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The auditory midbrain implant (AMI) consists of a single shank array (20 sites) for stimulation
along the tonotopic axis of the central nucleus of the inferior colliculus (ICC) and has been
safely implanted in deaf patients who cannot benefit from a cochlear implant (Cl). The
AMI improves lip-reading abilities and environmental awareness in the implanted patients.
However, the AMI cannot achieve the high levels of speech perception possible with the
Cl. It appears the AMI can transmit sufficient spectral cues but with limited temporal
cues required for speech understanding. Currently, the AMI uses a Cl-based strategy,
which was originally designed to stimulate each frequency region along the cochlea with
amplitude-modulated pulse trains matching the envelope of the bandpass-filtered sound
components. However, it is unclear if this type of stimulation with only a single site
within each frequency lamina of the ICC can elicit sufficient temporal cues for speech
perception. At least speech understanding in quiet is still possible with envelope cues as
low as 50 Hz. Therefore, we investigated how ICC neurons follow the bandpass-filtered
envelope structure of natural stimuli in ketamine-anesthetized guinea pigs. We identified
a subset of ICC neurons that could closely follow the envelope structure (up to ~100 Hz)
of a diverse set of species-specific calls, which was revealed by using a peripheral ear
model to estimate the true bandpass-filtered envelopes observed by the brain. Although
previous studies have suggested a complex neural transformation from the auditory nerve
to the ICC, our data suggest that the brain maintains a robust temporal code in a subset of
ICC neurons matching the envelope structure of natural stimuli. Clinically, these findings
suggest that a Cl-based strategy may still be effective for the AMI if the appropriate neurons
are entrained to the envelope of the acoustic stimulus and can transmit sufficient temporal
cues to higher centers.
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INTRODUCTION

AMI cannot transmit sufficient temporal cues shown to be impor-

An auditory midbrain implant (AMI) designed for stimulation
across the central nucleus of the inferior colliculus (ICC) was
implanted in deaf patients who could not sufficiently benefit from
a cochlear implant (CI; Lim etal., 2007, 2009). These patients
have neurofibromatosis type 2, which is a genetic disease that
leads to bilateral acoustic neuromas. Removal of the tumors usu-
ally leads to complete damage of the auditory nerves, and thus
it is not possible to transmit acoustic information to the brain
using a CI, which is designed to stimulate the auditory nerve. The
AMI has been implanted in five patients. Encouragingly, the AMI
has shown to be safe for over 6 years and has improved environ-
mental awareness and lip-reading capabilities for the implanted
patients. However, open-set speech understanding remains signif-
icantly lower for the AMI compared to the CI. Based on previous
studies in animals and humans (Lenarz et al., 2006; Lim et al., 2009,
2013; Calixto etal., 2012; McKay etal., 2013), it appears that the
AMI can transmit sufficient spectral cues when the electrode array
is aligned along the tonotopic gradient of the ICC; however, the

tant for speech understanding (Shannon etal., 1995, 2004). The
AMI currently uses a stimulation strategy designed for Cls in which
the sound is processed through bandpass filters and the envelope
of each filtered signal is used to amplitude-modulate an electri-
cal pulse train presented to a frequency-aligned site. The question
arises as to whether such a Cl-based strategy is appropriate for
the AML.

For the CI, it is possible to position electrode sites in dif-
ferent locations along the cochlea to transmit sufficient spectral
cues while presenting varying temporal patterns on each site
to sufficiently transmit temporal cues for speech understanding
(Shannon etal., 1995, 2004). In contrast, the ICC is a three-
dimensional structure consisting of two-dimensional isofrequency
laminae (Geniec and Morest, 1971; Malmierca et al., 1995; Oliver,
2005). Although sites can be positioned in each lamina to convey
spectral cues, it is unclear if an amplitude-modulated pulse pattern
delivered to only one site in each lamina would transmit sufficient
temporal cues. Previous animal studies have shown complex and
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varying coding properties, including differences in temporal fol-
lowing abilities, for neurons along an ICC lamina (Semple and
Aitkin, 1979; Stiebler, 1986; Ehret, 1997; Langner et al., 2002; Hage
and Ehret, 2003; Holmstrom etal., 2010). Neurons sensitive to a
similar frequency (i.e., with a similar best frequency, BF) can have
dramatically different response patterns for the same stimulus.
Furthermore, studies have shown that neurons within the ICC are
no longer able to follow the fast fluctuations of a sound stimulus,
particularly those above a few hundred hertz (Rees and Moller,
1987; Langner and Schreiner, 1988; Krishna and Semple, 2000;
Frisina, 2001). Auditory nerve fibers can follow stimuli up to sev-
eral thousand hertz (Johnson, 19805 Joris et al., 2004). Therefore,
it has been proposed that temporal features have been converted,
at least for faster components, into a rate code and/or popula-
tion spiking pattern across ICC neurons, reflecting the complex
transformations that have occurred through several nuclei from
the auditory nerve (Langner and Schreiner, 1988; Langner etal.,
2002; Joris etal., 2004; Wang et al., 2008; Huetz et al., 2011). These
findings suggest that a CI-based stimulation strategy would not
be appropriate for the ICC. Rather, electrode sites may need to
be positioned fully across each lamina of the ICC and activated
in various spatial and temporal patterns to transmit sufficient
temporal cues. Implanting multiple shanks across the ICC to
span each lamina increases surgical risk and identifying optimal
ways to activate the numerous sites along each lamina would be
challenging.

On the other hand, acoustic and CI studies in humans have
shown that limited temporal cues, even down to 50 Hz, are suf-
ficient for speech understanding in quiet (Shannon etal., 1995;
Nie etal., 2006; Xu and Pfingst, 2008), which would be the initial
goal for the AMI. ICC neurons are still capable of following the
temporal pattern of sound stimuli above 50 Hz and even up to a
few hundred hertz, at least for artificial click trains and amplitude
modulated stimuli (Rees and Moller, 1987; Krishna and Semple,
2000; Frisina, 2001; Langner etal., 2002; Joris etal., 2004; Zheng
and Escabi, 2008). Therefore, a CI-based strategy may be effective
for the AMI, assuming that activation of just a subset of ICC neu-
rons with a single site within each lamina is sufficient for restoring
speech understanding. Although the AMI uses a CI-based strategy
in the current patients, it is not clear if the limited performance is
related to the stimulation strategy or if the AMI sites are just not
activating the appropriate neurons in the ICC that would be able
to transmit the necessary temporal cues to higher centers.

Previous animal studies investigating the envelope following
capabilities of ICC neurons to natural stimuli generally investi-
gated the overall response patterns averaged across neurons from
different frequency and isofrequency locations (Suta etal., 2003;
Woolley etal., 2006). These studies suggested that ICC neurons, as
a population response, could approximately follow the envelope
pattern of different vocalizations. One of these studies by Suta
etal. (2003) also presented spiking responses for a few individ-
ual ICC neurons. However, further studies are needed to directly
assess how well ICC neurons within different frequency regions
follow the envelope structure of the vocalizations, and thus if it
is possible to use a CI-based strategy for ICC stimulation. One
challenge in achieving this goal is how to directly compare the
ICC spiking response with the envelope structure of the stimulus.

Sound is modified through the outer and middle ear and converted
into basilar membrane motion at different frequency locations
along the cochlea, undergoing several non-linear transformations
(Rhode, 1971; Meddis etal., 2001; Sumner et al., 2003; Irino and
Patterson, 2006; Jepsen etal., 2008). Thus, it would seem appro-
priate to directly compare the ICC responses to the envelope of
this basilar membrane motion corresponding to the correct BF
locations and incorporating the complex transformations through
the peripheral system (e.g., frequency tuning characteristics along
the basilar membrane, non-linear amplitude compression of the
cochlea, and middle ear filtering). In addition to these periph-
eral effects, it is also possible to incorporate the transformations
through the hair cell synapses and auditory nerve fibers to esti-
mate the neural pattern that is observed at the input of the brain
(Zhang etal., 2001; Bruce etal., 2003; Sumner etal., 2003; Zilany
etal., 2009).

Based on the considerations presented above, we performed a
detailed assessment in ketamine-anesthetized guinea pigs of how
well ICC neurons across different frequency regions can follow
the envelope structure of a diverse range of spectral and temporal
features as found in species-specific vocalizations. We recorded
neural activity across a large number of sites within the ICC
by using multi-site electrode arrays to more effectively sample
the different types of possible responses. We also incorporated a
peripheral ear model specifically designed for the guinea pig that
provides the basilar membrane signal for each frequency channel
(i.e., velocity at a specific basilar membrane location; Meddis et al.,
2001; Sumner etal., 2003). The envelope of this signal can then
be compared to the responses recorded in the corresponding fre-
quency region of the ICC. The effects associated with the hair cell
synapses and auditory nerve fibers were not incorporated into our
peripheral modeling because we were initially interested in treat-
ing the transformation from the basilar membrane to the ICC
as a single black box without incorporating any “neural” com-
ponents. In this way, we could directly assess if ICC neurons
can accurately follow the BF-matched envelope of the stimulus
that is actually driving the neural impulses into the brain. Later,
we will incorporate additional components to more accurately
reveal how information is coded from the basilar membrane to
the ICC, expanding on models from previous studies (Hewitt
and Meddis, 1994; Nelson and Carney, 2004; Guerin et al., 2006;
Jepsen etal., 2008; Dugue etal., 2010). By incorporating a simple
model of the peripheral ear, we were able to observe a surpris-
ingly close resemblance between the BF-matched envelope of the
stimulus and the spiking response of ICC neurons. There were
many neurons that did not exhibit responses resembling the tem-
poral structure of the stimulus. However, the existence of at least a
subset of neurons spanning different frequency regions across the
ICC that could closely follow the envelope of vocalizations sug-
gests that Cl-based stimulation strategies may still be successful
for the AMI.

MATERIALS AND METHODS

Basic surgical procedures and methods for neural recording and
acoustic stimulation were similar to those presented in previous
work (Lim and Anderson, 2006; Calixto etal., 2012) and per-
formed in ketamine-anesthetized guinea pigs. For this study, we
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acoustically presented species-specific vocalizations to the animals
and recorded the corresponding spike activity along the tono-
topic axis of the ICC using a multi-site electrode array. We then
plotted the temporal pattern of spiking activity as post-stimulus
time histograms (PSTHs) and compared them with the different
envelopes of the presented vocalizations. Each PSTH corresponds
to a recording site within a given BF region. Each envelope of a
vocalization corresponds to the motion (i.e., velocity in our study)
of the corresponding BF location along the basilar membrane that
is outputted from a dual resonance non-linear (DRNL) model,
which was developed for the guinea pig peripheral auditory sys-
tem by Meddis etal. (2001) and Sumner etal. (2003). The DRNL
model estimates the transformation of the sound stimulus through
the cochlea after it is passes through a set of middle ear filters, out-
putting a signal for each basilar membrane location. We define
the DRNL output as the envelope of each of these BF-matched
signals.

VOCALIZATION RECORDINGS

We recorded species-specific vocalizations from adult guinea pigs
(Dunkin Hartley; Harlan Laboratories, Venray, Netherlands),
which were the same breed of animals later used for the neurophys-
iological recording experiments. The different vocalizations were
recorded using a calibrated omnidirectional condenser micro-
phone (model MK202E, Microtech Gefell, Germany), amplified
through a TDT MA3 microphone amplifier (Tucker-Davis Tech-
nology, Alachua, FL, USA), digitized with a TDT RX6 system
(97.5 kHz sampling frequency, 24-bit resolution), and processed
using custom Matlab software (MathWorks, Natick, MA, USA). To
avoid background noise, the recordings were performed in a sound
attenuating recording box (Human Tec, Leopoldshdhe/Greste,
Germany). During processing of the recorded vocalizations, we
only selected those that exhibited a high signal-to-noise ratio
and with minimal interference from movement (determined
through video recordings) or vocalizations from other animals.
We also ensured that a 50 ms quiet period existed before and
after each vocalization for the sound stimuli used in the exper-
iments. A 25 ms cosine ramp was used at the onset and offset
of each of these stimuli (i.e., during those 50 ms portions) to
avoid any transient steps that could affect the neural responses
recorded in the ICC. In addition, the signals were bandpass fil-
tered between 500 Hz and 40 kHz, which corresponded to the
effective range of our TDT CF1 speakers. Although there have
been up to 11 types of calls documented for the guinea pig
(Harper, 1976; Suta etal., 2003; Philibert etal., 2005; Grim-
sley etal., 2012), we recorded ICC response patterns to only
three vocalizations in this study due to time limitations during
each experiment (Figure 1). We selected these three vocaliza-
tions because they exhibit a wide range of spectral and temporal
features characteristic of the different types of natural sounds
generated by guinea pigs. The first one consists of a harmonic
upward sweep with varying frequency components over time,
which we call a temporally and spectrally varying stimulus (TSV).
The second one contains two broadband components surround-
ing a shorter harmonic portion in the middle, which we call
a broadband with harmonic components stimulus (BH). The
third one consists of several short bursts that each cover a broad

frequency range, which we call a broadband and transient stimulus
(BT).

SOUND CALIBRATION

Pure tones, broadband noise, and vocalizations were presented
through TDT CF1 speakers coupled to the left ear through a hollow
ear bar. For calibration, the same setup was used with a 0.25-inch
condenser microphone (ACO Pacific, Belmont, CA, USA) where
the tip of the ear bar was inserted into a short plastic tube with
the microphone inserted into the other end. The tube matched
the dimensions of a typical guinea pig ear canal. Pure tones and
broadband noise stimuli were calibrated by correcting for the mag-
nitude response obtained from playing pure tones through the
speaker—ear system. However, to calibrate the vocalizations, the
phase response also had to be corrected. For this purpose, we
applied a normalized least mean squares (NLMS) adaptive filter to
estimate the complete inverse transfer function of the speaker—ear
system (Moonen and Proudler, 1998). We calibrated each vocal-
ization for different levels ranging from 30 to 70 dB SPL (10 dB
steps) that corresponded to the peak value from a 20 ms sliding
root mean square window of each signal.

ANESTHESIA AND SURGERY

All experiments were performed on male or female albino guinea
pigs (458-749 g; Dunkin Hartley; Harlan Laboratories, Venray,
NL). We initially anesthetized the animals with an intramuscular
injection of ketamine (40 mg/kg) and xylazine (10 mg/kg) with
periodic supplements to maintain a non-reflexive state. Atropine
sulfate (0.05 mg/kg) was injected subcutaneously throughout the
experiment to reduce bronchial secretion. A warm water heating
blanket controlled by a rectal temperature probe was used to keep
the body temperature at 38 £ 0.5°C. All experiments were carried
out in accordance with the German law for animal protection and
were approved by the regional government (Landesamtes fiir Ver-
braucherschutz und Lebensmittelsicherheit registration number
33.9-42502-04-09/1666).

Before surgery, we recorded auditory brainstem responses
(ABRs) using 10 ms pure tones as acoustic stimuli (1, 4, 8, 16,
and 32 kHz; 1 ms rise—fall ramp times) and low impedance sub-
cutaneous electrodes positioned at the left mastoid (signal), vertex
(reference), and frontal skull region (ground). We excluded any
animals with hearing thresholds greater than 30 dB SPL at 8 kHz
or abnormally shaped audiograms (typical examples shown in
Gourevitch etal., 2009). After fixing the animal into a stereotaxic
frame (David Kopf Instruments, Tujunga, CA, USA), we exposed
the right occipital lobe. To position a multi-site electrode array
(NeuroNexus Technologies, Ann Arbor, MI, USA) into the ICC, we
partially aspirated the occipital cortex and exposed the right infe-
rior colliculus surface (Bledsoe et al., 2003; Snyder et al., 2004). The
array consisted of two shanks (500 pm separation) each with 16
linearly spaced sites (100 wm spacing, ~400 pum? area). The array
was inserted at a 45° angle to the sagittal plane with each shank
aligned along the tonotopic axis of the ICC (Malmierca et al., 1995;
Snyder etal., 2004; Lim and Anderson, 2006). The ground wire was
placed in the neck muscles. After placement of the array, the brain
was covered with agarose gel. During the experiment, the array
was repositioned two to three times.
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FIGURE 1 | Vocalization waveforms and spectrograms. Three different
types of vocalizations were used as acoustic stimuli: a temporally and
spectrally varying stimulus (TSV), a broadband with harmonic components
stimulus (BH), and a broadband and transient stimulus (BT). All three

0.2 0 0.2 0.4

cover a wide spectral range but differ in their spectral and temporal
characteristics. The vocalizations presented to the animals were bandpass
filtered (500 Hz to 40 kHz) and calibrated with respect to the speakerear
interface.

All experiments used for this paper had a total duration between
12 and 16 h. As described above, ABRs were obtained at the begin-
ning of each experiment, which required approximately 45 min.
The surgery required about 2-3 h. The neural recordings from
the ICC had a duration between 8 and 12 h. All animals were
euthanized after each experiment by decapitation under deep
anesthesia.

STIMULATION AND RECORDING SETUP

All experiments were performed in an acoustically and electrically
shielded chamber and controlled by a computer interfaced with
TDT System 3 hardware using custom software written in Matlab.
All stimuli were calibrated as described above. To aid in position-
ing the electrode array, we presented various levels of pure tones
and broadband noise that were 50 ms in duration with 5 ms and
0.5 ms rise—fall ramp times, respectively, to elicit acoustic-driven
activity in the contralateral ICC. Once the array was correctly posi-
tioned within the ICC, each vocalization was presented at different
levels ranging from 30 to 70 dB SPL in 10 dB steps and random-
ized across all stimuli (20 trials for each stimulus). Inter-stimulus
intervals were at least 1.5 s long. We also recorded 20 trials of spon-
taneous neural activity randomly interleaved with the stimulus
trials. All neural signals were passed through analog DC-blocking
and anti-aliasing filters from 1.6 Hz to 7.5 kHz. The sampling fre-
quency used for acoustic stimulation was 195 kHz and for neural
recording was 24 kHz. The sampling rate of the vocalizations was
doubled from 97.5 kHz to match the rate of 195 kHz used for the
experiments.

PLACEMENT OF ELECTRODE ARRAY IN ICC

Post-stimulus time histograms and frequency response maps
(FRMs) were plotted online to confirm that the electrode arrays
were correctly positioned along the tonotopic axis of the ICC.
Details on these analysis methods and example plots for similar
types of electrode arrays are presented in previous publications
(Lim and Anderson, 2006; Neuheiser etal., 2010). Briefly, for
the FRMs we presented pure tones with a length of 50 ms with
5 ms rise—fall cosine ramps, levels ranging from 0 to 70 dB SPL
in 10 dB steps, and frequencies ranging from 500 Hz to 50 kHz

with six steps per octave. All stimuli were randomly interleaved.
Neural recordings were obtained 20 ms before the onset of each
stimulus and for a duration of 200 ms. We bandpass filtered
the neural signals (300-3000 Hz) and detected spikes on each
site that exceeded a manually adjusted threshold above the back-
ground activity. We binned the spikes into PSTHs (1 ms bins).
The number of trials for broadband stimulation varied whereas
four trials were presented for each pure tone and level stimulus
for the FRMs. To create a FRM for each site, we calculated the
driven spike rate (total minus spontaneous spike rate) within a set
PSTH window relative to the stimulus onset (5-65 ms) and plotted
that value for each frequency-level combination. Sustained PSTHs
in response to broadband stimuli as well as a systematic shift in
frequency tuning from low to high frequencies for superficial to
deeper sites confirmed that our array was positioned within the
ICC.

OFFLINE DATA ANALYSIS

For the analysis, data from 10 animals were used. The figures in
this paper include either single cases or combined data from all
10 animals. We compared the multi-unit spiking activity recorded
from different frequency regions of the ICC with the correspond-
ing spectral and temporal pattern of the presented vocalizations.
In order to obtain data from many different locations across ICC,
we used multi-site arrays that generally record multi-unit activity.
It was not possible to reliably isolate single-unit spikes from this
multi-unit activity. However, since we are interested in assessing
temporal patterns that would guide ICC stimulation, which gener-
ally activates clusters of neurons surrounding each electrode site,
analysis of multi-unit responses was sufficient for this study. These
multi-unit spikes were automatically detected at a threshold of 3.5
times the standard deviation of the background noise recorded on
a given site after the signals were bandpass filtered between 300 and
3000 Hz. Only negative peaks were detected as spikes. The total
spikes across trials minus the mean spike count across spontaneous
trials were calculated for 1-ms bins to obtain a stimulus-driven
PSTH for each site and stimulus (i.e., a vocalization at a certain
level). We reprocessed the FRM spike data offline in a similar
way and calculated the BF by taking the centroid frequency value
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at 10 dB above the visually determined threshold level from the
FRMs, as performed in our previous studies (Lim and Anderson,
2006; Neuheiser etal., 2010). We used this BF measure instead
of characteristic frequency (i.e., frequency corresponding to the
maximum activity at threshold) because it was less susceptible to
noise and more consistent with what we visually estimated from
the FRMs.

The PSTH for each site with a specific BF and for a given vocal-
ization was then compared with its BF-matched DRNL output.
The DRNL output corresponds to the envelope of the basilar mem-
brane velocity at a given BF location. The DRNL model of the
peripheral auditory system was developed by Meddis etal. (2001)
and modified for the guinea pig by Sumner et al. (2003; Figure 2).
The DRNL model uses stapes velocity as the input. To obtain the
stapes velocity, we first passed the signal through a middle ear

filter, which consisted of a cascade of two Butterworth bandpass
filters. One was a second order filter with a bandpass range from 4
to 25 kHz, while the other was a third order filter with a bandpass
range from 700 Hz to 30 kHz. Both had unity gain. This middle
ear filtering was necessary to reproduce the appropriate activation
thresholds observed at the basilar membrane and auditory nerve
fibers in the guinea pig (Evans, 1972; Sumner etal., 2003). The
output from the middle ear filter was then scaled by a factor of
1.4 x 107'° to convert sound pressure into stapes velocity (in
m/s). Further details on this middle ear filtering are provided in
Sumner et al. (2003). The DRNL model has both a non-linear and
a linear path in parallel. The linear path consists of a linear gain,
a cascade of three first order gammatone filters, and a cascade
of four second order Butterworth lowpass filters. The non-linear
path consists of a cascade of three first order gammatone filters,

C
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FIGURE 2 | Peripheral ear modeling and data processing. Top: The dual
resonance non-linear (DRNL) model is fit with guinea pig parameters. The
model simulates the peripheral processing from the stapes input to the output
of a specified best frequency location along the basilar membrane. The model
consists of a linear and a non-linear path, each with a set of gammatone
bandpass filters (b, d, f) and Butterworth lowpass filters (c, g) that vary
depending on the specified best frequency. In addition, the non-linear path of
the model contains a broken stick compression function (e; also varying with
best frequency and in contrast to the linear function in a) to estimate the
non-linear effects of the cochlea. Bottom: The signals are extracted for each
part of the DRNL model and compared with the neural response for a single
ICC site. Before applying the DRNL model, the signal is first inputted through
a middle ear filter (two Butterworth bandpass filters from 4 to 25 kHz and

Envelopes (TSV at 60 dB SPL; best frequency = 2.9 kHz)
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from 700 Hz to 30 kHz) and scaled from sound pressure to stapes velocity.
The output of the DRNL model is obtained from summing the linear path and
non-linear path components. The envelope of the DRNL model (i.e., what we
define as the DRNL output) is then extracted using the Hilbert transform
method and smoothed by a 10 ms sliding window average to obtain the
slower fluctuations of the signal (see Materials and Methods for further
details). The envelopes for the other signal components were extracted in the
same way and displayed in the figure for visualization. The post-stimulus time
histogram (PSTH), which was also smoothed with a 10 ms sliding window
average, shows the neural activity recorded in a 2.9 kHz frequency lamina in
response to TSV shown in Figure 1. The best frequency of 2.9 kHz was used
for the DRNL model to obtain the different envelope signals shown in the
figure, except for stapes velocity, which is independent of best frequency.
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a non-linear broken-stick transfer function to account for com-
pression effects, another cascade of three first order gammatone
filters, and a cascade of four first order Butterworth lowpass filter.
The outputs of the linear and non-linear paths are then summed
together.

Further details on the different parameters and values used
for the DRNL model are presented in Sumner etal. (2003) and a
freely available Matlab program was obtained from Drs Ray Med-
dis and Christian Sumner to perform the DRNL simulation in our
study. In brief, several parameters were fixed while other parame-
ters changed as a function of BE To estimate the basilar membrane
velocity at a given location, the Matlab program required only the
corresponding frequency (i.e., referred to BF in our study) and the
vocalization waveform scaled to the desired sound pressure level.
The program then calculated and implemented the correspond-
ing bandwidths, cut-off frequencies, gains, and scaling factors
required for each component of the DRNL model. This DRNL
model has been able to reproduce various tuning properties and
non-linear input-output functions at different locations along the
basilar membrane, variations in phase response with frequency
and level, impulse responses on the basilar membrane, local distor-
tion products, and other peripheral phenomenon that have been
measured across several species (Lopez-Poveda and Meddis, 2001;
Meddis etal., 2001; Sumner etal., 2003). Combining the DRNL
model with an inner hair cell model was also able to reproduce
the BF dependence of frequency—threshold tuning curves, rate-
intensity functions, iso-intensity functions, compression effects,
and basic temporal firing patterns to speech stimuli as measured
in the auditory nerve fibers in guinea pig (Sumner etal., 2003;
Holmes etal., 2004). As explained in Section “Introduction” for
our study, we used the DRNL model without the inner hair cell
model because we were initially interested in treating the trans-
formation from the basilar membrane to the ICC as a single black
box without incorporating any “neural” components.

Once the output signal from the DRNL model was calculated,
we extracted its envelope using the Hilbert transform method,
which has shown to successfully extract perceptually relevant enve-
lope features for speech understanding (Smith etal., 2002; Nie
etal., 2006). The envelope was downsampled to a resolution of
1 ms to match that of the PSTH. We then further smoothed both
the envelope (to obtain what we define as the “DRNL output”) and
PSTH using a 10 ms sliding window average, which keeps envelope
fluctuations up to ~100 Hz. All PSTH responses and DRNL out-
puts were normalized by their maximum value (i.e., normalized
to 1) for analysis and improved visualization. Figure 2 presents
the normalized envelopes of the different signal components of
the model all smoothed with the 10 ms window average to enable
direct comparison with the corresponding PSTH. We selected a
10 ms window because we were interested in envelope fluctua-
tions relevant for speech understanding (at least 50 Hz; Shannon
etal., 1995) yet within the range of temporal following capabilities
shown for ICC neurons, which are mostly below or around 100 Hz
across several species, including guinea pig (Rees and Moller, 1987;
Rees and Palmer, 1989; Snyder et al., 2000; Joris et al., 2004). Based
on visual inspection of the data, we also observed more noticeable
differences between the PSTHs and DRNL outputs once we began
to decrease the window below 10 ms.

To directly assess similarity, we calculated the peak of the
cross-correlation function between a PSTH response and its cor-
responding DRNL output. If we observed any peak values at a time
lag less than 5 ms or above 20 ms, which is typically outside the
range for acoustic activation of the ICC (Syka et al., 2000), we visu-
ally checked and manually corrected for any artificial correlation
values. Additionally, we excluded any cases in which there was low
driven activity below a set threshold that prevented reliable com-
parison with the DRNL output. This set threshold corresponded
to four times the standard deviation of the PSTH activity from
the spontaneous trials for each recording site. Only PSTHs that
consisted of more than 20 bins above that set threshold during the
stimulation period were considered valid cases, which matched
what we determined through visual inspection of the data. All the
PSTHs analyzed in this study spanned a BF range of 500 Hz to
20 kHz. Unless stated in the text or figures, all analyses and plots
correspond to a sound level of 60 dB SPL.

RESULTS

Data were collected from 10 animals. The total number of record-
ing sites in ICC varied for each vocalization and will be specified
when presenting the different results.

ICC RESPONSES TO VOCALIZATIONS

A wide range of responses was recorded in the ICC in response to
the three different vocalizations. Figure 3A presents one exam-
ple for each vocalization corresponding to one of the highest
correlation values. The DRNL output (shaded region) for BT
corresponding to a BF of 12.3 kHz is quite similar to the cor-
responding PSTH response (black line). The PSTH slightly lags
behind the DRNL output as expected for the acoustic activation
to reach the ICC. The PSTH response was also quite similar to
the DRNL output for BH. For TSV, the PSTH response followed
almost every peak in the DRNL output, being partially misaligned
in magnitude for a few peaks, which is still remarkable consider-
ing the large number of peaks and complex pattern of the stimulus
envelope compared to those for BT and BH. On the other extreme,
we observed PSTH responses that were quite different from the
DRNL output in which the temporal patterns and peaks were
completely misaligned. Figure 3B presents one example for each
vocalization with the lowest correlation value across our entire
data set. These results suggest that some ICC neurons can closely
follow the envelope structure of natural stimuli, while other neu-
rons exhibit different spiking patterns not locked to the stimulus
envelope.

The cross-correlation provides a measure of the similarity
between two curves. A value of one indicates a perfect match
between two curves. To provide a qualitative interpretation of
the different correlation values observed in our study, we present
eight typical examples for each vocalization with the maximum
(Figure 4) and median (Figure 5) correlation values we observed
for different frequency regions across our data set. As shown for the
maximum correlation cases (for those roughly above 0.9), there
are ICC neurons that can generally follow the envelope structure
of the basilar membrane in response to different vocalizations
and across a wide range of BF regions. The greatest similarity
was observed for the BT examples. Some cases for BH and TSV
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exhibited greater variability between the DRNL output and the
PSTH response. However, all of the displayed PSTH responses
generally followed the temporal timing of most of the different
peaks of the DRNL output, with deviations mainly related to the
actual amplitudes of those peaks. The DRNL model provides an
estimate of the basilar membrane motion and was fitted with a
single set of parameters to represent all BF regions. It is possible
that these amplitude discrepancies could be in part due to sub-
optimal modeling of the amplitude non-linearities at the basilar
membrane and would require better fitting of the parameters for
each BF region separately. Even if the examples shown in Figure 4
are an underestimation of the actual similarity between the DRNL
outputs and PSTH responses, they still demonstrate that there are
at least some ICC neurons that can closely or approximately follow
the envelope structure of natural stimuli.

The median examples across BF regions are presented in
Figure 5. The median correlation value was 0.75 (n = 239), 0.87
(n=203), and 0.86 (n = 277) for TSV, BH, and BT, respectively.
Median PSTH examples for BH and BT can approximately follow
the DRNL outputs though there are greater differences between
the peak amplitudes compared to those in the maximum correla-
tion group. The differences in temporal timing and amplitude of
the peaks between the PSTHs and DRNL outputs are greater for
TSV than for the other two calls.

Based on all the different ICC examples from our data set,
including the typical ones shown in Figures 4 and 5, correlation
values above 0.85 correspond to ICC responses that approximately
or closely follow the DRNL output. In particular, 15% (36 of 239),
60% (122 of 203), and 58% (160 of 277) of the sites for TSV, BH,
and BT, respectively, satisfy this criterion. Out of the 36 TSV cases
with high correlation values (>0.85), 64% had high correlation
values also for BH and BT, while 78% had high correlation values
for at least one of the other calls. Additionally, 75% (92 of 122) of
the BH cases with high correlation values also had high correlation
values for BT. Therefore, the same ICC neurons can follow the
envelope structure for two or all three of the vocalizations used
in our study demonstrating that there is a subset of ICC neurons
designed to temporally code for a diverse range of spectral and

temporal patterns relevant for natural sound processing. These
neurons generally follow the envelope structure for BH and BT
better than for TSV, which may relate to the more complex and
time-varying spectral pattern of TSV.

SPECTRAL AND TEMPORAL FEATURES

With the two-shank array, it was possible to simultaneously record
neural activity from two sites within a similar isofrequency lamina
of the ICC in addition to multiple sites across different frequency
regions. Figures 6A, 7A, and 8A show data recorded from four
different frequency laminae from the same sites and animal in
response to the three different vocalizations. The DRNL output
is approximately similar across the two sites in each lamina (i.e.,
slightly different due to slightly varying BF values). However, the
PSTH responses could exhibit more drastic differences between the
two sites even though they had approximately similar BF values. It
appears that some peaks in the DRNL output are better represented
by one site versus the other site, and vice versa. For example in
Figure 6A for the 12.6-12.7 k Hz lamina, the site in the right
column exhibited a PSTH response that more closely followed
the peaks at ~0.6-0.7 s compared to the site in the left column.
In addition, as mentioned above, the PSTH response more closely
matched the DRNL output for BT and somewhat for BH compared
to TSV. For example, this comparison can be observed for the same
6.5 kHz site in Figures 6A (TSV), 7A (BH), and 8A (BT).

For this study, we did not systematically investigate the effects of
different locations along a given ICC lamina on temporal follow-
ing properties. However, we pooled data across all our sites within
and across different frequency regions to assess if the population
PSTH could resemble the spectrotemporal patterns observed in
the spectrogram for each vocalization. Figure 6B displays the spec-
trogram for TSV. In Figure 6C, the DRNL outputs across different
frequency regions ranging from 500 Hz to 20 kHz were concate-
nated to create a plot that resembles a spectrogram. By comparing
Figures 6B,C, it can be seen that the middle ear filteringand DRNL
model attenuates the lower frequency components of the stimu-
lus (i.e., relatively enhances the higher frequency components)
while slightly smearing the stimulus in the frequency dimension
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due to the overlapping frequency bands along the basilar mem-
brane. The stimulus has also been smoothed in the time domain
by the Hilbert transform method and a 10 ms sliding window aver-
age. In Figure 6D, we concatenated all the PSTHs recorded across
the ICC in response to TSV at 60 dB SPL and obtained the pop-
ulation PSTH. The population PSTH more closely matches the
DRNL spectrogram (Figure 6C) than the actual stimulus spec-
trogram (Figure 6B), especially for the weaker activity within
the lower frequency regions. Similarly, general spectrotemporal
features in the DRNL spectrogram can be observed in the pop-
ulation PSTH for both BH (Figure 7) and BT (Figure 8). Note
that we did not have many sites for BFs below 2 kHz and thus
cannot interpret how well ICC neurons follow the sound enve-
lope for those lower frequencies. Interestingly, a few low BF sites
had strong activity even though there was weak sound energy
in the DRNL output. Strong activity in low frequency regions
of the ICC associated with low stimulus energy has also been
observed in a previous study (Suta et al., 2003), and may reflect the

non-linear transformations that have occurred from the periphery
up to ICC.

AMPLITUDE NON-LINEARITIES IN ICC ACTIVITY

The DRNL model incorporates amplitude compression through
the non-linear path in which smaller amplitude components can
increase to a greater extent than larger amplitude components, as
has been observed in basilar membrane and auditory nerve activ-
ity in animals (Yates etal., 1990; Cooper and Yates, 1994; Meddis
etal., 2001; Sumner etal., 2003). To assess the contribution of
this compression component, we compared the DRNL output
with the linear path output (the red component shown for the
envelopes in Figure 2). The first column of Figure 9 presents
the DRNL output for the different vocalizations at several levels
while the second column displays just the linear path output. Note
that the linear path output is identical across levels for a given
vocalization except for a scaling factor, which can be seen as the
y-axis range changes for each level. All amplitude values change
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proportionally within the linear path. For TSV, as the stimulus
level increases from 50 to 70 dB SPL, the smaller PSTH values of
the linear path (e.g., those between ~100 and 400 ms) increase to
a greater extent than the larger PSTH values. The DNRL model
compensates for some of these non-linear effects. However, the
changes in amplitude with increasing level do not appear to be
fully captured by the DNRL model. Different types of compres-
sive effects are also observed for the BH and BT examples. For
BH, the DRNL model produces a pattern that generally matches
the PSTH response better than that of the linear path (e.g., the
peaks around 200 ms), but not for all of the peaks. For BT, there
is also a mixture of effects in which the DRNL model performs
better for some peaks while the linear path performs better for
other peaks. Overall, the DRNL model is not able to fully pro-
duce the envelope patterns observed for all of our recorded ICC
sites across different levels. It is important to note, as shown in

the next section, that there are still some ICC neurons that can
closely follow the DRNL output for different levels. However, we
present the complex patterns in Figure 9 to show that there are
neural features that are not being fully predicted by the DRNL
model.

The DNRL model has provided good estimates for the com-
pression effects observed for the basilar membrane and auditory
nerve in guinea pig (Meddis etal., 2001; Sumner etal., 2003). We
also observed high correlation values between the PSTHs and
DRNL outputs for multiple ICC sites (Figures 3A and 4) indi-
cating that some ICC neurons are following the motion at the
basilar membrane predicted by the DNRL model. Therefore, the
complex changes in response amplitude with increasing level in
ICC neurons that are not predicted by the DRNL model could be
associated with actual neural transformations that have occurred
from the periphery up to the ICC.
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239 sites. Each row is a PSTH recorded from each ICC site for a specific best
frequency region. dB FS decibels relative to full scale in which 0 dB FS
corresponds to the maximum value.

SUMMARY OF CORRELATION VALUES

In Figure 10, the correlation values for all our recording sites are
plotted for each vocalization as a function of BE. The correlation
values for BH and BT show consistently high values over the entire
range of BFs and with values typically above 0.7. In contrast, there
was a much wider range of correlation values for TSV, especially
for lower BF sites. There appears to be a greater number of low
BF neurons that are not capable of following the envelope for TSV
even though many of those same neurons could reliably follow the
envelopes for BH or BT.

We re-plotted the correlation values from Figure 10 in a his-
togram format independent of BF to enable comparison with
different stimulus levels with and without the non-linear path
(Figure 11). For TSV, the DRNL output exhibited significantly
higher correlation values compared to those of just the linear path
at all three levels in which there was greater significance for higher
levels. The BT also exhibited significantly higher correlation val-
ues for the DRNL output compared to those of the linear path
but only at 40 and 50 dB SPL. In contrast to TSV, the signifi-
cance values for BT actually decreased with increasing level such
that the correlation values were significantly lower for the DRNL

output versus the linear path output at 60 dB SPL. None of the
levels for BH exhibited any significant differences in correlation
values between the DRNL output and the linear path output.
It is unclear as to why adding the non-linear component of the
DRNL model improved the similarity between the DRNL out-
puts and the PSTH responses for TSV and BT but not for BH.
TSV exhibits time-varying temporal and spectral patterns while
BT exhibits more transient and broadband patterns. Considering
that BH consists of a combination of patterns found in both TSV
and BT, we also expected significantly higher correlation values for
the DRNL output versus the linear path output for BH, at least for
some levels.

In the previous section, we showed that ICC neurons could
exhibit complex neural patterns across different levels that were
not fully produced by the DRNL model. As shown in Figure 11,
there are still ICC sites that exhibit high correlation values across
different levels (i.e., for 40, 50, and 60 dB SPL). Due to an insuf-
ficient number of data points, we did not include analysis for 30
and 70 dB SPL in Figure 11. Interestingly, there was a moderate
percentage of ICC sites that exhibited high correlation values
(>0.85) across all three levels for BH (38.5%; 10 out of 26) and
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BT (56.6%; 64 out of 113). For TSV, only 4.5% (4 out of 88) of
the sites exhibited high correlation values across all three levels. It
is important to note that each ICC site may not have data for all
three levels, and thus the total number of sites for each vocaliza-
tion listed in parentheses above is smaller than the total number
(i.e., for N) listed in Figure 11 for each level. Overall, these data
suggest that there is at least a small subset of ICC neurons that
are capable of coding for the envelope of the vocalizations across
different levels as predicted by the DRNL model.

DISCUSSION

The three vocalizations used in this study were specifically selected
to ensure that the neurons were activated with a broad spec-
trum of temporal and spectral patterns that the animals typically
encounter on a daily basis. Based on our results, ICC neurons
exhibit a wide range of neural patterns in response to these species-
specific vocalizations. Previous studies have also shown that ICC
neurons exhibit a wide range of neural patterns in response to arti-
ficial and natural stimuli (Rees etal., 1997; Krishna and Semple,
2000; Suta etal., 2003; Zheng and Escabi, 2008; Holmstrom et al.,
2010) suggesting that different and complex transformations have

occurred from the auditory nerve through the central auditory sys-
tem. Cochlear neurons can reliably follow the temporal pattern of
an acoustic stimulus, even up to several thousand hertz (Johnson,
1980; Joris et al., 2004). In contrast, ICC neurons generally follow
the temporal patterns up to only a few hundred hertz (Rees and
Moller, 1987; Krishna and Semple, 2000; Frisina, 2001; Langner
etal.,, 2002). It has been proposed that the fast features of the
stimulus have been converted into a complex rate code and/or pop-
ulation spiking pattern across neurons (Langner and Schreiner,
1988; Joris et al., 2004; Wang et al., 2008; Huetz et al.,2011). For the
slower temporal components representing the envelope structure
of the stimuli, there also appears to be a rate and/or place code in
which different neurons are most sensitive to different amplitude
modulation rates (Langner and Schreiner, 1988; Langner etal.,
2002). Therefore, it is evident that the ICC is not simply replicat-
ing what occurs at the auditory nerve level, especially after passing
through several synapses along the ascending auditory pathway.
However, these transformations do not mean that there are no ICC
neurons that can still reliably or approximately follow the enve-
lope structure of natural stimuli. In this study, we present several
cases in which ICC neurons closely followed the frequency-specific
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transform. (C) Spectrogram made from the frequency-specific envelopes
outputted from the DRNL model. Each row of the plot is an envelope
outputted from one discrete DRNL frequency channel. Note that the different
frequency channels of the DRNL model overlap in frequency ranges and thus
smear the spectrogram plot in the frequency dimension. (D) Neural
representation of the spectrotemporal features of activity recorded across all
277 sites. Each row is a PSTH recorded from each ICC site for a specific best
frequency region. dB FS decibels relative to full scale in which 0 dB FS
corresponds to the maximum value.

envelope of different vocalizations, at least down to a smoothing
window of 10 ms (up to ~100 Hz). The following capabilities
were greater for BT and BH compared to TSV. Interestingly, a
large percentage of ICC neurons that followed the TSV stimulus
with high correlation values were also able to closely follow the
envelope structure of the other two calls. Based on these findings
and previous studies, we propose that there are parallel pathways
through the ICC and up to the auditory cortex in which some
ICC neurons exhibit complex and transformed spiking patterns
while other neurons still transmit a robust temporal representa-
tion matching the envelope of a diverse range of complex stimuli.
The functional interpretation and supporting evidence for this
view is further described below after discussing a few limitations
of the study. We also discuss the implications of these findings for
AMI implementation.

METHODOLOGICAL LIMITATIONS

There are a few limitations associated with the methods of our
study that need to be discussed when interpreting the results. These
limitations are associated with the use of a peripheral ear model to
estimate the frequency-specific envelope at the basilar membrane,

the effects of anesthesia, and the use of multi-unit activity versus
single-unit responses.

To obtain the envelope of the basilar membrane at a specific BF
location, we estimated the effects of the peripheral ear with a set
of middle ear filters, a DRNL model, and an envelope extractor
based on the Hilbert transform and a 10 ms smoothing func-
tion. The middle ear and DNRL components have been specifically
designed for the guinea pig and have been able to estimate many
features observed in physiological data: frequency tuning, non-
linear input—output functions, variations in phase response with
frequency and level, and impulse responses at different BF loca-
tions along the basilar membrane; frequency—threshold tuning
curves, rate-intensity functions, iso-intensity functions, compres-
sion effects for different BF auditory nerve responses; temporal
spiking patterns of different BF auditory nerve fibers in response
to single and double vowels; and other complex peripheral effects
(e.g., two-tone suppression and local distortion products; Meddis
etal., 2001; Sumner etal., 2003; Holmes et al., 2004). The Hilbert
transform has also been shown to be a successful method for
extracting out perceptually relevant envelope features for speech
understanding (Smith etal.,, 2002; Nie etal., 2006). However,
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FIGURE 9 | Comparison of DRNL output versus the linear path output.
The PSTH responses are plotted for three different levels along with the DRNL
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we cannot claim that these simplified manipulations will exactly
replicate the stimulus envelope at each location along the basilar
membrane for all stimuli and across different guinea pigs. Addi-
tionally, we had to estimate the BF of each ICC site to then calculate
the different BF-dependent parameters for the DRNL model. Our
method of BF calculation may not always estimate the true BF for
each ICC site. Therefore, these potential biases could have con-
tributed to the wide range of patterns observed in this study, and
thus more ICC cases may have actually been capable of follow-
ing the envelope of the vocalizations than we presented in our
results.

Although anesthesia has shown to cause changes in sponta-
neous activity as well as acoustic-driven temporal and spectral
patterns in the auditory cortex, there seem to be minimal changes
that occur within the IC, at least when using ketamine (Zurita
etal., 1994; Astl etal., 1996; Gaese and Ostwald, 2001; Suta etal.,
2003; Syka etal., 2005; Ter-Mikaelian et al., 2007). One study used
a combination of ketamine and sodium pentobarbital in gerbils
and reported no or minimal changes compared to the awake state
for spontaneous activity. In response to artificial stimuli (i.e., pure
tones, noise, amplitude modulated sinusoids), they also observed
no or minimal changes for first spike latency, variation in first

spike latency, trial-by-trial reliability, temporal synchronization
capabilities, and acoustic-driven firing rate. Similar to our study,
several studies used a combination of ketamine and xylazine in
guinea pigs and there appeared to be no or minimal changes com-
pared to the awake state for spontaneous activity, firing patterns in
response to pure tones, and tuning properties based on Qo values
(Astl etal., 1996; Torterolo etal., 2002; Suta et al., 2003). Although
a few studies have shown some changes in spontaneous activity
and acoustic-driven response patterns (e.g., spike rate, thresh-
olds, latencies) in the IC due to anesthesia (Kuwada etal., 1989;
Astl etal., 1996; Torterolo etal., 2002; Tollin etal., 2004), those
effects were caused by barbituates that may have altered spiking
properties more dramatically than ketamine. Therefore, the use of
ketamine in our study is not expected to have dramatically altered
the temporal following capabilities of ICC neurons in response
to vocalizations. Even if there were some anesthetic effects on our
ICC responses, it would seem that the following capabilities would
become worse with anesthesia, and thus more ICC neurons may
have exhibited high correlation values if our study was performed
in awake animals. It seems unlikely that ketamine would some-
how improve the following capabilities of ICC neurons to natural
stimuli that was not originally possible in the awake state.
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of each plot shows the distribution of best frequencies across all the ICC
sites, while the histogram on the right shows the distribution of correlation
values. The solid line in each plot corresponds to the least-squares fit to the
data. N denotes number of total ICC sites for each vocalization.

We analyzed multi-unit activity instead of single-unit
responses. Previous studies have shown that individual ICC neu-
rons have slow membrane time constants (e.g., 12-33 ms) and do
not typically fire more than once within a 10 ms window (Sivara-
makrishnan and Oliver, 2006; Chen etal., 2012). It is possible that
the PSTH response to individual ICC neurons may not be able
to fully follow the BF-matched envelope of different vocalizations
because they cannot continuously keep up with the entire pattern
over time. However, multi-unit activity consisting of clusters of
neurons surrounding a given ICC site may exhibit greater follow-
ing capabilities because each neuron could fill in different parts of
the stimulus envelope. As a result, the correlation values and exam-
ples presented in our study may be higher than what are typically
observed for individual neurons. Regardless, some individual ICC
neurons must still be able to follow the stimulus envelope, even if
just certain portions of the envelope, so that together with other
neurons they can elicit the types of patterns observed in our study.
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FIGURE 11 | Distribution of correlation values for different levels. The
peak correlation values (R) are plotted for both the linear path and DRNL
outputs for three different stimulus levels for each vocalization from 10
animals. The R values were significantly different between the linear path
output and the DRNL output for some cases (p < 0.05, Wilcoxon rank-sum
test). N denotes number of total ICC sites for each condition.

It will be interesting to investigate this possibility and if differ-
ent neurons located along the same ICC lamina are designed to
accurately represent the envelope structure of natural stimuli as a
temporal code across a cluster or population of neurons. At least
for AMI implementation, electrical stimulation of a given site will
activate a cluster of neurons surrounding that site. Therefore, AMI
stimulation may activate enough neurons surrounding each site to
still achieve the envelope following capabilities that were observed
for a subset of our multi-unit recordings.

PARALLEL SUB-LEMNISCAL CODING PATHWAYS

Anatomical studies have shown that spatially distinct functional
zones exist within the ICC that receive different combinations of
inputs from lower brainstem centers (Roth etal., 1978; Brunso-
Bechtold etal., 1981; Shneiderman and Henkel, 1987; Oliver
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etal., 1997; Cant and Benson, 2003, 2006; Loftus etal., 2004).
Furthermore, electrophysiological studies have demonstrated that
different regions along the isofrequency ICC laminae process
sound information (e.g., threshold, frequency tuning, frequency
sweep speed, best modulation frequency, latency, binaurality) in
different ways (Semple and Aitkin, 1979; Stiebler, 1986; Langner
and Schreiner, 1987; Schreiner and Langner, 1988; Ehret, 1997;
Hage and Ehret, 2003). Therefore, it is expected that different ICC
neurons would exhibit varying spiking patterns to the same sound
stimulus.

What is particularly interesting about our results is that some
ICC neurons could closely follow the envelope of the vocalizations
while other neurons exhibited complex and dissimilar spiking pat-
terns. Based on the studies described above, it is not surprising that
we observed these differences in spiking patterns across different
ICC neurons. The question arises as to whether this subset of
neurons that can closely follow the envelope of natural stimuli
are scattered throughout the ICC or if these neurons are located
in a specific region within the ICC. The latter scenario would
be advantageous for the AMI in which the electrode array could
be implanted within a specific ICC region to potentially trans-
mit sufficient envelope cues to higher perceptual centers. In our
study, we did not histologically confirm the location of our record-
ing sites throughout the ICC to answer that question. However,
there are several anatomical and physiological studies described
below that have revealed a specific ICC region that exhibits more
robust temporal (and spectral) coding properties than the other
ICC regions, and thus may correspond to the location of the neu-
rons that closely followed the envelope of the vocalizations in our
study.

In gerbils, it was shown that neurons from the cochlear nuclei
and nuclei of the lateral lemniscus project throughout the ICC,
while inputs from the superior olivary complex project predom-
inantly to more rostral and lateral locations of the ICC (Cant
and Benson, 2006). These anatomical results suggested that at
least two distinct regions exist within the ICC: a caudal-medial
region and a more rostral-lateral region. The authors further
showed that these same regions project to distinct locations along
the caudal-rostral (isofrequency) dimension of the ventral divi-
sion of the medial geniculate nucleus (MGv): the caudal-medial
ICC region projects to the caudal third of the MGv while the
rostral-lateral ICC region projects to the rostral two-thirds of
the MGv (Cant and Benson, 2007). Based on anatomical stud-
ies in cats and rats (Rodrigues-Dagaeff etal., 1989; Polley etal,,
2007; Storace etal., 2010), the rostral MGv then projects through-
out the auditory cortex, including primary auditory cortex (Al),
while the caudal MGv projects predominantly to regions out-
side of Al. Consistent with the spatial organization shown in
the anatomical studies and based on physiological studies in
cats and guinea pigs, the pathway through more rostral-lateral
ICC regions (versus caudal-medial regions along an isofrequency
lamina) and more rostral MGv regions (versus caudal regions
along an isofrequency lamina) up to Al exhibits neural activity
with lower thresholds, more excitatory activity, greater spatial
synchrony across neurons, shorter latencies, and less temporal
jitter of spiking to a given stimulus (Rodrigues-Dagaeff etal.,
1989; Lim and Anderson, 2007; Straka etal., 2013). This pathway

through more rostral MGv regions has also shown to exhibit
more precise tonotopy, sharper frequency tuning, and more time-
locked spiking to repetitive clicks (Rodrigues-Dagaeff et al., 1989).
Together, these findings across different species suggest that there
are neurons located in a specific ICC region (i.e., a rostral-
lateral location along the isofrequency laminae) that project to
rostral MGv up to Al and are designed to robustly code for
sound stimuli. Therefore, the ICC responses that most accu-
rately matched the envelope of the different vocalizations in our
study may correspond to neurons within this “rostral-lateral”
pathway.

IMPLICATIONS FOR AMI IMPLEMENTATION

Speech understanding in quiet environments, which is the initial
goal for the AMI, is possible with envelope modulations as low
as 50 Hz (Shannon etal., 1995; Nie etal., 2006; Xu and Pfingst,
2008). Assuming that the rostral-lateral pathway described in the
previous section exists, especially within the human ICC, CI-based
strategies may still be effective for the AMI. In particular, if it is
possible to target the subset of ICC neurons that can robustly code
for the stimulus envelope (up to ~100 Hz), then it may be possible
to restore speech perception by stimulating each frequency lamina
of the ICC with amplitude-modulated pulse trains matching the
corresponding bandpass-filtered envelope of the stimulus based
on a DRNL model fitted for humans (Lopez-Poveda and Meddis,
2001).

There are several possibilities as to why the AMI has not yet
been able to restore sufficient speech understanding even though
a Cl-based strategy is being used in the implanted patients. Stim-
ulation of just a single site within each lamina may not activate
enough neurons to transmit sufficient envelope cues to higher
centers. An alternative possibility is that the current patients were
not implanted in the correct region or there is a lack of a spe-
cific region to access the subset of ICC neurons identified in our
study that could temporally code for the stimulus envelope. Based
on the studies described in the previous section, there appears
to be a rostral-lateral region along the ICC laminae that could
correspond to the location of this subset of robustly coding ICC
neurons. However, we need to perform additional studies with
histological reconstructions to confirm that the neurons with the
highest correlation values across different vocalizations truly cor-
respond to that rostral-lateral region. Furthermore, we observed
complex neural patterns across different levels for many ICC neu-
rons. Although we observed some neurons that exhibited high
correlation values across multiple levels, we need to investigate
if the DNRL model can be expanded to better predict the level-
dependent effects across a greater number of ICC neurons since
good speech perception may not be achieved with activation of
just a few neurons.

More recently, Calixto etal. (2012) has shown that electrical
stimulation of a single site in a given isofrequency lamina artifi-
cially induces strong inhibitory and suppressive effects within the
auditory cortex. However, co-activation of at least two regions
within a lamina is able to overcome much of these inhibitory
and suppressive properties. The AMI may still be able to use a
ClI-based strategy to activate the ICC neurons that are capable of
following the stimulus envelope, but by stimulating at least two
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sites within each lamina. Implanting a two-shank electrode array
into the ICC to position two sites within each lamina is surgically
feasible. Currently, we are investigating and developing a two-
shank array device to safely implant and implement in future AMI

patients.
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