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The activation of the ventral tegmental area (VTA) can rebuild the tonotopic representation
in the primary auditory cortex (A1), but the cellular mechanisms remain largely unknown.
Here, we investigated the firing patterns and membrane potential dynamics of neurons
in A1 under the influence of VTA activation using in vivo intracellular recording. We found
that VTA activation can significantly reduce the variability of sound evoked responses and
promote the firing precision and strength of A1 neurons. Furthermore, the compressed
response window was caused by an early hyperpolarization as a result of enhanced
circuit inhibition. Our study suggested a possible mechanism of how the reward system
affects information processing in sensory cortex: VTA activation strengthens cortical
inhibition, which shortens the response window of post-synaptic cortical neurons and
further promotes the precision and strength of neuronal activity.
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INTRODUCTION
There are numerous functional and anatomical connections
between the sensory system and the reward system. Psycho-
logical studies have shown increased interactions between the
auditory cortex and mesolimbic reward circuitry during esthetic
perceptual tasks (Salimpoor et al., 2013). In the visual cor-
tex, dopaminergic reward signals selectively gate cortical plas-
ticity (Arsenault et al., 2013) and visual learning is mediated
by stimulus-reward pairing in the absence of attention (Seitz
et al., 2009). In the auditory system, dopaminergic inputs are
required for sound sequence discrimination learning (Kudoh
and Shibuki, 2006) and could modulate the consolidation of
memory for complex sounds in the auditory cortex (Schick-
nick et al., 2008). In the inferior colliculus, dopamine mod-
ulates neural activity in a heterogeneous manner (Gittelman
et al., 2013). During stimulus-reward associative learning, the
auditory cortex shows rapid plasticity in the spectrotemporal
receptive field (David et al., 2012). In humans, dopaminergic
modulation also influences neural activity and induces learning-
dependent plasticity in the auditory cortex (Weis et al., 2012;
Puschmann et al., 2013). These reports suggest that the dopamin-
ergic reward system may play an important role in auditory
processing.

As an important part of the mesencephalic reward circuitry, the
ventral tegmental area (VTA) has often been considered a potential
center for distributing reward information to various sensory cor-
tices (Tan,2009; Kuleshova et al., 2010), and may play an important
role in sensory information processing. In mature rats, tonotopic
representation in the auditory cortex can still be largely rebuilt by
paired activation of the VTA and auditory neurons (Bao et al.,

2001, 2003). However, the cellular mechanisms for how VTA
activation can modulate the activity of neurons in the sensory
cortex remain largely unknown. Previous studies have suggested
that VTA activation followed by specific stimuli can suppress the
response to subsequent stimulation in both the visual and auditory
cortex (Bao et al., 2003; Arsenault et al., 2013). It is still unclear if
this modulation is due to changes in cellular excitability or caused
by a circuit mechanism because it has been reported that either
mechanism could contribute to the alteration (Wu et al., 2008;
Favero et al., 2012).

Here, we investigated the role of VTA activation in neuronal
responses in the rat primary auditory cortex (A1) using in vivo
intracellular recording. We carefully measured the firing pattern
and membrane potential dynamics of A1 neurons and compared
the firing rate and EPSP/IPSP (excitatory post-synaptic poten-
tial and inhibitory post-synaptic potential) between the control
group (sound stimulation only) and the paired stimulation group
(paired VTA-sound stimulation). We found that VTA activa-
tion can significantly reduce the variability of the sound-evoked
response and promote the precision and strength of firing in
A1. Furthermore, the compressed response window was caused
by an early hyperpolarization resulting from enhanced circuit
inhibition.

MATERIALS AND METHODS
EXPERIMENTAL PROTOCOL
Animal procedures were approved by the Animal Care and Use
Committee of the Third Military Medical University and car-
ried out in accordance with the standards of Care and Use of
Laboratory Animals of China. 10 female Sprague-Dawley rats
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(260–320 g) were anesthetized by Urethane (1.5 g/Kg, intraperi-
toneal injection). Tracheotomy was performed and animal breath-
ing was kept smooth during the whole experiment. Anesthetized
animals were placed above a heating blanket with feedback control
to maintain a stable body temperature of 37◦C and the ani-
mal’s head was fixed by a stereotaxic apparatus (Reward 68000,
China). The site for VTA stimulation was determined by a rat
brain atlas (bregma: −5.04 mm; right lateral: 0.8 mm; depth:
8 mm below the pia) and confirmed by histology after in vivo
recording. A small hole (diameter: 1.5 mm) was made in the
calvarium (bregma: −5.04 mm; lateral: 0.8 mm) by a dental
drill and a cannula (length: 6 mm tube +2 mm base, tube
OD: 0.48 mm) was vertically implanted and fixed with dental
cement. A tungsten electrode for electric stimulation (2 M�, WPI,
USA) was inserted into the cannula and slowly advanced into
the VTA.

After the implantation of the VTA stimulator, a window for
recording (3 mm by 2 mm) was opened within the anatomic range
of the primary auditory cortex on the right temporal bone (2.7–
5.8 mm posterior to bregma and 3.1–5.4 mm ventral to bregma).
The dura was carefully removed with a syringe needle (26 gage)
and forceps. Warmed (37◦C) artificial cerebral spinal fluid (ACSF
in mM: NaCl 124, KCl 2.5, NaH2PO4 1.2, CaCl2 2, MgCl2 1,
NaHCO3 25, Glucose 20) was used to keep the cortical surface
warm and moisturized during the entire experiment.

After surgery, the animals were moved into a double-shielded
acoustic room for sound stimulation and electrophysiology
recording.

STIMULATION
Sound generation and calibration
The speaker used in this study was an ES1 Free Field Electrostatic
Speaker driven by an ED1 Electrostatic Speaker Driver manufac-
tured by Tucker-Davis Technologies (TDT Inc, USA). The sound
pressure level (SPL) of pure tones and white noise was calibrated
using a 1/4" pressure prepolarized condenser microphone system
(377A01 microphone +426B03 preamplifier +480E09 signal con-
ditioner, PCB Piezotronics Inc, USA). The signals were sampled
at 1 MHz by a high-speed DAQ board PCI-6251 from National
Instruments and our customized Labview program was use for
calibration.

Pure tones
Pure tones (0.5–64 KHz at 0.1 octave intervals, 25 ms duration,
3 ms ramp) at 8 intensities (varying from 0 to 70 dB, 10 dB inter-
val) were randomly delivered during extracellular and intracellular
recordings to locate the position of A1.

Sound stimulation and electric stimulation in VTA
Repeated white noise (70 dB, 60 ms duration, 5 ms ramp) was
used to test neuronal responses. Electric stimulation was only
used in the paired VTA-sound group. The noise began 300 ms
after the offset of VTA electric stimulation (monophasic pulses of
0.2 ms duration at 100 Hz and 200 ms train duration, 100 μA).
Either sound-only or paired VTA-sound stimulation was repeated
more than five times in a random order and the interval between
repetitions was at least 6 s (Figure 1B).

ELECTROPHYSIOLOGY RECORDING
Extracellular recording
A parylene-coated tungsten electrode (2 M�, WPI, USA) was
inserted into the cortex and lowered to a depth of 480–650 μm
below the pia by a powered manipulator with depth reading (SM-
21 Narishige, Japan). A free-field electrostatic speaker was placed
10 cm away from the animal and facing the contralateral ear of
the recording site. Pure tones (0.5–64 KHz at 0.1 octave intervals,
25 ms duration, 3 ms ramp) at 8 intensities (varying from 0 to
70 dB, 10 dB interval) were repeated in a pseudorandom order
at least five times to measure the receptive field. Recorded signals
were amplified and collected by a TDT System 3 (Gain: 5000, sam-
pling rate: 100 KHz, TDT, USA). The high/low pass filter was set at
300/10000 Hz for spiking activities and the threshold for detection
was set at three times the standard deviation from the baseline. The
multiunit spiking rate and spiking time were automatically ana-
lyzed online and recorded for offline analysis by Brainware (TDT
Inc., USA). The location of A1 was verified by the typical “V”
shaped receptive field, the onset latency (10–20 ms) and the distri-
bution of the characteristic frequency (CF) in the tonotopic map
(Figure 1C).

Intracellular recording
After the identification of A1 with extracellular recording, a sharp
glass pipette (filled with 1.0 M potassium acetate, impedance: 80–
120 M�) was inserted into A1 vertically for in vivo intracellular
recording (400–1200 μm below the pia). Only recordings with a
depth of 450 to 650 μm were chosen for this study to ensure the
recorded neurons were from layer 4, which is the major recipient
layer that receives inputs from the thalamus, according to previous
reports (Wang et al., 2006; Sun et al., 2010). The sharp pipette
was advanced 2 μm per step from 300 μm below the pia. The
intracellular signal was amplified by an Intra767 amplifier (Gain:
100, WPI, USA) and was converted to a digital signal by an analog
digital converter micro1401mKII (CED, UK)at a sampling rate
of 16667 Hz. The neuron membrane potential was recorded by
Spike2 software (CED, UK) and stored for further offline analysis.

HISTOLOGY
After the recording phase of each experiment, direct current with
an amplitude of 450–550 μA was delivered to the stimulation elec-
trode for 30–50 s to make a lesion at the stimulating site. The rat
was deeply anesthetized with an overdose of urethane and per-
fused intracardially with 4◦C pre-cooled 4% paraformaldehyde
(PFA) prepared in PB (0.1 M, pH 7.4). The rat brain was quickly
removed and dehydrated in 30% sucrose (in 4% PFA), and the
brain was sectioned at 18 μm and slices were dried at room tem-
perature. Finally, cresyl violet staining was conducted according
to a previously reported method (Lee et al., 2008; Figure 1C).

DATA ANALYSIS
All off-line analysis, including quantification, plotting, and statis-
tics, were performed using Spike 2 (CED, England), MATLAB
(MathWorks, USA), and SYSTAT (Systat Software, USA). For
extracellularly recorded data, spiking events were qualified by
threshold detection (3 S.D. away from the mean) and averaged
across repetitions in 5 ms bins. For intracellular recording, to
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FIGURE 1 | Diagram of experiment design and example of neuronal

responses in A1. (A) A tungsten electrode was inserted into midbrain to
electrically stimulate VTA and metal electrodes/sharp glass pipettes were
used to record neuronal responses in A1. (B) Two groups of stimulation
protocols: sound only group (top) and paired VTA-sound group (see Materials
and Methods for more details). (C) Localization of recording site in A1 and
stimulation site in VTA. Extracellular multi-unit recording showed that neurons

in A1 have typical gradient in CF from rostral to caudal direction. R, rostral;
D, dorsal. The lesion at the stimulation site was well matched with the
anatomical position of VTA from the results of cresyl violet staining (right).
(D) An example of intracellular recording in A1 neuron showed typical “V”
shaped frequency-intensity tonal receptive field. (E) An example of neuronal
responses to repeated sound stimulation (black bars) in A1 recorded by in vivo
intracellular recording. Scale bar: 10 mV/1s.

ensure reliable recording, the resting membrane potential of the
recorded neuron had to be lower than −50 mV and had to remain
stable during the recording session. Averaged results were pre-
sented as the mean ± S.D. unless otherwise noted. The duration
of the subthreshold and suprathreshold response was measured by
separating the evoked response from spontaneous activity using
threshold detection (mean ± S.D.). T-tests and paired t-tests were
used for between-group comparisons. The shape of spike wave-
forms was used to identify neuron classes according to previous
studies (Wu et al., 2008; Moore and Wehr, 2013) and only data
from typical excitatory pyramidal cells were chosen for further
analysis.

RESULTS
VTA ACTIVATION COMPRESSED SPIKING ACTIVITY IN A1 NEURONS
After the implantation of a stimulator in the VTA and the local-
ization of A1, two groups of stimulation protocols were used to
test the ability of VTA activation to modulate neuronal activity
in A1: sound stimulation only and paired VTA-sound stimulation
(Figures 1A–D, see Materials and Methods for details). Repeated
sound stimulation produced reliable spiking responses measured
by in vivo intracellular recording (Figure 1E).

Figure 2A shows an example of neuronal responses to differ-
ent stimulation protocols (sound only and paired VTA-sound) in
the primary auditory cortex. Both single trace and superimposed
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traces from five repetitions are presented. The duration of spik-
ing activity was clearly shortened when VTA and sound stimuli
were paired. Figure 2B compares the averaged firing rate curves
(mean ± S.D. 5 ms bin, 100 ms window) in the different stimu-
lation conditions from 13 intracellularly recorded neurons. When
the VTA was activated, the firing rate curve became sharper. To
measure the sharpness of the firing rate curve, the half-peak band-
width was measured as the delay (in ms) between two temporal
points (one rising and one falling) where the amplitude of the neu-
ral response reached 50% of the maximum level. Figure 2C shows
that the half-peak bandwidth decreased from 15 to 8 ms when
paired VTA-sound stimuli were delivered. The onset latency of the
first spike response from each repetition was measured, and no sig-
nificant difference was found between the two groups (sound only:
15.1 ± 3.3 ms; paired VTA-sound: 14.8 ± 3 ms; p = 0.43, paired
t-test). Meanwhile, when the VTA was activated, the peak ampli-
tude of the firing rate remained similar (sound only: 124.6 Hz;
paired VTA-sound: 113.1 Hz) and the latency of the response peak
was slightly shorter compared with sound-only stimulation. Con-
sidering that the onset latency was very similar and the latency of
the peak response between two groups was slightly different, this
indicated that the sharpening of the firing rate curve was actually
achieved through the shortening of the falling phase of the firing
rate curve.

To better characterize the difference between the two firing rate
curves, we further compared the duration and total number of
spikes in the response window (Figure 2C). When sound stim-
ulation was delivered alone, the average number of spikes was
2.515, and duration of the spiking response was 40 ms. When VTA
and sound stimulation was paired, the total number of spikes was
reduced to 1.159, and the duration of the excitatory response was
decreased to 15 ms. These results suggested that VTA activation
suppressed the total firing activity in A1 neurons.

Interestingly, while both the number of spikes and the duration
of spiking decreased when VTA-sound stimulation was paired,
the ratio of spike number to duration was increased by 23%
(Figure 2C). The ratio was equivalent to the measurement of
effective firing density in the corresponding response window.
This increase in firing density suggested that although the total
number of spikes decreased and the window shortened, the firing
strength increased when the VTA was activated by paired electric
stimulation.

SHORTENED EPSPs CAUSED BY VTA ACTIVATION
To obtain a better understanding of the cellular mechanism behind
the changes in firing precision and strength, we further analyzed
the dynamics of membrane potential changes in A1 neurons.
Figure 3A shows the averaged membrane potential responses of
13 neurons in A1to sound only and to paired VTA-sound stimula-
tion. The duration of the EPSPs shortened when VTA and sound
stimuli were paired. This agreed with previous findings concerning
spiking activity (Figures 2A,B).

Several indices that can illustrate the membrane potential char-
acteristics of A1 neurons were measured. We found that the
amplitude of sound evoked EPSPs and the latency of the first
spiking response did not change significantly (sound only/paired
VTA-sound: EPSP amplitudes 9.4 ± 2.6/9.8 ± 1.8 mV, p = 0.5;

FIGURE 2 | Spiking response of A1 neurons was compressed by paired

VTA-sound stimulation. (A) Example of an intracellular recording from a
neuron in rat A1: top, sound only group; bottom, paired VTA-sound group;
left, single trace of response; right, five superimposed traces. Thick black
bar indicates the sound stimulation. Scale bar: 10 mV/10ms. (B) Averaged
firing rate (mean ± S.D.) of neuronal responses evoked by two stimulation
groups (n = 13). Shading indicates the SD. Sound only group: light gray;
paired VTA-sound group: dark gray. 5 ms binning window. Dashed line
showed the baseline of spontaneous firing. Thick black bar indicates the
sound stimulation. (C) When VTA-sound stimuli were paired the half-peak
bandwidth, spike number and duration of sound evoked spiking responses
decreased except that the ratio between spike number and duration
increased.

latency 15.1 ± 3.3/14.8 ± 3 ms, p = 0.43, paired t-test, n = 13,
Figures 3C,D), but the EPSP duration was shorter in the paired
group (sound only/pairedVTA-sound: 46.5 ± 23.1/23.2 ± 14.2 ms,
p < 0.01, paired t-test, n = 13, Figure 3B). The shortened EPSP
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FIGURE 3 | Membrane potential characteristics of A1 neurons under

two groups of stimulation. (A) Averaged membrane potential from 13
recorded neurons (left: sound only group; right: paired VTA-sound group).
Thick black bar indicates the sound stimulation. Scale bar: 1 mV/10ms.
(B) The duration of sound-evoked EPSP became shorter when VTA was
activated (sound only: 46.5 ± 23.1 ms; paired VTA-sound: 23.2 ± 14.2 ms,
**p < 0.01, paired t -test, n = 13). (C) The peak latency showed no
significant difference between two stimulation groups (sound only:
15.1 ± 3.3 ms; paired VTA-sound: 14.8 ± 3 ms, p = 0.43, paired t -test,
n = 13). (D) The amplitude of evoked EPSP (sound only: 9.4 ± 2.6 mV;
paired VTA-sound: 9.8 ± 1.8 mV, p = 0.5, paired t -test, n = 13) also did not
change significantly. (E) The membrane potentials before and after the
electric stimulation were measured and no significant difference was found
(200 ms window; before: −60.2 ± 6.8 mV; after: −60.1 ± 6.2 mV, p = 0.78,
paired t -test, n = 13; filled triangle: sound-only stimulation; filled square:
paired VTA-sound stimulation).

duration can explain the suppression in spiking activity caused by
VTA activation.

To verify if VTA activation can directly influence the resting
membrane potential of A1 neurons, we compared the averaged
resting membrane potential before and after electrical stimulation.
The results showed no significant changes between the two groups
(Figure 3E, 200 ms window) before (−60.2 ± 6.8 mV) and after
(−60.1 ± 6.2 mV) electrical stimulation (p = 0.78, paired t-test,
n = 13). These results indicated that VTA activation does not
directly influence the excitability of the recorded neurons in A1,
but modulates the neurons through circuit inhibition.

Adaptation to repeated stimulation has been widely observed
and reported in the sensory system (Kilgard and Merzenich, 1998;

Chowdhury and Suga, 2000; Kisley and Gerstein, 2001). To ensure
that the differences observed here were generated by VTA acti-
vation rather than adaptation to repeated sound stimulation, a
sound-only protocol was applied again after paired VTA-sound
stimulation for a smaller group of neurons (n = 6, 15–30 s, random
interval, Figure 4A). We found that when sound-only stimulation
was delivered again, the duration of the evoked response in A1
neurons was not significantly different from the duration when
sound-only stimulation was applied for the first time (Figure 4B).
This result suggested that the early hyperpolarization was caused
by VTA activation instead of adaptation to repeated sound simula-
tion. This result also indicated that the influence of VTA activation
on auditory neurons in A1 only lasted for a short time.

VTA ACTIVATION AFFECTS NEURONAL ACTIVITY IN A1 THROUGH
CIRCUIT INHIBITION
When paired VTA-sound stimulation was given, the majority of
A1 neurons (8 of 13) showed a clear hyperpolarization approx-
imately 50 ms after the onset of sound stimulation (Figure 5A).
The amplitudes of the EPSPs evoked in the two stimulation groups
showed no significant differences in the 8 neurons (sound only:
8.9 ± 2.7 mV; paired VTA-sound: 9.3 ± 2 mV, p = 0.46, paired
t-test), while the averaged amplitude of IPSPs was 3 ± 1.8 mV
(Figure 5B). Considering that the peak amplitude of evoked EPSPs
in our experiments was approximately 9 mV, these results sug-
gested that the inhibitory modulation caused by VTA activation
was strong. As our previous results showed that VTA activation
may not directly influence the excitability of recorded neurons in
A1, the current results suggest that circuit inhibition accounted
for the inhibitory modulation caused by VTA activation.

DISCUSSION
THALAMOCORTICAL AND NON-THALAMOCORTICAL PATHWAYS IN A1
Excitatory thalamic inputs can directly activate pyramidal neurons
(PNs) or indirectly modulate PNs through GABAergic interneu-
rons in the sensory cortex, which is known as the thalamocortical
pathway. The activity of cortical neurons is determined by the inte-
gration of thalamic excitatory inputs, intracortical excitation and
feedforward inhibition (Ojima and Murakami, 2002; Sun et al.,
2010; Han et al., 2012). This circuitry model has been verified in
various sensory cortices and is considered to be the basic pathway
underlying the response properties of cortical neurons in sensory
systems (Douglas and Martin, 1991, 2004; Liu et al., 2007; Zhou
et al., 2010; Constantinople and Bruno, 2013).

Aside from the classic thalamocortical pathway, cortical neu-
rons may also receive modulation from other sources, such as
the nucleus basalis and VTA. Previous studies have suggested
that cholinergic and dopaminergic inputs can modulate neuronal
activity and play important roles in learning and plasticity in
the auditory cortex (Kilgard and Merzenich, 1998; Dimyan and
Weinberger, 1999; Bao et al., 2001; Xiong et al., 2009). Meanwhile
it’s also found that orbitofrontal cortex (OFC) can largely medi-
ate cortical activities in A1 through non-cholinergic mechanisms
(Winkowski et al., 2013). Cross-modal interactions could shape
neuronal functions in auditory cortex as well. Activation of medial
agranular motor cortex (M2) can modulate neuronal activity in
auditory cortex (Nelson et al., 2013) and a recent study found that
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FIGURE 4 | The shortened EPSP was caused by VTA activation

rather than the adaptation to repeated sound simulation. (A) An
example of neuronal responses to three stimulation groups: sound
only, paired VTA-sound, sound only (again, after paired VTA-sound).
Superimposed traces of 5 repetitions. Scale bar: 5 mv/10ms.
(B) When sound-only stimulation were delivered again the duration of

evoked response in A1 neuron was not significantly different from
the duration when sound-only stimulation was first applied
(*p < 0.05; **p < 0.01, paired t -test; filled triangle: sound-only
stimulation; filled square: paired VTA-sound stimulation; filled circle:
sound-only stimulation that was delivered again after paired VTA-sound
stimulation).

in A1 of adult mice, visual deprivation can potentiate thalamocor-
tical synapses and thus enhance auditory information processing
(Petrus et al., 2014). Taken together, our results and these earlier
findings suggest that the rodent auditory cortex could be regulated
by diverse inputs from different areas in the brain.

IN VIVO INTRACELLULAR RECORDING WAS USED TO INVESTIGATE
VTA-CORTEX CIRCUITRY
Extracellular recording has been widely used to study neuronal
activity in neuroscience research (Nakahara et al., 2004; Ma and
Suga, 2005; Yan and Zhang, 2005). Extracellular recording can
provide helpful information about the firing patterns of single or
multiple neurons. However, it is very difficult to use extracellu-
lar recordings to interpret intracellular details such as membrane
potential changes (e.g., depolarization/hyperpolarization). In vivo
intracellular recording is more technically demanding but can
provide more details about membrane potential dynamics and
clues for possible circuit mechanisms (Douglas and Martin, 1991;
Yu et al., 2004; Zhang et al., 2008). Thus, in vivo intracellular
recording was applied in this study, allowing us to simultaneously
measure both the suprathreshold responses (spiking activity) and
subthreshold responses (membrane potential changes) from the
same neuron.

THALAMOCORTICAL INPUTS WERE NOT LARGELY AFFECTED BY VTA
ACTIVATION
The onset of a sound-evoked neuronal response in A1 is mainly
determined by the thalamocortical pathway, while intracortical
excitatory and inhibitory inputs contribute to the later phase

of evoked activity. The fact that both the suprathreshold onset
response (the onset latency of spiking and the peak amplitude
of the spiking rate) and the subthreshold onset response (the
latency and amplitude of EPSPs) were very similar between the
two groups indicated that VTA activation does not largely affect
the thalamocortical inputs.

VTA ACTIVATION PROMOTES FIRING PRECISION AND STRENGTH IN A1
NEURONS
Biological variability is very common in neuroscience research,
and a shortened temporal window for spiking activity can reduce
uncertainty and increase firing precision for certain acoustic tasks
(Wehr and Zador, 2003; Higley and Contreras, 2006; Paille et al.,
2013). Shortened response windows may also allow animals to
spend less time processing certain acoustic information and pro-
mote the efficiency of information processing in the auditory
cortex.

Interestingly, although both the total number of spikes and the
spike duration dropped when VTA-sound stimuli were paired, the
effective firing density (ratio) was increased by 23%. This indicated
that stronger firing occurred when the VTA was activated and
suggested that auditory neurons become more sensitive to sound
stimulation when it is paired with VTA activation.

EARLY HYPERPOLARIZATION WAS INDUCED BY ENHANCED CIRCUIT
INHIBITION
Both the increased firing precision and strength that we observed
were mainly due to the shortened response window: the total
number of spikes dropped 53.9% and the duration of the spiking
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FIGURE 5 | IPSP after excitatory auditory response. (A) Averaged
membrane potential from 13 recorded neurons (sound only group: gray;
paired VTA-sound group: black). Thick black bar indicates the sound
stimulation. Dashed line shows the level of averaged resting membrane
potential. Scale bar: 1 mv/10ms. (B) 8 of 13 neurons showed clear
hyperpolarization after initial depolarization. The amplitudes of EPSP evoked
by two stimulation groups showed no significant difference (sound only:
8.9 ± 2.7 ms; paired VTA-sound: 9.3 ± 2 ms, p = 0.46, paired t -test).
Averaged amplitude of IPSP: 3.0 ± 1.8 mV.

response dropped 62.5%. As mentioned before, this shortened
response window could be explained by an early hyperpolariza-
tion. The shortened spiking window and early hyperpolarization
could be generated by many different mechanisms. One possible
mechanism is that VTA activation may reduce the excitability of
cortical neurons; however, this is not likely because our results
showed that the resting membrane potential was not changed
by VTA activation. Another possibility is that the early hyper-
polarization may be caused by inhibitory circuit inputs to cortical
neurons.

POSSIBLE CIRCUIT MECHANISM UNDERLYING ENHANCED INHIBITION
Our study suggested a possible mechanism of how the reward sys-
tem affects information processing in the sensory cortex: VTA
activation strengthens cortical inhibition, which shortens the
response window of post-synaptic cortical neurons and further
promotes the precision and strength of neuronal activity.

Recent studies have found that inhibitory circuit inputs are crit-
ical to various cortical functions (Gao et al., 2000; Letzkus et al.,
2011; Lee et al., 2012; Wilson et al., 2012; Hamilton et al., 2013).
Intracortical inhibitory inputs are a major source of circuit inhi-
bition in sensory cortices (Tan et al., 2004; Fino et al., 2013). It is
possible that intracortical inhibitory interneurons were responsi-
ble for the early hyperpolarization elicited by VTA activation. In

rat cortex, parvalbumin (PV), somatostatin (SOM) and vasoin-
testinal peptide (VIP) positive interneurons are the three major
subtypes of interneurons that express GABA (γ-aminobutyric
acid; Xu et al., 2010). PV+ and SOM+ interneurons may pro-
vide inhibitory inputs to excitatory PNs, while VIP+ interneurons
are more likely to innervate other inhibitory interneurons (Wilson
et al., 2012; Pi et al., 2013). It is likely that VTA activation strength-
ens the activity of GABAergic interneurons and leads to enhanced
circuit inhibition in A1. Further investigation is needed to reveal
the interaction between VTA and inhibitory neural networks in
rat A1.
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