, the enhanced
excitability of VTA DA neurons that occurs with repeated cocaine
exposure is associated with decreased D2 autoreceptor sensitivity
(White and Wang, 1984; Henry etal., 1989). In addition, repeated
intra-VTA injections of low doses of the D2 antagonist eticlopride,
which is presumably autoreceptor-selective, enhanced subsequent
responses to amphetamine (Tanabe etal., 2004).

A number of studies have shown that D1 and D2 DA recep-
tors are differentially involved in cocaine-induced changes in
locomotor activity. For example, initial studies employing phar-
macological approaches have shown that mice or rats pre-treated
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with the D1 receptor antagonist SCH 23390 showed an attenu-
ated locomotor response to acute cocaine challenge, while the D2
receptor antagonists haloperidol, and raclopride had no such effect
(Cabib etal., 1991; Ushijima et al., 1995; Hummel and Unterwald,
2002). These results suggest different roles of DA receptor subtypes
in the modulation of the stimulant effects of cocaine on locomo-
tion. However, with regards to the behavioral sensitization induced
by repetitive injections of cocaine, it has been reported that sys-
temic administration of the D1 receptor antagonist SCH23390,
or of the D2 receptor antagonists sulpiride, YM-09151-2 or eti-
clopride, does not affect the induction of cocaine sensitization
(Kuribara and Uchihashi, 1993; Mattingly etal., 1994; Steketee,
1998; White et al., 1998; Vanderschuren and Kalivas, 2000).

The effects of direct intra-accumbens administration of
SCH23390 on cocaine-induced locomotion, sniffing, and condi-
tioned place preference (CPP) were investigated in rats, and these
studies showed that the stimulation of D1-like receptors in the
NAc is necessary for cocaine-CPP, but not for cocaine-induced
locomotion (Baker etal., 1998; Neisewander etal., 1998). The
direct intra-accumbens infusion of the D2/D3 receptor antago-
nist sulpiride in rats demonstrated that blockade of D2 receptors
reverses the acute cocaine-induced locomotion (Neisewander
etal., 1995; Baker etal., 1996), but these studies did not examine
the effect on cocaine-induced behavioral sensitization. Interest-
ingly, it has been reported that injection of the D2 receptor
agonist quinpirole into the intra-medial prefrontal cortex blocked
the initiation and attenuated the expression of cocaine-induced
behavioral sensitization (Beyer and Steketee, 2002).

D1 receptor null mice have been examined in the context of
addictive behaviors, and initial studies revealed that D1 receptor
mutant mice failed to exhibit the psychomotor stimulant effect of
cocaine on motor and stereotyped behaviors compared to their
wild-type littermates (Xu etal., 1994; Drago etal., 1996). How-
ever, it appears that D1 receptor KO abolishes the acute locomotor
response to cocaine, but does not fully prevent locomotor sensiti-
zation to cocaine at all doses (Karlsson et al., 2008), demonstrating
that genetic KO of DI receptors is not sufficient to fully block
cocaine sensitization under all conditions.

In D2 receptor KO mice, with reduced general locomotor activ-
ity, the cocaine-induced motor activity level is low compared to
WT mice, but these animals were similar in terms of the ability
to induce cocaine-mediated behavioral sensitization, or cocaine-
seeking behaviors with a slight decrease in sensitivity (Chausmer
etal., 2002; Welter etal., 2007; Sim etal., 2013). Depletion of D2
receptors in the NAc by infusion of a lentiviral vector with a shRNA
against the D2 receptor did not affect basal locomotor activ-
ity, nor cocaine-induced behavioral sensitization, but conferred
stress-induced inhibition of the expression of cocaine-induced
behavioral sensitization (Sim et al., 2013). These findings, together
with previous reports, strongly suggest that blockade of D2 recep-
tors in the NAc does not prevent cocaine-mediated behavioral
sensitization, and that D2 receptor in the NAc play a distinct role
in the regulation of synaptic modification triggered by stress and
drug addiction.

Recent studies using genetically engineered mice that express
Cre recombinase in cell-type specific manner, revealed some
role of D1 or D2 receptor-expressing MSNs in cocaine-addictive

behaviors. For example, loss of DARPP-32 in D2 receptor-
expressing cells resulted in an enhanced acute locomotor response
to cocaine (Bateup, 2010). Hikida and co-workers used AAV vec-
tors to express tetracycline-repressive transcription factor (tTa)
using substance P (for D1-expressing MSNs) or enkephalin (for
D2-expressing MSNs) promoters (Hikida etal., 2010). These vec-
tors were injected into the NAc of mice, in which tetanus toxin light
chain (TN) was controlled by the tetracycline-responsive element,
to selectively abolish synaptic transmission in each MSN subtype.
Reversible inactivation of D1/D2 receptor-expressing MSNs with
the tetanus toxin (Hikida etal., 2010) revealed the predominant
roles of the D1 receptor-expressing cells in reward learning and
cocaine sensitization, but there was no change in sensitization
caused by the inactivation of D2 receptor-expressing cells. Using
DREADD (designer receptors exclusively activated by a designer
drugs) strategies, with viral-mediated expression of an engineered
GPCR (Gj/o-coupled human muscarinic M4,DREADD receptor,
hM,D) that is activated by an otherwise pharmacologically inert
ligand, Ferguson etal. (2011) showed that the activation of stri-
atal D2 receptor-expressing neurons facilitated the development
of amphetamine-induced sensitization. However, the optogenetic
activation of D2 receptor-expressing cells in the NAc induced no
change in cocaine-induced behavioral sensitization (Lobo, 2010).

Optogenetic inactivation of DI receptor-expressing MSNs
using the light activated chloride pump, halorhodopsin eNpHR3.0
(enhanced Natronomonas pharaonis halorhodopsin 3.0), during
cocaine exposure resulted in an attenuation of cocaine-induced
locomotor sensitization (Chandra etal., 2013). Furthermore, the
conditional reconstruction of functional D1 receptor signaling
in subregions of the NAc in D1 receptor KO mice resulted in
D1 receptor expression in the core region of the NAc, but not
the shell, mediated D1 receptor-dependent cocaine sensitization
(Gore and Zweifel, 2013). These findings suggest that DA mecha-
nisms critically mediate cocaine-induced behavioral sensitization,
with distinct roles for D1 and D2 receptors, although the pre-
cise contribution of D1 and D2 receptors and their downstream
signaling pathways remains to be determined.

CONDITIONED PLACE PREFERENCE
The CPP paradigm is a commonly used preclinical behavioral
test with a classical (Pavlovian) conditioning model. During the
training phase of CPP, one distinct context is paired with drug
injections, while another context is paired with vehicle injections
(Thomas etal., 2008). During a subsequent drug-free CPP test, the
animal chooses between the drug- and the vehicle-paired contexts.
An increased preference for the drug context serves as a measure
of the drug’s Pavlovian reinforcing effects (Thomas et al., 2008).
Although it has been previously reported that both systemic
and intra-accumbens administration of the D1 receptor antago-
nist SCH23390 prevented cocaine CPP (Cervo and Samanin, 1995;
Baker etal., 1998), D1 receptor mutant mice have been reported to
demonstrate normal responses to the rewarding effects of cocaine
in the CPP paradigm (Miner etal., 1995; Karasinska etal., 2005).
Regarding the role of D2 receptors in CPP, there is considerable
consensus in the literature that D2-like antagonists fail to influence
place preference induced by cocaine (Spyraki et al., 1982; Shippen-
berg and Heidbreder, 1995; Cervo and Samanin, 1995; Nazarian
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etal,, 2004). Consistent with these pharmacological studies, D2
receptor KO mice displayed a comparable CPP score to WT mice
(Welter etal., 2007; Sim et al., 2013). Furthermore, D2L—/— mice
developed a CPP to cocaine as did WT mice (Smith etal., 2002).

Recently, the effect of a conditional presynaptic KO of D2
receptors on addictive behaviors has been reported, and this
study demonstrated that mice lacking D2 autoreceptors displayed
cocaine supersensitivity, exhibited increased place preference for
cocaine, as well as enhanced motivation for food reward, perhaps
owing to the absence of presynaptic inhibition by autorecep-
tors that further elevates extracellular DA and maximizes the
stimulation of postsynaptic DA receptors (Bello etal., 2011).

Results obtained from a different line of investigation showed
that when D1-expressing MSNs are selectively activated by opto-
genetics, D1-Cre mice expressing DIO-AAV-ChR2-EYFP in the
NAc displayed a significant increase in cocaine/blue-light prefer-
ence compared to the control group (Lobo, 2010). In contrast,
D2-Cre mice expressing DIO-AAV-ChR2-EYFP exhibited a sig-
nificant attenuation of cocaine/blue-light preference relative to
controls (Lobo, 2010), implicating a role for the activation of D1-
expressing MSNs in enhancing the rewarding effects of cocaine,
with activation of D2-expressing MSNs antagonizing the cocaine
reward effect. Inhibition of D1-expressing MSNs with the tetanus
toxin (Hikida etal., 2010) resulted in a diminished cocaine CPP,
while no alterations to cocaine CPP after abolishing synaptic trans-
mission in D2-expressing MSNs were observed (Hikida etal,
2010). Therefore, these data using optogenetics and cell-type
specific inactivation of neurons implicate opposing roles of D1-
and D2-expressing MSNs in CPP, with D1 receptor-expressing
MSNs implicated in promoting both reward responses to psychos-
timulants, and D2 receptor-expressing MSNs dampening these
behaviors (Lobo and Nestler, 2011).

COCAINE SELF-ADMINISTRATION AND COCAINE-SEEKING BEHAVIORS
Cocaine self-administration is an operant model in which lab-
oratory animals lever press (or nose poke) for drug injections.
The “self-administration” behavioral paradigm serves as an ani-
mal behavioral model of the human pathology of addiction
(Thomas etal., 2008). It has been reported that selective lesion
of DA terminals with 6-hydroxy DA (6-OHDA), or with the neu-
rotoxin kainic acid in the NAc significantly attenuates cocaine
self-administration, supporting the hypothesis that the reinforc-
ing effects of cocaine are dependent upon mesolimbic DA (Pettit
etal., 1984; Zito etal., 1985; Caine and Koob, 1994). Consistent
with these findings, in vivo microdialysis studies demonstrate
that accumbal extrasynaptic DA levels are enhanced during
cocaineself-administration in both the rat (Hurd etal., 1989;
Pettit and Justice, 1989) and monkey (Czoty etal., 2000). Collec-
tively, these findings suggest that enhanced DA transmission in the
NAc plays a crucial role in cocaine self-administration behavior.
DA receptor antagonists and agonists modulate cocaine self-
administration, showing a dose-dependent biphasic effect. For
example, selective antagonists for both D1 (Woolverton, 1986;
Britton etal., 1991; Hubner and Moreton, 1991; Vanover etal.,
1991; Caine and Koob, 1994) and D2 (Woolverton, 1986;
Britton etal., 1991; Hubner and Moreton, 1991; Caine and Koob,
1994) receptors increase cocaine self-administration in response

to lower doses of antagonist, but decrease self-administration in
response to higher doses. This modulation appears to be specific
when injected into the NAc but not the caudate nucleus, indicating
a distinct role of NAc DA receptors in cocaine self-administration
behaviors.

Later, using D1 and D2 receptor null mice, the involvement of
these receptors in the cocaine self-administration was examined.
Interestingly, despite the observation of normal cocaine CPP in D1
receptor KO mice, cocaine self-administration was eliminatedin
these mice (Caine etal., 2007). In D2 receptor KO mice how-
ever, self-administration of low to moderate doses of cocaine was
unaffected, while self-administration of moderate to high doses
of cocaine was actually increased (Caine etal., 2002). Recently,
Alvarez and co-workers reported that synaptic strengthening onto
D2-expressing MSNs in the NAc occurs in mice with a history of
intravenous cocaine self-administration (Bock etal., 2013). Inhi-
bition of D2-MSNs using a chemicogenetic approach enhanced
the motivation to obtain cocaine, while optogenetic activation of
D2-MSNs suppressed cocaine self-administration, suggesting that
recruitment of D2-MSNs in the NAc functions to restrain cocaine
self-administration (Bock etal., 2013).

Studies investigating the reinstatement of cocaine-seeking
behavior revealed that the administration of D2 receptor agonists
reinstates cocaine-seeking behavior (Self et al., 1996; De Vries et al.,
1999, 2002; Spealman et al., 1999; Khroyan et al., 2000; Fuchs et al.,
2002). Consistent with these findings, D2 receptor antagonists
attenuate cocaine priming-induced drug-seeking behavior (Speal-
man etal.,, 1999; Khroyan etal., 2000), while pre-treatment with
a D2-like agonist prior to a priming injection of cocaine poten-
tiated the behavior (Self etal., 1996; Fuchs etal., 2002). However,
it appears that D1-like receptor agonists do not reinstate cocaine-
seeking behavior (Self etal., 1996; De Vries etal., 1999; Spealman
etal., 1999; Khroyan et al., 2000). In fact, systemically administered
D1-like agonists and antagonists both attenuate the drug-seeking
behavior induced by a priming cocaine injection (Self et al., 1996;
Norman etal., 1999; Spealman etal., 1999; Khroyan et al., 2000,
2003), showing a differential involvement of D1 and D2 receptors
in priming-induced reinstatement of cocaine seeking.

Results from our laboratory indicate that in the absence of D2
receptors, cocaine-induced reinstatement was not affected (Sim
etal., 2013). It is suggested that the reinstatement of drug-seeking
behavior can also be precipitated by re-exposure to cocaine-
associated stimuli or stressors (Shaham etal., 2003). When this
possibility was tested, results from our laboratory found that while
stress potentiates the cocaine-induced reinstatement in WT mice,
stress suppressed the cocaine-induced reinstatement in the D2
receptor mutant animals, suggesting an unexplored role of D2
receptors in the regulation of synaptic modification triggered by
stress and drug addiction (Sim etal., 2013).

DOPAMINE SIGNALING IN FOOD REWARD

Food and food-related cues can activate different brain circuits
involved in reward, including the NAc, hippocampus, amygdala
and/or pre-frontal cortex and midbrain (Palmiter, 2007; Kenny,
2011). It is believed that the mesolimbic DA system promotes the
learning of associations between natural reward and the environ-
ments in which they are found; thus, food and water, or cues
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that predict them, promote rapid firing of DA neurons, and facili-
tate behaviors directed toward acquisition of the reward (Palmiter,
2007). Indeed DA-deficient mice show a loss of motivation to feed
(Zhou and Palmiter, 1995), while D1 receptor null mice exhibit
retarded growth and low survival after weaning; this phenotype
can be rescued by providing KO mice with easy access to a palatable
food, suggesting that the absence of D1 receptor is more related to
amotor deficit (Drago etal., 1994; Xu etal., 1994). In contrast, D2
receptor KO mice show reduced food intake and body weight along
with an increased basal energy expenditure level compared to their
wild type littermates (Kim et al., 2010). Therefore, it is difficult to
delineate the exact role of the DA system and of the receptor sub-
types in food reward. Nevertheless, most human studies indicate
the importance of the D2 receptor in the regulation of food reward
in association with obesity.

D2 RECEPTOR EXPRESSION IN FOOD REWARD

Increasing evidence suggests that variations in DA receptors and
DA release play a role in overeating and obesity, especially in associ-
ation with striatal D2 receptor function and expression (Stice et al.,
2011; Salamone and Correa, 2013). In animal studies, it has been
shown that feeding increases the extracellular DA concentration
in the NAc (Bassareo and Di Chiara, 1997), in a similar manner
to drugs of abuse. However, in contrast to its effect on behaviors
related to drug addiction, NAc DA depletion alone does not alter
feeding behavior (Salamone etal., 1993). It appears that the phar-
macological blockade of D1 and D2 receptors in the NAc affects
motor behavior, amount and duration of feeding, but it does not
reduce the amount of food consumed (Baldo etal., 2002). Inter-
estingly, recent data showed that binge eating was ameliorated
by the acute administration of unilateral NAc shell deep brain
stimulation, and this effect was mediated in part by activation of
the D2 receptor, while deep brain stimulation of the dorsal stria-
tum had no influence on this behavior (Halpern etal., 2013) in
mice. However, it has been reported that when exposed to the
same high-fat diet, mice with a lower density of D2 receptors in
the putamen exhibit more weight gain than mice with a higher
density of D2 receptorsin the same region (Huang etal., 2006).
This study compared DAT and D2 receptor densities in chronic,
high-fat diet-induced obese, obese-resistant and low-fat-fed con-
trol mice, and found that D2 receptor density was significantly
lower in the rostral part of caudate putamen in chronic high-fat
diet-induced obese mice compared to obese-resistant and low-
fat-fed control mice (Huang etal., 2006). This low level of D2
receptor may be associated with altered DA release, and it has also
been reported that consumption of a high-fat, high-sugar diet
leads to the downregulation of D2 receptors (Small etal., 2003)
and reduced DA turnover (Davis et al., 2008).

In human studies, obese people and drug addicts both tend
to show reduced expression of D2 receptors in striatal areas,
and imaging studies have demonstrated that similar brain areas
are activated by food- and drug-related cues (Wang etal., 2009).
Positron emission tomography (PET) studies suggest that the
availability of D2 receptors was decreased in obese individuals
in proportion to their body mass index (Wang etal., 2001), thus
suggesting that DA deficiency in obese individuals may perpetuate
pathological eating as a means of compensating for the decreased

activation of DA-mediated reward circuits. Volkow and co-workers
also reported that obese versus lean adults show less striatal D2
receptor binding, and that this was positively correlated with
metabolism in the dorsolateral prefrontal, medial orbitofrontal,
anterior cingulate gyrus and somatosensory cortices (Volkow et al.,
2008). This observation led to a discussion over whether decreases
in striatal D2 receptors could contribute to overeating via the mod-
ulation of striatal prefrontal pathways that participate in inhibitory
control and salience attribution, and whether the association
between striatal D2 receptors and metabolism in the somatosen-
sory cortices (regions that process palatability) could underlie one
of the mechanisms through which DA regulates the reinforcing
properties of food (Volkow etal., 2008).

Stice and co-workers used functional magnetic resonance imag-
ing (fMRI) to show that individuals may overeat to compensate
for a hypofunctioning dorsal striatum, particularly those with
genetic polymorphisms of an Al allele of the TaqIA in D2 recep-
tor (DRD2/ANKK1) gene, which is associated with lower striatal
D2 receptor density and attenuated striatal DA signaling (Stice
etal., 2008a,b). These observations indicate that individuals who
show blunted striatal activation during food intake are at risk for
obesity, particularly those also at genetic risk for compromised
DA signaling in brain regions implicated in food reward (Stice
etal., 2008a,2011). However, recent data showed that obese adults
with or without binge eating disorder had a distinct genetic poly-
morphism of the TaqIA D2 receptor (DRD2/ANKK1I) gene (Davis
etal., 2012); therefore, it is plausible that similar brain DA systems
are disrupted in both food motivation and drug addiction, even
though it is not yet clear what these DA receptor data represent
from the functional perspective of DA neurotransmission in brain.

As in obese people, low D2 receptor availability is associ-
ated with chronic cocaine abuse in humans (Volkow etal., 1993;
Martinez etal., 2004). In contrast, overexpression of D2 receptors
reduces the self-administration of alcohol in rats (Thanos etal.,
2001). In humans, a higher-than-normal D2 receptor availabil-
ity in non-alcoholic members of alcoholic families was reported
(Volkow et al., 2006; Gorwood et al., 2012), supporting the hypoth-
esis that low levels of D2 receptors may be associated with an
increased risk of addictive disorders. Therefore, it is possible that
in the brains of both obese individuals and chronic drug abusers,
there are low basal DA concentrations, and periodic exaggerated
DA release associated with either food or drug intake, along with
low expression, or dysfunctional D2 receptors.

Dopamine receptor expression levels in other areas of the brain
may also be important. For example, Fetissovet al. (2002) observed
that obese Zucker rats, which display a feeding pattern consisting
of large meal size and small meal number, have a comparatively low
level of D2 receptor expression in the ventromedial hypothalamus
(VMH). Interestingly, in their study, when a selective D2 receptor
antagonist, sulpiride was injected into the VMH of obese and
lean rats, a hyperphagic response was elicited only in the obese
rats, suggesting that by aggravating the already low level of D2
receptors, it was possible to increase food intake. This low D2
receptor expression may cause an exaggerated DA release in obese
rats during food ingestion and a reduced satiety feedback effect of
DA, which would facilitate DA release into the brain areas “craving”
for DA (Fetissov etal., 2002).
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Recently, in an elegant study conducted by Johnson and Kenny
(2010), it was observed animals provided with a “cafeteria diet”
consisting of a selection of highly palatable energy-dense food
gained weight, demonstrating compulsive eating behavior. In
addition to their excessive adiposity and compulsive-like eat-
ing, cafeteria diet rats also had decreased D2 receptor expression
in the striatum. Surprisingly, lentivirus-mediated knockdown
of striatal D2 receptors rapidly accelerated the development of
addiction-like reward deficits, and the onset of compulsive-like
food-seeking behaviorin rats with extended access to palatable
high-fat food (Johnson and Kenny, 2010), again indicating that
common hedonic mechanisms may therefore underlie obesity and
drug addiction. However, our own laboratory found somewhat
unexpected results showing that D2 KO mice have a lean phe-
notype with enhanced hypothalamic leptin signaling compared
to WT mice (Kim etal., 2010). Therefore, we cannot rule out
that the D2 receptor plays a role in the homeostatic regulation of
metabolism in association with a regulator of energy homeostasis
such as leptin, in addition to its role in food motivation behav-
ior. An animal model with a genetically manipulated conditional
restriction of the D2 receptor in leptin receptor-expressing cells
for example, or other reward-related neuronal cells, together with
neural integrative tools, could potentially elucidate the role of the
DA system via D2 receptors in food reward and the homeostatic
regulation of food intake.

DOPAMINERGIC REWARD SIGNALING LINKED TO HOMEOSTATIC
FEEDING CIRCUIT

Increasing evidence indicates that homeostatic regulators of food
intake, such as leptin, insulin, and ghrelin, control and interact
with the reward circuit of food intake, and thus regulate behavioral
aspects of food intake and conditioning to food stimuli behav-
iors (Abizaid et al., 2006; Fulton et al., 2006; Hommel et al., 2006;
Baicy et al., 2007; Farooqi et al., 2007; Palmiter, 2007; Konner et al.,
2011; Volkow etal., 2011). Recent findings reveal that hormones
implicated in regulating energy homeostasis also impinge directly
on DA neurons; for example, leptin and insulin directly inhibit
DA neurons, while ghrelin activates them (Palmiter, 2007; Kenny,
2011).

Hommel and co-workers demonstrated that VTA DA neu-
rons express leptin receptor mRNA, and respond to leptin with
the activation of an intracellular JAK-STAT (Janus kinase-signal
transducer and activator of transcription) pathway, which is the
major pathway involved in leptin receptor downstream signaling,
as well as a reduction in the firing rate of DA neurons (Hom-
mel etal., 2006). This study showed that direct administration of
leptin to the VTA caused decreased food intake, while long-term
RNAi-mediated knockdown of leptin receptors in the VTA led to
increased food intake, locomotor activity, and sensitivity to highly
palatable food. These data support a critical role for VTA leptin
receptorsin regulating feeding behavior, and provide functional
evidence for the direct action of a peripheral metabolic signal on
VTA DA neurons. These results are consistent with the idea that
leptin signaling in the VTA normally suppresses DA signaling, and
consequently decreases both food intake and locomotor activity.
This suggests a physiological role for leptin signaling in the VTA,
although the authors did not demonstrate that the effect of the

virus injection on feeding was correlated directly with increased
DA signaling (Hommel et al., 2006).

Fulton and co-workers also investigated the functional signif-
icance of leptin action in VTA DA neurons, to expand under-
standing of the multiple actions of leptin in the DA reward circuit
(Fulton etal., 2006). Using double-label immunohistochemistry,
they observed increased STAT3 phosphorylation in the VTA fol-
lowing peripheral leptin administration. These pSTAT3-positive
neurons colocalized with DA neurons, and to a lesser extent with
markers for GABA neurons. Retrograde neuronal tracing from
the NAc revealed colocalization of the tracer with pSTAT3, indi-
cating that a subset of VTA DA neurons expressing leptin receptors
project to the NAc. When they assessed leptin function in the VTA,
they found that ob/ob mice had a diminished locomotor response
to amphetamine, and lacked locomotor sensitization to repeated
amphetamine injections, with both defects being reversed by lep-
tin infusion, thus indicating that the mesoaccumbens DA pathway,
critical to integrating motivated behavior, also responds to this
adipose-derived signal (Fulton etal., 2006). These lines of evi-
dence importantly suggested the action of leptin in the DA reward
system. However, given that physiological level of leptin receptor
expression appear to be very low in the midbrain, normal cir-
culating leptin levels seem to have little effect on leptin receptor
signaling within the VTA. Thus, whether in vivo leptin can exert
an significant effect to inhibit DA neuron activity through their
receptors in VTA remains questionable (Palmiter, 2007).

There are also human studies showing that leptin can indeed
control rewarding responses. Farooqi and co-workers reported
that patients with congenital leptin deficiency displayed activation
of DA mesolimbic targets (Farooqi etal., 2007). In the leptin-
deficient state, images of well-liked foods engendered a greater
wanting response, even when the subject has just been fed, while
after leptin treatment, well-liked food images engendered this
response only in the fasted state, an effect consistent with the
response in control subjects. Leptin reduces activation in the NAc-
caudate, and mesolimbic activation (Farooqi etal., 2007). Thus,
this study suggests that leptin diminished the rewarding responses
to food, acting on the DA system (Farooqi etal., 2007; Volkow
etal, 2011). Another fMRI study by Baicy etal., also performed
with patients with congenital leptin deficiency, showed that during
viewing of food-related stimuli, leptin replacement reduced neural
activation in brain regions linked to hunger (the insula, parietal
and temporal cortex), while enhancing activation in regions linked
to inhibition and satiety (the prefrontal cortex; Baicy etal., 2007).
Therefore, it appears that leptin acts on neural circuits involved in
hunger and satiety with inhibitory control.

Another peptide hormone, ghrelin, which is produced in the
stomach and pancreas, is known to increase appetite and food
intake (Abizaid et al., 2006). The ghrelin receptor growth hormone
secretagogue 1 receptor (GHSR) is present in hypothalamic cen-
ters as well as in the VTA. Abizaid and co-workers showed that in
mice and rats, ghrelin bound to neurons of the VTA, where it trig-
gered increased DA neuronal activity, synapse formation, and DA
turnover in the NAc, in a GHSR-dependent manner. In addition,
they demonstrated that direct VTA administration of ghrelin also
triggered feeding behavior, while intra-VTA delivery of a selective
GHSR antagonist blocked the orexigenic effect of circulating
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ghrelin, and blunted rebound feeding following fasting, suggest-
ing that the DA reward circuitry is targeted by ghrelin to influence
motivation for food (Abizaid et al., 2006).

Insulin, which is one of the key hormones involved in the regu-
lation of glucose metabolism, and inhibits feeding, has been shown
to also regulate the DA system in the brain. Insulin receptors are
expressed in brain regions that are rich in DA neurons, such as
the striatum and midbrain (Zahniser etal., 1984; Figlewicz etal.,
2003), suggesting a functional interaction between the insulin and
DA systems. Indeed, it has been shown that insulin acts on DA
neurons, and infusion of insulin into the VTA decreases food
intake in rats (Figlewicz et al., 2008; Bruijnzeel etal., 2011). Recent
studies on the selective deletion of insulin receptors in midbrain
DA neurons in mice demonstrated that this manipulation results
in increased body weight, increased fat mass, and hyperphagia
(Konner etal., 2011). While insulin acutely stimulated firing fre-
quency in 50% of dopaminergic VTA/SN neurons, this response
was abolished in those mice with the insulin receptor selectively
deleted in DA neurons. Interestingly, in these mice, D2 receptor
expression in the VTA was decreased compared to control mice.
Moreover, these mice exhibited an altered response to cocaine
under food-restricted conditions (Konner etal., 2011). Another
recent report indicates that insulin can induce long-term depres-
sion (LTD) of mouse excitatory synapses onto VTA DA neurons
(Labouebe etal., 2013). Furthermore, after a sweetened high-fat
meal, which elevates endogenous insulin levels, insulin-induced
LTD is occluded. Finally, insulin in the VTA reduces food anticipa-
tory behavior in mice, and CPP for food in rats. This study raises an
interesting issue about how insulin can modulate reward circuitry,
and suggests a new type of insulin-induced synaptic plasticity on
VTA DA neurons (Labouebe etal., 2013).

CONCLUSIONS AND FUTURE DIRECTIONS

This review has focused on the role of the DA system, mainly con-
centrating on the roles of D1 and D2 receptors in reward-related
behaviors, including addiction and food motivation. However, it is

well known that the DA system in this reward-circuit is finely mod-
ulation by glutamatergic, GABAergic, and other neurotramistter
systems, which form specific circuits to encode the neuronal cor-
relates of behaviors. Recent breakthroughs in optogenetic tools to
alter neuronal firing and function with light, as well as DREADDs,
together with genetic manipulation of specific neuronal cells or
circuits are now allowing us to refine our insight into reward cir-
cuits in addiction, and the hedonic value of food intake. It is of
no doubt that these lines of investigation have provided a founda-
tion for future direction of our study in neurocircuitry of the DA
system in these behaviors. Future studies could include enlarged
manipulations of important signaling molecules, for example, sig-
naling molecules implicated in the D1 and D2 receptor signaling
cascades, to explore the impact of these molecules on the induc-
tion and expression of specific reward behaviors. Given that these
two receptors employ distinct signaling pathways, in terms of their
respective G protein coupling, as well as in the activation of com-
mon singling molecules such as ERK, the differential distribution
of receptors, as well as of their downstream signaling molecules
may result in a different type of physiological response. Addition-
ally, with this conceptual and technical evolution of the DA system
in behaviors, this research will have important implications in the
clinical investigation of related neurological disorders and psychi-
atric diseases. Therefore, our continuing efforts to identify and
characterize the organization and modification of DA synaptic
functions in both animals and humans will contribute to the elu-
cidation of neural circuits underlying the pathophysiology of drug
addiction and eating disorders.
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