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In this work we analyze electro-corticography (ECoG) recordings in human subjects
during induction of anesthesia with propofol. We hypothesize that the decrease in
responsiveness that defines the anesthetized state is concomitant with the stabilization of
neuronal dynamics. To test this hypothesis, we performed a moving vector autoregressive
analysis and quantified stability of neuronal dynamics using eigenmode decomposition
of the autoregressive matrices, independently fitted to short sliding temporal windows.
Consistent with the hypothesis we show that while the subject is awake, many modes of
neuronal activity oscillations are found at the edge of instability. As the subject becomes
anesthetized, we observe statistically significant increase in the stability of neuronal
dynamics, most prominently observed for high frequency oscillations. Stabilization was
not observed in phase randomized surrogates constructed to preserve the spectral
signatures of each channel of neuronal activity. Thus, stability analysis offers a novel way
of quantifying changes in neuronal activity that characterize loss of consciousness induced

Alex Proekt, Department of
Anesthesiology, Weill Cornell
Medical College, 1300 York Ave.,
New York, NY 10065, USA
e-mail: proekt@gmail.com

by general anesthetics.

1. INTRODUCTION

It has been suggested that neural systems operate in a critical
regime similar to phase transitions in physics, given several com-
putational desirable features of such states represented by the
statistics of the thermodynamic variables (Chris, 1990). Evidence
for statistical criticality is based on the observation that var-
ious aspects of neuronal activity such as avalanches observed
in local field potentials and action potentials in tissue prepara-
tions and in animal models (Gireesh and Plenz, 2008; Ribeiro
et al., 2010), as well as magneto-encephalography (MEG) and
electro-corticography (ECoG) in human subjects (He et al., 2010;
Shriki et al., 2013), exhibit long tailed-distributions well approx-
imated by power laws. The critical regime provides important
functional benefits; quantities such as dynamic range and infor-
mation transmission are optimized near criticality (Shew and
Plenz, 2013).

More recently, the dynamical aspect of criticality has been
brought into focus, as a similarly desirable feature not fully cap-
tured by steady-state statistics such as avalanche size distributions
(Magnasco et al., 2009; Chialvo, 2010; Mora and Bialek, 2011;
Beggs and Timme, 2012); a perturbation in an extended dynam-
ical system that is close to a critical point will neither decay nor
explode, thus allowing for long range communication across the
entire system. In contrast, if the system is far from criticality
(therefore stable), perturbations damp out and no information
integration takes place beyond the characteristic damping time
scale (Tononi, 2008).
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While models of self-organized criticality exhibit both dynam-
ically and statistically critical behavior (Bak et al., 1987; Gil and
Sornette, 1996), the two aspects of criticality are not necessarily
related. The winnerless network provides an illuminating exam-
ple: under very generic conditions, neural systems can display a
phase space determined by heteroclynic orbits connecting saddle
nodes (i.e., at least one unstable manifold), such that the resulting
dynamics are quasi-periodic cycles over the nodes, without nec-
essarily exhibiting statistically critical distributions (Rabinovich
et al., 2001; Aguiar et al., 2011; Ashwin et al., 2011). A model
connecting statistical and dynamical criticality in neural systems
was proposed recently by Magnasco et al. (2009). They con-
sider an abstract model in which the activity of a set of neurons
is encoded in a N-dimensional vector X which evolves in time
according to a N x N connectivity matrix A, characterized by
its set of N eigenvalues {),}. By assuming anti-Hebbian dynam-
ics for the connectivity matrix a very rich dynamical scenario
emerges. The eigenvalues of the matrix A evolve toward the
dynamically critical point Re(A,) ~ 0 Vn and the solutions of
the model exhibit complex spatio-temporal dynamics, as well as
long tailed avalanche distributions and other signatures of sta-
tistical criticality. Consistent with this observation, experimental
evidence of both statistical and dynamical criticality was reported
in human ECoG recordings; however, the precise mechanism by
which critical dynamics occur has not been investigated. The
analysis showed that the eigenvalues crowd near the critical line,
and moreover that task performance (finger tapping) implies a
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subtle but significant decrease in dynamical criticality, presum-
ably because the modes related to motor execution impose higher
stability (Solovey et al., 2012). Of note, signatures of statistical
criticality were not strongly affected by task performance.

If indeed dynamical criticality is a useful feature of brain activ-
ity rather than an epiphenomenon, stability of neuronal dynamics
ought to be modulated by the behavioral state of the subject.
Here, we hypothesized that a particularly dramatic change in
stability accompanies changes in the level of wakefulness (con-
sciousness). When the brain is awake and displaying complex
behavior its dynamical state ought to be close to a bifurca-
tion point; marginally stable modes contribute to long range
interactions across the system. Conversely when higher-order
functions associated with wakefulness have been diminished and
eventually completely disrupted by anesthetics, brain dynamics
should exhibit more stability. In other words, anesthesia induc-
tion should lead to stabilization of brain dynamics.

Changes in the level of arousal (wakefulness) have been his-
torically quantified using spectral analysis of neuronal activity.
In this view, decrease in the level of wakefulness is reflected in
the increase and prevalence of low frequency oscillations and the
concurrent decrease in the high frequency oscillations reviewed in
Brown et al. (2010). While this is true for some states of decreased
arousal such as slow wave sleep, this association breaks down dur-
ing other states in which arousal is similarly depressed such as
rapid eye movement (REM) sleep for instance. Furthermore, state
of general anesthesia can be characterized by different spectral
signatures depending on the specific choice of anesthetic agent
(Maksimow et al., 2006). This makes current modes of detecting
the “depth of anesthesia” unreliable (Avidan et al., 2011).

Lack of clear association between changes in the spectral con-
tent of brain signals and level of arousal is not entirely surprising.
It is likely that the overall level of wakefulness is a consequence of
the interactions among many brain regions rather than any spe-
cific feature of neuronal activity observed at any one region taken
in isolation. Therefore, more recent efforts have been aimed at
detecting decreases in arousal using connectivity measures based
on spectral coherence as well as mutual information and phase
relationships among brain activity recorded simultaneously at
multiple locations (Imas et al., 2005; Cimenser et al., 2011; Lee
et al., 2012). While this connectivity analysis does suggest that
integration of information between different brain regions may
be decreased when the level of wakefulness is reduced, it is not
trivial to relate changes in connectivity to the changes in global
dynamics of the brain.

To address the dynamics, we fitted vector autoregressive (VAR)
models to ECoG signals collected directly from the cortex of
human subjects as they were gradually induced into the state of
general anesthesia. These models were independently fit to short
temporal windows with an arbitrarily large overlap. Thus, while
we assume that the dynamics are locally linear and stationary over
a short temporal window, on a longer time scale the dynamics
are expected to be arbitrarily non-linear and non-stationary. This
locally linear approximation allows us to quantify the changes in
stability of brain activity in terms of temporal evolution of the
distribution of eigenmodes of the fitted models. As previously
reported (Solovey et al., 2012), we found a prevalence of critical
eigenmodes across the entire recordings. However, the stability

of the models shows statistically significant differences across dif-
ferent stages of induction. While the distribution of eigenvalues
changes in non-trivial ways, high frequency modes become more
damped as anesthesia is induced. Moreover, modes closer to crit-
icality, regardless of frequency, show a gradual shift to stability
spanning several drug volleys over approximately 20 min.

This work is organized as follows. In the next section we
describe the induction protocol and the analysis method. We
present our results in section 3. In section 4 we summarize and
discuss our findings.

2. METHODS

All experimental protocols were approved by the IRB at the
Weill Cornell Medical College (protocol number 1106011763).
After obtaining informed consent, three subjects undergoing sur-
gical treatment for intractable epilepsy were enrolled in this
study. Subdural electrode grids and strips (Ad-tech, Medical
Instruments Corp., Racine, WI) were implanted for the purposes
of localization of the epileptogenic loci. The location and the
number of electrodes were determined by the clinical considera-
tions (temporal lobe for all subjects in this study). After the initial
implantation of the subdural electrodes, the subjects underwent
video and EEG monitoring, duration of which was dictated solely
by clinical considerations (1-2 weeks in these subjects). The
recordings analyzed in this work were obtained during induction
of anesthesia for the second craniotomy performed after comple-
tion of this observation period. During induction of anesthesia
(see below), blood pressure, ECG, heart rate, pulse oxymetry, and
end tidal carbon dioxide were monitored and maintained within
normal limits. Patients were given supplemental oxygen via nasal
cannula.

After obtaining baseline recordings (without any
pre-medication) anesthesia was gradually induced using
target controlled infusions of propofol using pharmacokinetic
parameters derived by Schnider et al. (1999), administered
using STANPUMP. Target propofol concentration was increased
slowly while the level of sedation was accessed using responses
to simple verbal commands. Propofol infusion continued until
subjects lost the ability to respond to verbal commands. At this
point additional propofol, opioids, and neuromuscular blockers
were administered (at the discretion of the anesthesia provider)
and trachea was intubated. Recordings were terminated at this
point.

Recordings were obtained using SynAmps? (Neuroscan) using
DC coupled recording. Data were acquired at 10 KHz. 64 channels
of ECoG signals were acquired in each subject. While both con-
ventional EEG and ECoG are thought to primarily reflect the sum
of synchronized postsynaptic potentials of neurons in the vicinity
of the electrode, the invasive nature of the ECoG signals allows
for much greater signal to noise ratio and significantly improves
spatial and temporal resolution of the signals.

No online filtering was performed. ECoG data was collected
from three human subjects as they were induced into general
anesthesia. For all subjects, the infusion started 60s into the
recording and the concentration of anesthetics was increased
every 300s. For Subject 1, propofol infusion started 60s into
the recording. 360's into the recording the subject reports being
awake. 510s into the recording the subject no longer responds.
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960 s into the recording the subject is given additional drugs
and intubated. For Subject 2, propofol was incremented at 300,
600, and 900s. At 660s the subject opened eyes. 720 s into the
recording the subject no longer responded. 1140 s into the record-
ing subject was given additional drugs and was intubated. For
Subject 3, propofol infusion started 60 s into the recording. The
concentration was increased every 300 s and maintained constant
before and after. 900 s into the recording the subject no longer
responded to verbal commands or light taps on the shoulder.
1200's into the recording subject was given additional drug and
was intubated.

Data was bandpass filtered at 0.1 — 500 Hz and detrended in
segments of 10 s. We applied notch filters at 60 £ 2, 120 & 2, and
180 = 2 Hz. Finally, the amplitude of the signal in each channel
was normalized by its standard deviation. For our analysis data
was partitioned in equally sized windows of 7 = 200 ms centered
every tj 1 — tj = A = 100 ms. In each window, we assumed that
the dynamics is locally linear and fitted a vector auto regressive
model (VAR) of order p = 1.

Yn+1=Ayn+ uy (D)

where y, are the fitted values, A € RN*N i the matrix to be esti-

mated and u,, is assumed to be white noise. Here, y, € RN isa
multivariate time series that represents the recorded activity in all
channels at time t,, and A corresponds to the LAG 1 correlation
between channels. A comprehensive treatment of this model and
its estimation can be found in Liitkepohl (2006). In this work we
used a python implementation of Schnider’s et al. algorithm to
estimate A (Schneider and Arnold, 2001). This procedure yields
a set of matrices A; which govern the stability properties of the
VAR model at time . In order to address changes in the sta-
bility of the fitted models we considered the distribution of the
modulus of the eigenvalues at each time step. Also, since our
underlying hypothesis corresponds to a continuum model we
performed a transformation in order to obtain a correspondence
between the eigenvalues of A; and the timescales of the dynamics.
Let Aj = pjei¢ be the eigenvalue corresponding to the j-th mode,
the frequency of the mode is given by

¢i
T ot @
while the growth rate (timescale) of the mode is given by
log(p))
Tj a (3)

Here dt = % = 0.0001s, where Sy is the sampling frequency of

the recordings. A mode with eigenvalue A is critical if
Al =1 (4)

In practice however, we call a mode critical if ||A]] & 1 (thus
T ~ 0s). These are modes which are close to alternate their
behavior between damping and growth (Strogatz, 2006).

The distributions so obtained were compared to the initial dis-
tribution (prior to induction) by means of two statistical tests.
Kolmogorov-Smirnov (KS) tests the null hypothesis that the dis-
tributions are the same and yields the maximal difference of the
cumulative distributions to quantify for the changes. Wilcoxon

rank-sum (W) tests the null hypothesis that the distributions are
the same against the alternative hypothesis that they are shifted
and returns a z-value to account for the magnitude of the shift. If
the values of the subsequent distributions are smaller than those
of the reference distribution (awake state) then z > 0, therefore,
an increase of the z-value indicates an increase of the stability.

We settled on a VAR-1 model because the main results related
to the effect of anesthesia are robust for VAR-2 and VAR-3 mod-
els. We have explored window sizes ranging from 100ms to 1s
and found no significant changes. Our method was tested against
surrogate data obtained by phase randomization of the signal;
for each channel we computed the Fourier transform of the sig-
nal, changed the phase value by a random number [drawn from
a flat distribution in (0, 27)] and transformed back to obtain
the surrogated signals. Note that by construction this procedure
preserves the power spectrum of each signal.

3. RESULTS

We performed VAR analysis on three human subjects as they
were induced into general anesthesia. Our primary focus was to
detect changes in the distribution of the stability parameters || ;]|
during induction of anesthesia. To quantify changes in the sta-
bility of the models we used two non-parametric statistical tests
[Kolmogorov-Smirnov (KS) and Wilcoxon rank-sums(W)]. The
results of this analysis are shown in Figure 1A [for each subject
top row shows (KS) and bottom row shows (W)]. To improve
visualization the results were smoothed using moving average
windows of 10 s. The distribution of eigenmodes computed over
different windows during the awake state fluctuates. To scale the
observed differences in stability during induction of anesthesia
by these spontaneous fluctuations, we computed the time aver-
age of both KS and W statistics over the awake period (1 min)
and subtracted this value from the curves shown in Figure 1A. In
all cases, the temporal average of the p-values behaves similarly
to the KS-Z values. During the first minutes of the procedure we
find that p & 0.75, thus, the null hypothesis that the distributions
are the same cannot be safely rejected. However, we find a dras-
tic drop of the p-value concomitant with changes in KS-Z values.
For the regions indicated in blue and green (Figure 1A), the aver-
age p-value of both tests are in the range of 0.2 — 0.3 suggesting
that the distributions have changed. While the KS test simply indi-
cates that the distributions of stability parameters during awake
and anesthetized states are different, the increase in the z-values of
the Wilcoxon test implies that ||A;]| tends to decrease with induc-
tion of anesthesia, i.e., the dynamics is becoming more stable.
Note that the change in the distribution of the stability parame-
ter is not observed in phase randomized surrogates (red curves in
Figure 1A). Thus, the observed changes in stability are not given
by the spectral properties of neuronal activity.

Note that in general the eigenvalues of the autoregressive
matrices fitted to the ECoG signals are complex numbers whose
real and imaginary parts give rise to the timescale t and fre-
quency f of the corresponding eigenmode (see Equations 2, 3).
While Figure 1A focused just on changes in the distribution of
the stability parameters, Figure 1B shows changes in both the dis-
tribution of timescales (abscissa) and bulk frequencies (ordinate)
treated independently. Time elapsed since the onset of experi-
ment is color coded from red (awake) to blue (anesthetized). The
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FIGURE 1 | ECoG signals were recorded from three human subjects as
they were induced into general anesthesia. Data was locally fitted with
VAR(1) models in windows of 200 ms every 100 ms (see methods). The
linear stability of each model is compared to the awake state by means of
two statistical tests. (A) top rows: Kolmogorov Smirnov test. For each
model we plot the KS statistics of comparing the fitted distribution of
eigenvalues against the awake state. (A) bottom rows: The distribution of
time scales is compared using Wilcoxon test. Both quantities were
averaged in time intervals of 10 s. The stability properties of locally fitted
VAR(1) models change as the subjects undergo anesthesia. We defined
three different segments (color rectangles) which were used for
subsequent figures. (B) Changes in the frequency and stability of the
eigenmodes. We compared the distributions of frequencies and time
scales using a Wilcoxon test. In each figure, the vertical axis shows the
z-value of comparing the frequency distributions whereas the horizontal
axis shows the same test for the stability parameters distributions. The
color code represents time elapsed since the beginning of the recording. In
this representation all realizations yield qualitatively similar results: as the
subjects are induced, the fitted frequencies shift to higher values at the
same time they become more damped.

bulk evolution of the eigenmodes is consistent in all subjects: as
induction progresses, modes shift to higher frequencies while they
become more stable. To validate that the results obtained with
the VAR-1 model are robust, we show in Figure Al (included as
Appendix) the same analysis as in Figure 1A implemented with a
VAR-3 model. As it can be seen, the changes in the distribution of
eigenmodes are almost identical to those for VAR-1.

While Figure 1B suggests an increase in the bulk frequency
and decrease in the time constant, this does not fully charac-
terize the way in which anesthetics change the distribution of
eigenvalues in the plane spanned by timescale and frequency.
Figure 2 shows how we represent the distributions of the eigen-
values of A;. The vertical axes corresponds to frequencies plotted
on a logarithmic (base 2) scale. Horizontal axes indicate the
modes damping/growth timescale. The sign indicates whether the
mode’s amplitude is growing (positive) or decaying (negative).
Histograms are color coded with blue indicating low occupancy
to red indicating high occupancy. Note that the damping time and

(2/7T) [secs]

Mode frequency f [Hz]

-100 -50
Mode time scale T [1/sec]

FIGURE 2 | Qualitative behavior of eigenmodes. The histogram
corresponds to the eigenmodes of VAR-1 processes fitted to ECoG signals.
The count in each bin is colorcoded and the number of samples is N > 108.
The frequency axis is in logarithmic scale (base-2). The arrows indicate
points in the stability plane for which the qualitative dynamics of the
corresponding mode is illustrated. The dynamics of each mode can be
expressed as an oscillation of frequency f whose amplitude (red curves) is
modulated by an exponential decay/growth (blue curve). Each solution is
shown for 2/t s. Note that for the points in the plane with non-zero count, a
number of oscillations occur before the mode is damped out. For the case
labeled with %, the mode grows exponentially (i.e., it is super-critical).

frequency are not independent and modes with lower frequencies
tend to have longer damping times, with slow oscillations found
near the critical point (t =~ 0). Traces on the margin of the fig-
ure illustrate the dynamics for particular pairs of damping time
and frequency. Note that the traces are plotted on the timescale
commensurate to the damping time rather than on an absolute
time scale. The inter-relationship between damping time and fre-
quency assures that most modes located along the most densely
populated ridge go through several complete cycles before being
damped out, while the modes located to the left of the dominant
ridge are damped out earlier and are thus less likely to carry out
meaningful computations performed by the brain.

Figure 3A shows the distribution of eigenvalues in the plane
introduced in Figure 2 during three stages of the induction pro-
cess (100s segments shown in Figure 1A). In order to better
resolve the distributions we performed a moving VAR analy-
sis with ;1 — tj = 1 ms of spacing between adjacent windows.
In order to visualize changes in the eigenvalue distributions
we normalized the count value of each histogram by its max-
imum. Then, we used the normalized values in each bin to
code for color in RGB space as indicated in the filled circles.
Figure 3B, correspond to the superposition of such images. In
this way, regions of the stability space that are similarly occu-
pied in the three stages are coded in gray scale [with white
corresponding to maximal occupancy (1,1,1)] and pure colors
RGB correspond to values that are exclusive to the first, sec-
ond and third stage respectively. A prominent feature shown by
these panels is the shift of high-frequency eigenmodes toward
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of eigenvalues. (B) Differences across segments. \We normalized each bin in
(A) histograms by their maximum. The figure is constructed by superposing
the three histograms, each coding for a color in RGB space. In this way pure
red, pure green and pure blue correspond to eigenvalues that are only
present in the first, second and third stage. The rainbow-like pattern indicates
a shift of high frequency modes as they become more damped.

increased stability. While the full worm-like distribution of eigen-
values changes in subtle ways, the left-ward shift in these fre-
quencies is ubiquitous in all subjects. Figures 4A,B correspond
to vertical and horizontal “slices” respectively of the histogram
shown in Figure 3A for subject 1. Figure 4C shows details of
how these distributions change for subject 1. We performed the
same comparison as before but choosing a smaller frequency
range for computing the histograms. The shift to damped states
is more pronounced for modes with frequencies that are greater
than 64 Hz.

Finally, we investigated how the distribution of the most crit-
ical modes is affected by induction. This was partially inspired
by results previously reported in human ECoG, showing that
differences between task and resting conditions can be detected
precisely by changes in these populations (Solovey et al., 2012).
We show in Figure 5 the result of comparing the distribution of
modes truncated to eigenvalues with damping constant above a
given threshold close to criticality. For all subjects, the distribu-
tions show a gradual change in the stability of near-critical modes
along the entire span of the induction process Figure 5A. This
is somewhat surprising, as the induction process is controlled

by discrete events of drug increase which notably affect the full
eigenmode distribution.

4. CONCLUSIONS

Dynamical systems theory indicates that systems that are capa-
ble of performing computations should have a large number
of modes with marginal stability. In such a scenario an arbi-
trary perturbation will not decay or explode, thus allowing
for information integration across the entire system. Previous
work suggest that the brain might operate in a dynamically
critical regime (Magnasco et al.,, 2009; Solovey et al., 2012).
A simple model exhibiting complex spatio-temporal dynamics
was recently proposed, in which statistically critical behavior
emerges due to dynamical instabilities. Within this framework
we tested the hypothesis that the stability properties of the sys-
tem change as anesthesia is induced; specifically, we hypothesized
that wakefulness is related to dynamical criticality while the anes-
thetized state corresponds to increased damping of the dynamics.
To test this hypothesis we assumed locally linear dynamics esti-
mated in short segments of the recordings using eigenmode
decomposition of VAR models.
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of eigenvalues. (B) Same as (A) using Wilcoxon z-value statistics.

We found that as the subjects become anesthetized the lin-
ear stability of the ECoG recordings show significant changes
which are efficiently tracked by non-parametric statistical meth-
ods. These markers are remarkably robust to changes in the way
data is normalized (choice of filters, amplitude normalization,
sampling frequency). Moreover, changes in this quantities were
found to be consistent with the subjects behavior as reported by
the medical team. This suggests that our indicators could be used
to monitor depth of anesthesia.

Our results are also consistent with the criticality hypothe-
sis: we found a prevalence of modes close to criticality across
the whole induction procedure. However, as the subjects became
anesthetized there were significant changes in the stability

properties of the fitted dynamics. These changes were examined
closely in selected stages of the procedure and are visualized by the
superposed histograms in Figures 3B, 4C. This analysis revealed
that changes in the stability exhibit much richer structure than
a simple block shift to damping across all frequencies. Yet, we
observe a consistent pattern in all three subjects; the eigenvalues
of the fitted models shift toward higher frequencies and increased
damping. This should be interpreted carefully; it is not necessar-
ily the case that there is an increase of high frequency spectral
content of the ECoG signals. Although there ought to be a rela-
tionship between a moving spectral analysis and the eigenmodes
of a moving VAR analysis, this relationship may be complex.

The increase in the prevalence of eigenmodes characterized by
high frequency (high gamma) may be seen as surprising given
the well-known observation that the power of high frequency
oscillations tends to decrease with some anesthetics including
propofol. This result, however, ought to be interpreted carefully.
The increase in the number of eigenmodes does not equate to the
increase in power. For instance, there could be fractionation of
a single correlated pattern of high frequency oscillations in the
awake state into multiple mutually independent patterns of high
frequency oscillations.

The finding that high frequency modes become more damped
as the subject is anesthetized is to some extent reassuring. If we
adopt the traditional view that high frequency activity is asso-
ciated to cognitive processes our results are consistent with an
appealing interpretation. The effect of the anesthetic procedure
is to damp out high frequency activity while still allowing for low
frequency modes to perform a function. Low frequency activity
can then presumably be associated to the maintenance tasks
which keep the subject alive.

A number of recent reports have been aimed at character-
izing criticality as a universal feature in ECoG recordings (He
et al., 2010), and as particularly relevant to differentiate wake-
fulness from sleep (Meisel et al., 2013; Tagliazucchi et al., 2013)
(see also Ribeiro et al., 2010 for comparable results with action
potential recordings). In this context, our results provide sup-
port for a consistent and theoretically founded interpretation of
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the relationship between criticality and wakefulness. While the
theoretical model is not the focus of the present publication, it is
interesting to note that it implies a specific and falsifiable predic-
tion: the model achieves self-tuned criticality by means of plastic
synaptic adaptation. It follows that blocking synaptic changes
should result in a breakdown of criticality; similarly, the model
should also be able to explain changes in criticality during the
sleep cycle, given the concomitant changes in plasticity patterns
(Ribeiro et al., 2007). This will be the subject of future pub-
lications, along with further validation of the stabilizing effect
of anesthesia in animal models, effects of different anesthetic
agents, larger number of subjects, recovery from anesthesia, and
application of the methods to EEG recordings.
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FIGURE A1 | Model robustness. The figure shows the same analysis
presented in Figure 1A (2), but for a VAR-3 model. The results are almost

identical to those for VAR-1.
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