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Neurons in the mammalian brain are a
highly diverse population with a com-
plex assortment of electrophysiological,
morphological and molecular properties,
which has hindered efforts to classify them
into genetically and functionally mean-
ingful subtypes and to understand their
various roles in the normal or pathological
brain. Nowhere is this issue more acutely
felt than in the study of inhibitory cor-
tical interneurons, whose classification is
still a source of contention and confusion
(Markram et al., 2004; Petilla Interneuron
Nomenclature et al., 2008; Defelipe et al.,
2013). A major boon to investigators has
been the development of mouse lines
in which genetically defined subsets of
interneurons express fluorescent proteins,
allowing their identification and targeting
during electrophysiological recordings or
imaging experiments (Oliva et al., 2000;
Meyer et al., 2002; Chattopadhyaya et al.,
2004; Maetal., 2006). More recently, inves-
tigators funded by the NIH Neuroscience
Blueprint project have developed a tool-
box of “driver” lines in which the Cre
recombinase gene is inserted immediately
downstream to genes that are known
markers of specific interneuron subsets
(Taniguchietal.,2011). These Cre lines can
be bred with mice carrying floxed genes,
to generate cell type-specific knockouts of
genes of interest. In addition, by breed-
ing these lines with mice from a parallel
toolbox of Cre reporter lines in which a
gene coding sequence is inserted after a
lox-STOP-lox cassette, or by transfecting
them with viral vectors carrying similar
constructs, investigators can induce cell-
type specific expression of any gene of
interest, from inert fluorescent proteins

to calcium probes and light-activated ion
channels or pumps (Madisen et al., 2010,
2012; Zariwala et al., 2012). While these
technologies carry great promise and have
already enabled some important findings,
the rush to use them also carries con-
siderable risk, if the relevant expression
patterns are not fully characterized. A
case in point is the somatostatin—IRES-
Cre (SOM-Cre) mouse line (Taniguchi
et al, 2011), in which Cre expression
was targeted to cells containing the neu-
ropeptide somatostatin (SOM). In the
cerebral cortex, SOM-containing neurons
are a well-studied population of dendritic-
targeting inhibitory interneurons (Ma
et al., 2006; Silberberg and Markram,
2007; Fanselow et al., 2008; Tan et al.,
2008; Ma et al., 2010; Fino and Yuste,
2011). The SOM-Cre line has already
been used in several high-profile studies,
and in most of these the authors tacitly
assumed—but did not validate—that Cre-
mediated recombination was restricted to
SOM interneurons (Adesnik et al., 2012;
Gentet et al., 2012; Lee et al., 2012;
Wilson et al,, 2012; Chiu et al., 2013;
Kvitsiani et al., 2013; Xu et al., 2013).
We found, however, that 6-10% of neu-
rons expressing a Cre-dependent reporter
in any given cortical layer were fast-
spiking/ parvalbumin-expressing (FS/PV)
interneurons, a subtype quite distinct from
SOM interneurons in electrophysiological
etc., morphological and molecular proper-
ties (Rudy et al., 2011) [Note that there is
another SOM-Cre line reported in the lit-
erature (Lovett-Barron et al., 2012), which
we did not test].

Our experiments complied with all
relevant institutional and federal animal

use guidelines and regulations and
were approved by the West Virginia
University Institutional Animal Care
and Use Committee, and the methods
have been previously published (Hu
et al., 2011). We crossed SOM-Cre males
with females of the Ail4 reporter line
(Madisen et al., 2010), to generate dou-
ble transgenic progeny in which SOM
interneurons express td-Tomato, a red
fluorescent protein (RFP). We refer to
such double transgenics as “SOM-RFP
mice.” We conducted whole-cell record-
ings in brain slices prepared from the
somatosensory cortex of SOM-RFP mice,
and were surprised to find that 18%
(20/112) of RFP-expressing neurons in
cortical layers 3 through 5 exhibited an
electrophysiological “fingerprint” typical
of FS interneurons and clearly distinct
from that of SOM interneurons (Beierlein
et al., 2003; Hu et al,, 2011) (Figure 1A).
To verify the subclass identity objectively,
we developed a simple non-linear clas-
sifier based on three electrophysiological
parameters: spike width at half height
(SWHH), after-hyperpolarization (AHP)
and adaptation ratio (AR), measured as
previously described (Ma et al., 2006).
Each cell was tested for three conditions:
SWHH < 0.26 ms, AHP > 14.5mV and
AR > 0.56, and was classified as FS if at
least 2 conditions were true and as SOM
otherwise. We first tested this classifier
on a “ground truth” dataset of 91 GFP-
expressing interneurons from the X94
line (Ma et al., 2006); all but one were
classified correctly as SOM interneurons.
Since in the X94 line GFP-expressing SOM
interneurons have quasi fast-spiking firing
properties, separating them correctly from

Frontiers in Neural Circuits

www.frontiersin.org

December 2013 | Volume 7 | Article 195 | 1


http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/about
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/journal/10.3389/fncir.2013.00195/full
http://community.frontiersin.org/people/HangHu/125694
http://www.frontiersin.org/people/u/121039
http://www.frontiersin.org/people/u/37476
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

Hu et al.

Not all that glitters is gold

tdTomato

A%

streptavidin

FIGURE 1 | RFP-expressing fast-spiking interneurons in SOM-RFP
mice. (A) Voltage responses (upper panels) of an RFP-expressing layer 5
barrel cortex neuron to the intracellular current steps shown in the lower
panel. Note the pronounced afterhyperpolarization (arrowhead) and the
non-adapting spike train, typical of FS interneurons. (B) The same neuron
was found post-hoc to contain biocytin and RFP and to be

tdTomato

X
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immunopositive for PV. (C) A projection of a confocal stack from cortical
area A1, showing five RFP-expressing cells immunopositive for PV
(circled). The cells labeled #1 and #2 are shown in (D). (D) Single optical
sections from subregions of the same field of view as in (C), in the
vicinity of cell #1 (left panels, arrows) and cell #2 (right panels, arrows),
separated into red and green channels.

FS interneurons was a stringent test of the
classifier. We then tested the classifier on
a sample of 15 GFP-expressing interneu-
rons from the G42 line (Chattopadhyaya
et al., 2004) and 96 RFP-expressing
interneurons from progeny of a PV-Cre
line (Hippenmeyer et al., 2005); all 111
interneurons were classified correctly as
FS. Finally, we applied the classifier to
our sample of SOM-RFP interneurons; 21
interneurons were classified as FS, includ-
ing the 20 initially identified. Recordings
from progeny of SOM-Cre mice bred with
a different reporter line [Ai39 (Madisen
et al., 2012)] yielded a similar, though
smaller percentage of FS interneurons (2
out of 19).

FS interneurons are uniquely character-
ized by their PV expression (Kawaguchi

and Kubota, 1993); we fixed a subset
of slices in which we recorded RFP-
expressing FS interneurons, stained them
with an antibody to PV and with fluo-
rescent streptavidin (to label the biocytin-
filled neurons recorded from), and imaged
them on a confocal microscope. Out
of 7 RFP-expressing FS neurons recov-
ered, five were immunopositive for PV
(Figure 1B), substantiating their electro-
physiological identification. The remain-
ing two neurons were likely false negatives,
due to wash-out of the cytoplasmic PV
protein during the whole-cell recording.
Since electrophysiological sampling can
be biased (for example, FS interneu-
rons may be more likely to be targeted
for recordings because they are typically
larger than SOM cells), we sectioned fixed

brains from four SOM-RFP mice and
dually immunostained them against PV
and SOM. Two brains were from third
postnatal week pups (the age range used
in our recording experiments), and two
were from ~1 month old animals. We
imaged sections representing five corti-
cal areas (cingulate, M1, S1, Al, and V1)
on a confocal microscope and counted
RFP+, PV+, and RFP+/PV+ double-
labeled cells in confocal stacks, verifying
that double labeled cells were indeed so
in single optical sections (Figures 1C,D).
In total, about 18,000 RFP-expressing neu-
rons were examined. Of these, on aver-
age 6% were immunopositive for PV.
This number is a lower estimate, because
weakly double-labeled cells (cells with
fluorescence intensity in either channel
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weaker than the average intensity of single-
labeled cells in the same optical section)
were not counted as double-labeled. When
averaged by layer, cortical area and age
group, percentage of RFP+/PV+ double-
labeled cells was highest in layer 4 of S1,
reaching 14% in one animal and aver-
aging 11.5 and 10% in the younger and
older animals, respectively. Percentage of
double-labeled cells was somewhat lower
in other cortical areas and layers, with the
lowest (2%) found in layers 2/3 of V1 of
the younger animals, but in the older ani-
mals we observed 6-10% double labeled
cells in all areas and layers except layers
2/3 of V1 (3%). We carefully examined
all RFP+/PV+ double-labeled neurons for
potential SOM expression, but only 0.4%
of them appeared to be immunoposi-
tive for SOM. Finally, in the two brains
with the best SOM immunostaining (one
from each age range) we also examined
RFP+/PV— cells for SOM immunolabel-
ing, and found that 8% of RFP-expressing
neurons, on average, were immunoneg-
ative for both SOM and PV. To what
neuronal subtype these immunonegative
neurons belonged remains to be deter-
mined; however, some of them could have
been false-negative for PV, suggesting that
the fraction of FS/PV interneurons in these
animals could have been higher than our
estimate, closer to the percentage observed
in our electrophysiological recordings.
Our observation of RFP expression in
FS interneurons cannot be explained by
leaky expression of the RFP gene (i.e.,
expression in cells that did not undergo
recombination) or by non-specific expres-
sion of the Cre gene (i.e., expression not
under the control of the endogenous SOM
promoter), because we would then expect
to see widespread RFP expression in exci-
tatory neurons, which are the majority
cortical cell type. Thus, RFP expression
must be under the same genetic con-
trol as the endogenous SOM gene; how-
ever, we found no SOM expression in
the subset of double-labeled RFP+/PV+
neurons, consistent with previous studies
which observed no overlap between SOM
and PV protein expression in mouse and
rat cortical interneurons (Gonchar and
Burkhalter, 1997; Xu et al., 2010). This
apparent paradox can be explained in two
different ways. First, both SOM and FS/PV
interneurons are born from embryonic

progenitors in the medial ganglionic emi-
nence (Batista-Brito and Fishell, 2009),
and it is possible that a subset of pro-
genitors (or of post-mitotic neuroblasts)
destined to become FS/PV interneurons
transiently express SOM. In the SOM-Cre
mice these cells will also transiently express
Cre recombinase, undergo Cre-mediated
recombination and then express RFP for
life, even after losing their SOM expression
and attaining their mature FS phenotype.
Alternatively, it has been reported that a
subset of adult mouse cortical interneu-
rons co-express PV and SOM mRNA (Lee
et al.,, 2010). In the SOM-Cre line these
neurons will co-express PV mRNA and the
bicistronic SOM-IRES-Cre transcript. It is
possible that the Cre transcript is trans-
lated into protein even though the SOM
transcript is not, or that both transcripts
are translated but at very low levels, suffi-
cient for Cre-mediated recombination but
not for detection of SOM protein.

The two alternative mechanisms above
imply slightly different risks to investiga-
tors: the first implies that recombination in
FS interneurons is expected when breed-
ing SOM-Cre mice with Cre reporter lines,
but not necessarily when transfecting adult
neurons with viral vectors, while the sec-
ond mechanism would result in off-target
recombination regardless of the mode of
delivery of the reporter construct. Either
way, our findings underscore an important
caveat for researchers using “subtype spe-
cific” mouse driver lines, including those
in which the Cre coding sequence is pre-
sumed to be under the control of the
endogenous gene promoter—these lines
should be used with caution and with
proper validation. Most studies using the
SOM-Cre line appear to use it without
validation; an exception is a recent study
that tested recombination specificity and
found that 5% of recombined neurons in
the visual cortex were immunopositive for
PV (Pfeffer et al., 2013). We found, by a
lower estimate, 6—10% off-target recombi-
nation in FS interneurons in most cortical
areas and layers. When using the SOM-Cre
line to express optogenetic constructs for
activation or silencing of SOM interneu-
rons, this degree of contamination by
FS interneurons can potentially affect the
results and lead to erroneous conclu-
sions. For example, a recent study Kvitsiani
et al. (2013) observed that about one

third of SOM-Cre interneurons tagged by
Cre-dependent channelrhodopsin (ChR2)
exhibited fast spike waveforms and high
firing rates reminiscent of FS interneu-
rons; but the possibility that some of
these were actually ChR2-expressing FS
interneurons was not considered. We sub-
mit that investigators ignoring the poten-
tial for off-target recombination when
using the SOM-Cre line, or indeed any
other Cre driver line that has not been fully
characterized, are doing so at their own
risk.
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