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It has been suggested that the midbrain dopamine (DA) neurons, receiving inputs from
the cortico-basal ganglia (CBG) circuits and the brainstem, compute reward prediction error
(RPE), the difference between reward obtained or expected to be obtained and reward that
had been expected to be obtained. These reward expectations are suggested to be stored
in the CBG synapses and updated according to RPE through synaptic plasticity, which is
induced by released DA. These together constitute the “DA=RPE” hypothesis, which
describes the mutual interaction between DA and the CBG circuits and serves as the
primary working hypothesis in studying reward learning and value-based decision-making.
However, recent work has revealed a new type of DA signal that appears not to represent
RPE. Specifically, it has been found in a reward-associated maze task that striatal DA
concentration primarily shows a gradual increase toward the goal. We explored whether
such ramping DA could be explained by extending the “DA=RPE” hypothesis by taking
into account biological properties of the CBG circuits. In particular, we examined effects
of possible time-dependent decay of DA-dependent plastic changes of synaptic strengths
by incorporating decay of learned values into the RPE-based reinforcement learning model
and simulating reward learning tasks. We then found that incorporation of such a decay
dramatically changes the model’s behavior, causing gradual ramping of RPE. Moreover, we
further incorporated magnitude-dependence of the rate of decay, which could potentially
be in accord with some past observations, and found that near-sigmoidal ramping of RPE,
resembling the observed DA ramping, could then occur. Given that synaptic decay can
be useful for flexibly reversing and updating the learned reward associations, especially in
case the baseline DA is low and encoding of negative RPE by DA is limited, the observed
DA ramping would be indicative of the operation of such flexible reward learning.
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INTRODUCTION
The midbrain dopamine (DA) neurons receive inputs from many
brain regions, among which the basal ganglia (BG) are partic-
ularly major sources (Watabe-Uchida et al., 2012). In turn, the
DA neurons send their axons to a wide range of regions, with
again the BG being one of the primary recipients (Björklund and
Dunnett, 2007). This anatomical reciprocity between the DA neu-
rons and the BG has been suggested to have a functional counter-
part (Figure 1A) (Doya, 2000; Montague et al., 2004; Morita et al.,
2013). Specifically, the BG (in particular, the striatum) represents
reward expectations, or “values” of stimuli or actions (Kawagoe
et al., 2004; Samejima et al., 2005), and presumably influenced by
inputs from it, the DA neurons represent the temporal-difference
(TD) reward prediction error (RPE), the difference between
reward obtained or expected to be obtained and reward that had
been expected to be obtained (Montague et al., 1996; Schultz
et al., 1997; Steinberg et al., 2013). In turn, released DA induces
or significantly modulates plasticity of corticostriatal synapses

(Calabresi et al., 1992; Reynolds et al., 2001; Shen et al., 2008)
so that the values of stimuli or actions stored in these synapses
are updated according to the RPE (Figure 1B). Such a suggested
functional reciprocity between the DA neurons and the cortico-
BG (CBG) circuits, referred to as the “DA=RPE” hypothesis here,
has been guiding research on reward/reinforcement learning and
value-based decision-making (Montague et al., 2004; O’Doherty
et al., 2007; Rangel et al., 2008; Glimcher, 2011).

Recently, however, Howe et al. (2013) have made an important
finding that challenges the universality of the “DA=RPE” hypoth-
esis. Specifically, they have found that, in a reward-associated
spatial navigation task, DA concentration in the striatum [in par-
ticular, the ventromedial striatum (VMS)] measured by fast-scan
cyclic voltammetry (FSCV) primarily shows a gradual increase
toward the goal, in both rewarded and unrewarded trials. The
“DA=RPE” hypothesis would, in contrast, predict that striatal DA
shows a phasic increase at an early timing (beginning of the trial
and/or the timing of conditioned stimulus) and also shows a later
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FIGURE 1 | Mutual interaction between dopamine (DA) and the

cortico-basal ganglia (CBG) circuits, and its suggested functional

counterpart. (A) DA neurons in the ventral tegmental area (VTA) and the
substantia nigra pars compacta (SNc) receive major inputs from the basal
ganglia (BG) and the brainstem. In turn, DA released from these neurons
induces plastic changes of synapses in the CBG circuits, in particular,
corticostriatal synapses (indicated by the dashed ellipse). This mutual
interaction between DA and the CBG circuits has been suggested to
implement the algorithm of reinforcement learning as follows. (1) States or
actions are represented in the cortex or the hippocampus, and receiving
inputs from them, neurons in the BG, in particular, medium spiny neurons
in the striatum represent values (reward expectations) of the states/actions,
with these values stored in the strengths of the corticostriatal synapses. (2)
The DA neurons receive inputs from the BG, as well as inputs from the
brainstem, which presumably convey the signal of obtained reward, and
compute reward prediction error (RPE). (3) Then, released DA, representing
the RPE, induces plastic changes of the corticostriatal synapses, which
implement the update of the values (reward expectations) according to the
RPE. (B) Presumed implementations of processes (1) and (3).

decrease, rather than an increase, in the case of unrewarded trials
(c.f., Niv, 2013).

In most existing theories based on the “DA=RPE” hypothesis,
it is assumed that neural circuits in the brain implement mathe-
matical reinforcement learning algorithms in a perfect manner.
Behind the request of such perfectness, it is usually assumed,
often implicitly, that DA-dependent plastic changes of synap-
tic strength, which presumably implement the update of reward
expectations according to RPE, are quite stable, kept constant
without any decay. However, in reality, synapses might be much
more dynamically changing, or more specifically, might entail
time-dependent decay of plastic changes. Indeed, decay of synap-
tic potentiation has been observed at least in some experiments
examining (presumably) synapses from the hippocampal forma-
tion (subiculum) to the ventral striatum (nucleus accumbens)
in anesthetized rats (Boeijinga et al., 1993) or those examin-
ing synapses in hippocampal slices (Gustafsson et al., 1989; Xiao
et al., 1996). Also, active dynamics of structural plasticity of spines
has recently been revealed in cultured slices of hippocampus

(Matsuzaki et al., 2004). Moreover, functional relevance of the
decay of synaptic strength has also been recently put forward
(Hardt et al., 2013, 2014). In light of these findings and sugges-
tions, in the present study we explored through computational
modeling whether the observed gradual ramping of DA can be
explained by extending the “DA=RPE” hypothesis by taking into
account such possible decay of plastic changes of the synapses that
store learned values. (Please note that we have tried to describe the
basic idea of our modeling in the Results so that it can be followed
without referring to the Methods.)

METHODS
INCORPORATION OF DECAY OF LEARNED VALUES INTO THE
REINFORCEMENT LEARNING MODEL
We considered a virtual spatial navigation (unbranched “I-maze”)
task as illustrated in Figure 2A. It was assumed that in each
trial subject starts from S1, and moves to the neighboring state
in each time step until reaching Sn (goal), where reward R is
obtained, and subject learns the values of the states through the
TD learning algorithm (Sutton and Barto, 1998). For simplicity,
first we assumed that there is no reward expectation over multi-
ple trials. Specifically, in the calculation of RPE at S1 and Sn in
every trial, the value of the “preceding state” or the “upcoming
state” was assumed to be 0, respectively; later, in the simula-
tions shown in Figure 4, we did consider reward expectation over
multiple trials. According to the TD learning, RPE (TD error)
at Si in trial k (= 1, 2, . . .), denoted as δi (k), is calculated as
follows:

δi (k) = Ri(k) + γ Vi(k) − Vi − 1(k) ,

where Vi (k) and Vi − 1 (k) are the value of Si and state Si − 1 in
trial k, respectively, Ri (k) is the reward obtained at Si in trial
k [Rn(k) = R and Ri(k) = 0 in the other states], and γ (0 ≤ γ ≤
1) is the time discount factor (per time step). This RPE is used for
updating Vi − 1(k) as follows:

Vi − 1 (k + 1) = Vi − 1 (k) + αδi (k),

where α (0 ≤ α ≤ 1) represents the learning rate. At the goal
(Sn) where reward R is obtained, these equations are calculated
as follows (Figure 2Ba):

δn(k) = R + 0 − Vn − 1 (k)

Vn − 1 (k + 1) = Vn − 1 (k) + αδn(k)

= Vn − 1 (k) + α{R − Vn − 1 (k)},

given that Vn(k) = 0 (representing that reward expectation across
multiple trials is not considered as mentioned above). In the
limit of k → ∞ (approximating the situation after many tri-
als) where Vn − 1 (k) = Vn − 1 (k + 1) ≡ (denoted as) V∞

n − 1, the
above second equation becomes

V∞
n − 1 = V∞

n − 1 + α
(
R − V∞

n − 1

)

∴ V∞
n − 1 = R
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FIGURE 2 | Incorporation of decay of learned values into the

reinforcement learning model causes ramping of RPE. (A) Simulated
spatial navigation (unbranched “I-maze”) task associated with reward. In
each trial, subject starts from S1 (start), and moves to the neighboring state

at each time step until reaching Sn (goal), where reward Rn = R is
obtained. The bottom-middle gray inset shows a pair of computations carried
out at each state according to the reinforcement learning model: (I) RPE

(Continued)

Frontiers in Neural Circuits www.frontiersin.org April 2014 | Volume 8 | Article 36 | 3

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Morita and Kato Dopamine ramping implies flexible learning

FIGURE 2 | Continued

δi = Ri + γ Vi − Vi − 1 is calculated, where Ri is reward obtained at Si
(Ri = 0 unless i = n); Vi and Vi − 1 are the values of state Si and Si − 1,
respectively; γ (0 ≤ γ ≤ 1) is the time discount factor, and (II) the
calculated RPE is used to update the value of Si − 1 : Vi − 1 → �(
Vi − 1 + αδi

)
, where α (0 ≤ α ≤ 1) is the learning rate and � (0 ≤ � ≤ 1)

is the decay factor: � = 1 corresponds to the case of the standard
reinforcement model without decay, and � < 1 corresponds to the case
with decay. The bottom-right inset shows the same computations at
the goal (Sn): note that Vn is assumed to be 0, indicating that reward
is not expected after the goal in a given trial [reward expectation over
multiple trials is not considered here for simplicity; it is considered later
in the simulations shown in Figure 4 (see the Methods)]. (B)

Trial-by-trial changes of Vn − 1 (value of Sn − 1) in the simulated task
shown in (A). (a) The case of the standard reinforcement learning
model without decay [� = 1 in (A)]. Vn − 1 (indicated by the brown bars)

gradually increases from trial to trial, and eventually converges to the
value of reward (R) after many trials while RPE at the goal
(δn = R + 0 − Vn − 1) converges to 0. (b) The case of the model
incorporating the decay [� < 1 in (A)]. Vn − 1 does not converge to R
but instead converges to a smaller value, for which the RPE-based
increment (αδn, indicated by the red dotted/solid rectangles) balances
with the decrement due to the decay (indicated by the blue arrows).
RPE at the goal (δn) thus remains to be positive even after many trials.
(C) The solid lines show the eventual (asymptotic) values of RPE after
the convergence of learning at all the states from the start (S1) to the
goal (S7) when there are 7 states (n = 7) in the model incorporating
the decay, with varying (a) the learning rate (α), (b) the time discount
factor (γ ), (c) the decay factor (�), or (d) the amount of the reward
obtained at the goal (R) [unvaried parameters in each panel were set
to the middle values (i.e., α = 0.6, γ = 0.8(1/6), � = 0.75, and R = 1)].
The dashed lines show the cases of the model without decay.

and therefore

δn(k) → R + 0 − R = 0.

Similarly, δn − j (j = 1, 2, 3, . . .) can be shown to converge to 0
in the limit of k → ∞. This indicates that as learning converges,
there exists no RPE at any states except for the start (S1), at which
δ1(k) in the limit of k → ∞ is calculated to be γ n − 1R.

Let us now introduce time-dependent decay of the value of the
states into the model, in such a way that the update of the state
value is described by the following equation (instead of the one
described in the above):

Vi − 1(k + 1) = �{Vi − 1(k) + αδi (k)} ,

where � (0<� ≤ 1) represents the decay factor (� = 1 corre-
sponds to the case without decay). At the goal (Sn), this equation
is calculated as follows (Figure 2Bb):

Vn − 1(k + 1) = � {Vn − 1 (k) + αδn (k)}
= �Vn − 1(k) + α� {R − Vn − 1(k)}.

In the limit of k → ∞ where Vn − 1 (k) = Vn − 1 (k + 1) ≡
(denoted as) V∞

n − 1, this equation becomes

V∞
n − 1 = �V∞

n − 1 + α�
{

R − V∞
n − 1

}

⇔ {1 − � (1 − α)} V∞
n − 1 = α�R

⇔ V∞
n − 1 = α�R/{1 − � (1 − α)},

and therefore

δn (k) → R + 0 − [α�R/{1 − � (1 − α)}]
= [(1 − �)/{1 − � (1 − α)}] R (k → ∞),

which is positive if � is less than 1. This indicates that if there
exists decay of the state values, positive RPE remains to exist after
learning effectively converges, contrary to the case without decay
mentioned above. Similarly, as for the value of Vn − 2(k) in the

limit of k → ∞, which we denote V∞
n − 2,

V∞
n − 2 = �V∞

n − 2 + α�
{
γ V∞

n − 1 − V∞
n − 2

}

⇔ {1 − �(1 − α)}V∞
n − 2 = α�γ V∞

n − 1

= α2�2γ R/{1 − �(1 − α)}
⇔ V∞

n − 2 = α2�2γ R/{1 − �(1 − α)}2,

and therefore

δn − 1 (k) → 0 + γ V∞
n − 1 − V∞

n − 2

= [
α�γ (1 − �)/{1 − �(1 − α)}2] R (k → ∞).

Similarly, in the limit of k → ∞, the followings hold for
j = 1, 2, 3, . . . , n − 2:

Vn − j (k) → V∞
n − j = αj� jγ j − 1R/{1 − � (1 − α)}j,

δn − j (k) → δ∞
n − j = [αj� jγ j(1 − �)/{1 − � (1 − α)}j + 1]R.

At the start of the maze (S1) (j = n − 1), the value of the “preced-
ing state” is assumed to be 0 given that reward expectation across
multiple trials is not considered as mentioned above, and thus the
followings hold in the limit of k → ∞:

Vn − j (k) → V∞
n − j = αj� jγ j − 1R/{1 − � (1 − α)}j,

δ∞
n − j = 0 + γ V∞

n − j − 0 = γ V∞
n − j

= αj� jγ jR/{1 − � (1 − α)}j.

The solid lines in Figure 2C show δ∞
i for all the states from the

start (S1) to the goal (S7) when there are 7 states (n = 7), with
varying the learning rate (α) (Figure 2Ca), time discount factor
(γ ) (Figure 2Cb), decay factor (�) (Figure 2Cc), or the amount
of reward (R) (Figure 2Cd) (unvaried parameters in each panel
were set to the middle values: α = 0.6, γ = 0.8(1/6), � = 0.75,
and R = 1); the dashed lines show δ∞

i in the model without incor-
porating the decay for comparison. As shown in the figures, in the
cases with decay, the eventual (asymptotic) values of RPE after the
convergence of learning entail gradual ramping toward the goal
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under a wide range of parameters. Also notably, as appeared in
the “� = 0.87” line in Figure 2Cc, depending on parameters, a
peak at the start and a ramp toward the goal could coexist.

MAGNITUDE-DEPENDENT RATE OF THE DECAY OF LEARNED VALUES
We also considered cases where the rate of decay of learned values
depends on the current magnitude of values so that larger val-
ues are more resistant to decay. We constructed a time-step-based
model, in which decay with such magnitude-dependent rate was
incorporated. Specifically, we again considered a model of the
same I-maze task (Figure 2A) and assumed that RPE is computed
at each time step t as follows:

δ(t) = R (t) + γ V(S (t)) − V (S (t − 1)),

where S(t) is the state at time step t and V(S(t)) is its value, and
R(t) and δ(t) are obtained reward and RPE at time step t, respec-
tively. γ is the time discount factor (per time step). According to
this RPE, the value of state S(t − 1) was assumed to be updated as
follows:

V (S (t − 1)) → V(S (t − 1)) + αδ(t),

where α is the learning rate. We then considered the following
function of value V :

� (V) = 1 − (1 − �1) exp(−V/�2),

where �1 and �2 are parameters, and assumed that the value of
every state decays at each time step as follows:

V → (� (V))1/n × V (for the value of states without update
according to RPE), or

V → (� (V))1/n × (V + αδ) (for the value of state with
update according to RPE).

Figure 3Ba shows the function �(V) with a fixed value of �1

(�1 = 0.6) and various values of �2 [�2 = ∞ (lightest gray lines),
1.5 (second-lightest gray lines), 0.9 (dark gray lines), or 0.6 (black
lines)], and Figure 3Bb shows the decay of learned values with
each of these cases (with 7 time steps per trial assumed). For each
of these cases, we simulated 100 trials of the I-maze task shown in
Figure 2A with 7 states, with assuming γ = 0.8(1/6) and α = 0.5
and without considering reward expectation over multiple trials,
and the eventual values of RPE are presented in the solid lines in
Figure 3Bc. Notably, the time-step-based model described in the
above is not exactly the same as the trial-based model described
in the previous section even for the case where the rate of decay
is constant: in the time-step-based model, upon the calcula-
tion of RPE: δ (t) = R (t) + γ V (S (t)) − V (S (t − 1)) , V (S (t))
has suffered decay (n − 1) times, rather than n times (which
correspond to a whole trial), after it has been updated last time.

SIMULATION OF MAZE TASKS WITH REWARDED AND UNREWARDED
GOALS
As a simplified model of the T-maze free-choice task with
rewarded and unrewarded goals used in the experiments (Howe
et al., 2013) (see the Results for explanation of the task), we con-
sidered a free-choice task as illustrated in Figure 4A, where each
state represents a relative location on the path expected to lead

FIGURE 3 | Decay of learned values with magnitude-dependent rate

leads to sigmoidal ramping of RPE resembling the observed DA

ramping. (A) was reprinted by permission from Macmillan Publishers Ltd:
Nature (Howe et al., 2013), copyright (2013). (A) DA ramping in the
ventromedial striatum observed in the experiments (Howe et al., 2013).
(B) (a) Presumed magnitude-dependence of the rate of decay of learned
values raised to the power of the number of time steps in a trial.

(Continued)
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FIGURE 3 | Continued

The horizontal black dashed line at 1 represents the case without decay,
and the horizontal lightest-gray solid line at 0.6 represents the case of
decay with a constant (magnitude-independent) rate. The three curved lines
indicate three different degrees of magnitude-dependence of the rate of
decay. (b) Decay of learned values under the different degrees of
magnitude-dependence of the rate of decay [line colors (brightnesses)
correspond to those in panel (a)]. (c) The solid lines indicate the values of
RPE after 100 trials at all the states from the start (S1) to the goal (S7) in the
simulated I-maze task shown in Figure 2A with 7 states (n = 7) in the
model incorporating the decay with magnitude-dependent/independent
rate, with varying the magnitude-dependence [line colors (brightnesses)
correspond to those in (a,b)]. The dashed line shows the case of the model
without decay.

to, or the path after passing, the rewarded or unrewarded goal
or at either of the goals in each trial. We assumed that subject
moves to the neighboring state in each time step, and chooses
one of the two possible actions (leading to one of the two goals)
at the branch point (S5), while learning the values of each state-
action pair (A1, A2, · · · : there is assumed to be only a single
action “moving forward” in the states other than the branch
point), according to one of the major reinforcement (TD) learn-
ing algorithms called Q-learning (Watkins, 1989) (for the reason
why we have chosen Q-learning, see the Results), with addition-
ally incorporating the decay of learned values with magnitude-
dependent rate. Specifically, at each time step t, RPE is computed
as follows:

δ(t) = R(t) + γ Q (A (t)) − Q (A (t − 1)) (at states other than S5)

δ(t) = R(t) + γ max {Q (A5) , Q (A6)} − Q (A (t − 1)) (at S5),

where A(t) is the state-action pair at time step t and Q(A(t)) is its
value, and γ is the time discount factor (per time step). There
were assumed to be N = 25 time steps per trial, including the
inter-trial interval, and γ was set to γ = 0.81/25. According to
this RPE, the value of the previous state-action pair is updated
as follows:

Q (A (t − 1)) → Q (A (t − 1)) + αδ (t),

where α is the learning rate and it was set to 0.5. We then assumed
that the value of every state-action pair (denoted as Q) decays at
each time step as follows:

Q → (� (Q))1/N × Q,

where �(Q) is the function introduced above, and �1 and �2 were
set to �1 = 0.6 and �2 = 0.6. At the branch point (S5), one of
the two possible actions (A5 and A6) is chosen according to the
following probability:

Prob (A5) = 1/
(
1 + exp (−β (Q (A5) − Q (A6)))

)
,

Prob (A6) = 1/
(
1 + exp (−β (Q (A6) − Q (A5)))

)

= 1 − Prob (A5),

where Prob(A5) is the probability that action A5 is chosen, and β

is a parameter determining the degree of exploration vs. exploita-
tion upon choice (as β becomes smaller, choice becomes more
and more exploratory); β was set to 1.5. In the simulations of

this model, we considered reward expectation over multiple tri-
als, specifically, we assumed that at the first time step in every
trial, subject moves from the last state in the previous trial to
the first state in the current trial, and RPE computation and
value update are done in the same manner as in the other
time steps.

In addition to the simulations of the Q-learning model, we also
conducted simulations of the model with a different algorithm
called SARSA (Rummery and Niranjan, 1994) (the results shown
in Figure 4F), for which we assumed the following equation for
the computation of RPE at the branch point (S5):

δ(t) = R(t) + γ Q (Achosen) − Q (A (t − 1)),

where Achosen is the action that is actually chosen (either A5 or
A6), instead of the equation for Q-learning described above. In
the simulations shown in Figure 4C, reward R(t) was assumed to
be 1 only at one of the goals (S8) and set to 0 otherwise, whereas
in the simulations shown in Figure 4E and Figure 4F, R(t) was
assumed to be 1 and 0.25 at the two goals (S8 and S9, respectively)
and set to 0 otherwise. In addition to the modeling and simula-
tions of the free-choice task, we also conducted simulations of a
forced-choice task, which could be regarded as a simplified model
of the forced-choice task examined in the experiments (Howe
et al., 2013). For that, we considered sequential movements and
action selection in the same state space (Figure 4A) but randomly
determined choice (A5 or A6) at the branch point (S5) in each trial
rather than using the choice probability function described above
(while RPE of the Q-learning type, taking the max of Q(A5) and
Q(A6), was still assumed), and reward R(t) at the two goals were
set to 1 (large reward) and 0.25 (small reward). In each of the con-
ditions, 1000 trials were simulated, with initial values of Q(A) set
to 0 for every state-action pair A. We did not specifically model
sessions, but we considered that the 1000 trials were divided into
25 “pseudo-sessions,” each of which consists of 40 trials, so as to
calculate the average and s.e.m. of the mean RPE in individual
pseudo-sessions across the 25 pseudo-sessions, which are shown
in the solid and dashed lines in Figures 4Ca,Db,Ea,Fb (in these
figures, the average ± standard deviation of RPE in individual tri-
als across trials are also shown in the error bars). Figures 4Cb,Eb
show the RPE in 401st ∼ 440th trials. In the simulations of 1000
trials for Figures 4C,D,E by the Q-learning model with decay,
negative RPE did not occur. By contrast, negative RPE occurred
rather frequently in the SARSA model (Figure 4F). The ratio
that the rewarded goal (S8) was chosen (i.e., ratio of correct tri-
als) was 65.6, 64.5, and 64.5% in the simulations of 1000 trials
for Figures 4C,E,F, respectively. The simulations in the present
work were conducted by using MATLAB (MathWorks Inc.), and
the program codes will be submitted to the ModelDB (https://
senselab.med.yale.edu/modeldb/).

RESULTS
DECAY OF PLASTIC CHANGES OF SYNAPSES LEADS TO RAMPING OF
RPE-REPRESENTING DA SIGNAL
We will first show how the standard reinforcement learning algo-
rithm called the TD learning (Sutton and Barto, 1998) works and
what pattern of RPE is generated by using a virtual reward learn-
ing task, and thereafter we will consider effects of possible decay
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FIGURE 4 | DA/RPE ramping in maze task with rewarded and

unrewarded goals. (Ba,Bb,Da,Fa) were reprinted by permission from
Macmillan Publishers Ltd: Nature (Howe et al., 2013), copyright (2013).
(A) Simulated free-choice T-maze task with rewarded and unrewarded

goals, which was considered as a simplified model of the cue-reward
association task used in (Howe et al., 2013). Notably, the boundary
between the inter-trial interval and the trial onset was not

(Continued)
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FIGURE 4 | Continued

specifically modeled, and thus there does not exist a particular state that
corresponds to the start of each trial. (B) Temporal evolution of the DA
concentration in the ventromedial striatum in the experiments (Howe et al.,
2013). (a) Average DA for rewarded (blue) or unrewarded (red) trials. (b)

Individual trials. (C) Temporal evolution of the RPE in the simulations of the
model incorporating the decay of learned values with magnitude-dependent
rate. (a) The thick solid blue and red lines indicate the average, across 25
“pseudo-sessions” (see the Methods), of the mean RPE for rewarded and
unrewarded trials in each pseudo-session consisting of 40 trials,
respectively. The dotted lines (nearly overlapped with the solid lines) indicate
these averages ± s.e.m. across pseudo-sessions. The error bars indicate the
average ± standard deviation of RPE in individual trials across trials. The
vertical dotted, dashed, and solid gray lines correspond to the lines in (A),
indicating S1, S5 (branch point), and S8 or S9 (goal) in the diagram,
respectively. (b) Examples of the temporal evolution of RPE in individual
trials in the simulations. (Da) DA concentration in the forced-choice task in

the experiments (Howe et al., 2013). The left red vertical line indicates the
branch (choice) point, while the right red line indicates another (unbranched)
turning point in the M-maze used in the experiments. (b) RPE in the
simulations of the simplified forced-choice task by the model. Configurations
are the same as those in (Ca) except for the colors: light-green and
dark-green indicate the large-reward and small-reward cases, respectively.
(E) RPE in another set of simulations, in which it was assumed that
goal-reaching (trial completion) is in itself internally rewarding, specifically,
R(t) in the calculation of RPE (δ(t)) at the rewarded goal and the unrewarded
goal was assumed to be 1 (external + internal rewards) and 0.25 (internal
reward only) [rather than 1 and 0 as in the case of (C)], respectively.
Configurations are the same as those in (C). (F) (a) DA concentration in the
dorsolateral striatum in the experiments (Howe et al., 2013). (b) RPE in the
model incorporating the algorithm called SARSA instead of Q-learning, which
was assumed in the simulations shown in (C,Db,E). It was assumed that
goal-reaching (trial completion) is in itself internally rewarding in the same
manner as in (E). Configurations are the same as those in (Ca).

of plastic changes of synapses storing learned values. We consid-
ered a virtual spatial navigation task as illustrated in Figure 2A.
In each trial, subject starts from S1, and moves to the neigh-
boring state in each time step until reaching the goal (Sn),
where reward R is obtained (unbranched “I-maze,” rather than
branched “T-maze,” was considered first for simplicity). Based
on the prevailing theories of neural circuit mechanisms for rein-
forcement learning (Montague et al., 1996; Doya, 2000), we have
made the following assumptions: (1) different spatial locations,
or “states,” denoted as S1 (=start), S2, · · · , Sn (=goal, where
reward R is obtained), are represented by different subpopu-
lations of neurons in the subject’s brain (hippocampus and/or
cortical regions connecting with it), and (2) “values” of these
states are stored in the changes (from the baseline) in the strength
of synapses between the state-representing neurons in the cor-
tex/hippocampus and neurons in the striatum (c.f. Pennartz et al.,
2011), and thereby the value of a given state S, denoted as V(S),
is represented by the activity of a corresponding subpopulation
of striatal neurons. We have further assumed, again based on the
current theories, that the following pair of computations are car-
ried out at each state (Si, i = 1, 2, . . . , n) in the DA-CBG system:
(I) DA neurons receive (indirect) impacts from the striatal neu-
rons through basal ganglia circuits, and compute the TD RPE:
δi = Ri + γ Vi − Vi − 1, where Ri is reward obtained at Si (Ri = 0
unless i = n); Vi and Vi − 1 are the “values” (meaning reward
expectations after leaving the states) of state Si and Si − 1, respec-
tively; and γ (0 ≤ γ ≤ 1) is a parameter defining the degree of
temporal discount of future rewards called the time discount fac-
tor, and (II) the RPE is used to update the value of the previous
state (i.e., Si − 1) through DA-dependent plastic changes of striatal
synapses: Vi − 1 → � (Vi − 1 + αδi), where α (0 ≤ α ≤ 1) repre-
sents the speed of learning called the learning rate, and � (0 ≤
� ≤ 1) is a parameter for the time-dependent decay; we first con-
sidered the case of the standard reinforcement learning model
without decay (the case with � = 1).

Assume that initially subject does not expect to obtain reward
after completion of the maze run in individual trials and thus
the “values” of all the states are 0. When reward is then intro-
duced into the task and subject obtains reward Rn = R at the
goal (Sn), positive RPE δn = R + γ Vn − Vn − 1 = R + 0 − 0 = R

occurs, and it is used to update the value of Sn − 1 : Vn − 1 → 0 +
αδn = αR. Then, in the next trial, subject again obtains reward
R at the goal (Sn) and positive RPE occurs; this time, the RPE
amounts to δn = R + γ Vn − Vn − 1 = R + 0 − αR = (1 − α) R,
and it is used to update the value of Sn − 1 : Vn − 1 → αR + αδn =(
2α − α2

)
R. In this way, the value of Sn − 1 (Vn − 1) gradually

increases from trial to trial, and accordingly RPE occurred at
the goal (δn = R − Vn − 1) gradually decreases. As long as Vn − 1

is smaller than R, positive RPE should occur and Vn − 1 should
increase in the next trial, and eventually, Vn − 1 converges to R,
and RPE (δn) converges to 0 (Figure 2Ba) (see the Methods for
mathematical details). Similarly, values of the preceding states
except for the initial state (Vn − 1, Vn − 2, · · · ; except for V1) also
converge to R and RPE at these states (δn − 1, δn − 2, · · · ; except
for δ1) converges to 0. Thus, from the prevailing theories of neu-
ral circuit mechanisms for reinforcement learning, it is predicted
that DA neuronal response at the timing of reward and the pre-
ceding timings except for the initial timing, representing the RPE
δn, δn − 1, δn − 2, · · · , appears only transiently when reward is
introduced into the task (or the amount of reward is changed),
and after that transient period DA response appears only at the
initial timing, as shown in the dashed lines in Figure 2C, which
indicate eventual (asymptotic) values of RPE in the case with 7
states, with various parameters. The gradual ramping of DA signal
observed in the actual reward-associated spatial navigation task
(Howe et al., 2013) therefore cannot be explained by the DA=RPE
hypothesis standing on the standard reinforcement (TD) learning
algorithm (Niv, 2013).

Let us now assume that DA-dependent plastic changes of
synaptic strengths are subject to time-dependent decay so that
learned values stored in them decay with time. Let us consider
a situation where Vn − 1 (value of Sn − 1) is smaller than R and
thus positive RPE occurs at Sn. If there is no decay, Vn − 1 should
be incremented exactly by the amount of this RPE multiplied by
the learning rate (α) in the next trial, as seen above (Figure 2Ba).
If there is decay, however, Vn − 1 should be incremented by the
amount of α × RPE but simultaneously decremented by the
amount of decay. By definition, RPE (δn = R − Vn − 1) decreases
as Vn − 1 increases. Therefore, if the rate (or amount) of decay
is constant, Vn − 1 could initially increase from its initial value
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0 given that the net change of Vn − 1 per trial (i.e., α × RPE −
decay) is positive, but then the net change per trial becomes
smaller and smaller as Vn − 1 increases, and eventually, as α × RPE
becomes asymptotically equal to the amount of decay, increase of
Vn − 1 should asymptotically terminate (Figure 2Bb). Even at this
asymptotic limit (approximating the situation after many trials),
RPE at the goal (δn) remains to be positive, because it should be
equal to the amount of decay divided by α. Similarly, RPE at the
timings preceding reward (δn − 1, δn − 2, · · · ) also remains to be
positive (see the Methods for mathematical details). The situa-
tion is thus quite different from the case without decay, in which
RPE at the goal and the preceding timings except for the initial
timing converges to 0 as seen above. The solid lines in Figure 2C
show the eventual (asymptotic) values of RPE in the I-maze task
(Figure 2A) with 7 states in the case of the model with decay,
amount of which is assumed to be proportional to the current
magnitude of the state value (synaptic strength) (i.e., the rate of
decay is constant, not depending on the magnitude), with varying
the learning rate (α) (Figure 2Ca), the time discount factor (γ )
(Figure 2Cb), the decay factor (κ) (Figure 2Cc), or the amount
of reward (R) (Figure 2Cd). As shown in the figures, under a
wide range of parameters, RPE entails gradual ramping toward
the goal, and the ramping pattern is proportionally scaled with
the amount of reward (Figure 2Cd).

EXPLANATION OF THE OBSERVED GRADUALLY RAMPING DA SIGNAL
As shown so far, the experimentally observed gradual ramping of
DA concentration toward the goal could potentially be explained
by incorporating the decay of plastic changes of synapses storing
learned values into the prevailing hypothesis that the DA-CBG
system implements the reinforcement learning algorithm and
DA represents RPE. In the following, we will see whether and
how detailed characteristics of the observed DA ramping can
be explained by this account. First, the experimentally observed
ramping of DA concentration in the VMS entails a nearly sig-
moidal shape (Figure 3A) (Howe et al., 2013), whereas the pattern
of RPE/DA ramping predicted from the above model (Figure 2C)
is just convex downward, with the last part (just before the goal)
being the steepest. We explored whether this discrepancy can
be resolved by elaborating a model. In the model considered
in the above, we assumed decay with a constant (magnitude-
independent) rate. In reality, however, the rate of decay may
depend on the magnitude of learned values (synaptic strengths
storing the values). Indeed, it has been shown in hippocampal
slices that longer tetanus trains cause a larger degree of long-
term potentiation, which tends to exhibit less decay (Gustafsson
et al., 1989). Also, in the experiments examining (presumably)
direct inputs from the hippocampal formation (subiculum) to
the nucleus accumbens (Figure 6A of Boeijinga et al., 1993),
decay of potentiation appears to be initially slow and then accel-
erated. We constructed an elaborate model incorporating decay
with magnitude-dependent rate, which could potentially be in
accord with these findings. Specifically, in the new model we
assumed that larger values (stronger synapses) are more resis-
tant to decay (see the Methods for details). We simulated the
I-maze task (Figure 2A) with this model, and examined the even-
tual values of RPE after 100 trials, with systematically varying

the magnitude-dependence of the rate of decay (Figures 3Ba,b).
Figure 3Bc shows the results. As shown in the figure, as the
magnitude-dependence of the rate of decay increases so that
larger values (stronger synapses) become more and more resis-
tant to decay, the pattern of RPE ramping changes its shape
from purely convex downward to nearly sigmoidal. Therefore,
the experimentally observed nearly sigmoidal DA ramping could
be better explained by tuning such magnitude-dependence of the
rate of decay.

Next, we examined whether the patterns of DA signal observed
in the free-choice task (Howe et al., 2013), specifically, cue
(tone)—reward association T-maze task, can be reproduced by
our model incorporating the decay. In that task, subject started
from the end of the trunk of letter “T”. As the subject moved
forward, a cue tone was presented. There were two different cues
(1 or 8 kHz) indicating which of the two goals lead to reward in
the trial. Subject was free to choose either the rewarded goal or
the unrewarded goal. In the results of the experiments, subjects
chose the rewarded (“correct”) goal in more than a half (65%) of
trials overall, indicating that they learned the cue-reward associa-
tion and made advantageous choices at least to a certain extent.
During the task, DA concentration in the VMS was shown to
gradually ramp up, in both trials in which the rewarded goal was
chosen and those in which the unrewarded goal was chosen, with
higher DA concentration at late timings observed in the rewarded
trials (Figure 4Ba). We tried to model this task by a simplified
free-choice task as illustrated in Figure 4A, where each state rep-
resents a relative location on the path expected to lead to, or the
path after passing, the rewarded or unrewarded goal or at either
of the goals in each trial. The VMS, or more generally the ventral
striatum receives major dopaminergic inputs from the DA neu-
rons in the ventral tegmental area (VTA), whose activity pattern
has been suggested (Roesch et al., 2007) to represent a particu-
lar form of RPE defined in one of the major reinforcement (TD)
learning algorithms called Q-learning (Watkins, 1989). Therefore,
we simulated sequential movements and action selection in the
task shown in Figure 4A by using the Q-learning model incorpo-
rating the decay of learned values with magnitude-dependent rate
(see the Methods for details).

Given that the model’s parameters are appropriately tuned,
the model’s choice performance can become comparable to the
experimental results (about 65% correct), and the temporal evo-
lution of the RPE averaged across rewarded trials and also the
average across unrewarded trials can entail gradual ramping
during the trial (Figure 4Ca), reproducing a prominent feature
of the experimentally observed DA signal. In the experiments
(Howe et al., 2013), the authors have shown that the moment-
to-moment level of DA during the trial is likely to reflect the
proximity to goal (location in the maze) rather than elapsed time.
Although our model does not have description of absolute time
and space, the value of RPE in our model is uniquely deter-
mined depending on the state, which is assumed to represent
relative location in the maze, and thus given that the duration
of DA’s representation of RPE co-varies with the duration spent
in each state, our model could potentially be consistent with the
observed insensitivity to elapsed time. A major deviation of the
simulated RPE/DA from the experimentally observed DA signal
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is that difference between rewarded trials and unrewarded trials is
much larger in the simulation results, as appeared in Figure 4Ba
and Figure 4Ca. We will explore how this could be addressed
below. Figure 4Cb shows examples of the temporal evolution of
RPE in individual trials in the simulations. As appeared in the
figure, ramping can occur in a single trial at least for a certain frac-
tion of trials, although more various patterns, including ramping
peaked at earlier times, transient patterns, and patterns with more
than one peaks, also frequently appear (see Figure 4Bb for com-
parison with the experimental results). Closely looking at the
simulation results (Figure 4Cb), there exist oblique stripe pat-
terns from top right to bottom left (especially clearly seen for
blue colors), indicating that upward or downward deviation of
RPE values, first occurred at the timing of goal and the preceding
timing due to presence or absence of reward, transmits to earlier
timing (to the left in the figure) in subsequent trials (to the bot-
tom). The reason for the appearance of such a pattern is that RPE
is used to update the value of state-action pair at the previous tim-
ing. This pattern is a prediction from the model and is expected
to be experimentally tested, although the difference in DA signal
around the timing of goal between rewarded and unrewarded tri-
als was much smaller in the experiments, as mentioned above,
and thus finding such a pattern, even if exist, would not be easy.

In the study that we modeled (Howe et al., 2013), in addition
to the free-choice task, the authors also examined a forced-choice
task, in which subject was pseudo-randomly forced to choose one
of the goals associated with high or low reward in each trial. The
authors have then found that DA ramping was strongly biased
toward the goal with the larger reward (Figure 4Da). We con-
sidered a simplified model of the forced-choice task, represented
as state transitions in the diagram shown in Figure 4A with the
two goals associated with large and small rewards and the choice
in each trial determined (pseudo-)randomly (see the Methods
for details). We conducted simulations of this task by using our
model with the same parameters used in the simulations of the
free-choice task, and found that the model could reproduce the
bias toward the goal with the larger reward (Figure 4Db).

EXPLANATION OF FURTHER FEATURES OF THE OBSERVED DA SIGNAL
Although our model could explain the basic features of the exper-
imentally observed DA ramping to a certain extent, there is also
a major drawback as mentioned in the above. Specifically, in our
simulations of the free-choice task, gradual ramping of the mean
RPE was observed in both the average across rewarded trials and
the average across unrewarded trials, but there was a prominent
difference between these two (Figure 4Ca). In particular, whereas
the mean RPE for rewarded trials ramps up until subject reaches
the goal, the mean RPE for unrewarded trials ramps up partway
but then drops to 0 after passing the branch point. In the experi-
ments (Howe et al., 2013), the mean RPE for rewarded trials and
that for unrewarded trials did indeed differentiate later in a trial
(Figure 4Ba), but the difference was much smaller, and the tim-
ing of differentiation was much later, than the simulation results.
The discrepancy in the timing could be partially understood given
that our model describes the temporal evolution of RPE, which
is presumably first represented by the activity (firing rate) of DA
neurons whereas the experiments measured the concentration of

DA presumably released from these neurons and thus there is
expected to be a time lag, as suggested from the observed differ-
ence in latencies of DA neuronal firings (Schultz et al., 1997) and
DA concentration changes (Hart et al., 2014). The discrepancy in
the size of the difference between rewarded and unrewarded tri-
als, however, seems not to be explained in such a straightforward
manner even partially. In the following, we would like to present
a possible explanation for it.

In the simulations shown in the above, it was assumed that
the unrewarded goal is literally not rewarding at all. Specifically,
in our model, we assumed a positive term representing obtained
reward (R(t) > 0) in the calculation of RPE (δ(t)) at the rewarded
goal, but not at the unrewarded goal [where R(t) was set to 0]. In
reality, however, it would be possible that reaching a goal (com-
pletion of a trial) is in itself internally rewarding for subjects, even
if it is the unrewarded goal and no external reward is provided.
In order to examine whether incorporation of the existence of
such internal reward could improve the model’s drawback that the
difference between rewarded and unrewarded trials is too large,
we conducted a new simulation in which a positive term rep-
resenting obtained external or internal reward (R(t) > 0) was
included in the calculation of RPE (δ(t)) at both the rewarded
goal and the unrewarded goal, with its size four times larger in
the rewarded goal [i.e., R(t) = 1 or 0.25 at the rewarded or unre-
warded goal, respectively; this could be interpreted that external
reward of 0.75 and internal reward of 0.25 are obtained at the
rewarded goal whereas only internal reward of 0.25 is obtained
at the unrewarded goal]. Figure 4E shows the results. As shown
in Figure 4Ea, the mean RPE averaged across unrewarded trials
now remains to be positive after the branch point and ramps up
again toward the goal (arrowheads in the figure), and thereby the
difference between rewarded and unrewarded trials has become
smaller than the case without internal reward. Neural substrate of
the presumed positive term (R(t)) representing internal reward
is not sure, but given the suggested hierarchical reinforcement
learning in the CBG circuits (Ito and Doya, 2011), such inputs
might originate from a certain region in the CBG circuits that
controls task execution and goal setting (in the outside of the part
that is modeled in the present work).

In the study that we modeled (Howe et al., 2013), DA con-
centration was measured in both the VMS and the dorsolateral
striatum (DLS), and there was a difference between them. In
the VMS, nearly constant-rate ramping starts just after the trial-
onset, and rewarded and unrewarded trials differentiate only in
the last period, as we have seen above (Figure 4Ba). In the DLS,
by contrast, initial ramping looks less prominent than in the
VMS, while rewarded and unrewarded trials appear to differen-
tiate somewhat earlier than in the VMS (Figure 4Fa). The VMS
and DLS, or more generally the ventral striatum and dorsal stria-
tum, are suggested to receive major dopaminergic inputs from the
VTA and the substantia nigra pars compacta (SNc), respectively
(Ungerstedt, 1971), though things should be more complicated
in reality (Björklund and Dunnett, 2007; Bromberg-Martin et al.,
2010). Both VTA and SNc DA neurons have been shown to rep-
resent RPE, but they may represent different forms of RPE used
for different reinforcement (TD) learning algorithms. Specifically,
it has been empirically suggested, albeit in different species, that
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VTA and SNc DA neurons represent RPE for Q-learning (Roesch
et al., 2007) and SARSA (Morris et al., 2006), respectively; these
two algorithms differ in whether the maximum value of all the
choice options (Q-learning) or the value of actually chosen option
(SARSA) is used for the calculation of RPE [see (Niv et al., 2006)
and the Methods]. Conforming to this suggested distinction, so
far we have assumed Q-learning in the model and compared
the simulation results with the DA concentration in the VMS
that receives major inputs from the VTA. The emerging question,
then, is whether simulation results become more comparable to
the DA concentration in the DLS if we instead assume SARSA in
the model. We explored this possibility by conducting a new sim-
ulation, and found that it would indeed be the case. Figure 4Fb
shows the simulation results of the model with SARSA, which also
incorporated the internal reward upon reaching the unrewarded
goal introduced above. Compared with the results with Q-leaning
(Figure 4Ea), initial ramping looks less prominent, and rewarded
and unrewarded trials differentiate earlier. These two differences
could be said to be in line with the experimentally observed differ-
ences between the VMS and DLS DA concentrations as described
above, although again the difference between rewarded and unre-
warded trials is larger, and the timing of differentiation is earlier,
in the model than in the experiment.

Intriguingly, in the study that has shown the representation
of RPE for Q-learning in VTA DA neurons (Roesch et al., 2007),
DA neurons increased their activity in a staggered manner from
the beginning of a trial (before cue presentation) toward reward,
with the activity in the middle of the increase shown to entail
the characteristics of RPE. It is tempting to guess that such a
staggered increase of VTA DA neuronal firing actually has the
same mechanistic origin as the gradual increase of VMS DA con-
centration in the study that we modeled (Howe et al., 2013).
Consistent with this possibility, in a recent study that has simu-
lated the experiments in which VTA DA neurons were recorded
(Roesch et al., 2007) by using a neural circuit model of the
DA-CBG system (Morita et al., 2013), the authors have incor-
porated decay of learned values, in a similar manner to the
present work, in order to reproduce the observed temporal pat-
tern of DA neuronal firing, in particular, the within-trial increase
toward reward (although it was not the main focus of that study
and also the present work does not rely on the specific cir-
cuit structure/mechanism for RPE computation proposed in that
study).

DISCUSSION
While the hypothesis that DA represents RPE and DA-dependent
synaptic plasticity implements update of reward expectations
according to RPE has become widely appreciated, recent work
has revealed the existence of gradually ramping DA signal that
appears not to represent RPE. We explored whether such DA
ramping can be explained by extending the “DA=RPE” hypoth-
esis by taking into account possible time-dependent decay of
DA-dependent plastic changes of synapses storing learned values.
Through simulations of reward learning tasks by the RPE-based
reinforcement learning model, we have shown that incorpora-
tion of the decay of learned values can indeed cause gradual
ramping of RPE and could thus potentially explain the observed

DA ramping. In the following, we discuss limitations of the
present work, comparisons and relations with other studies, and
functional implications.

LIMITATIONS OF THE PRESENT WORK
In the study that has found the ramping DA signal (Howe et al.,
2013), it was shown that the peak of the ramping signals was
nearly as large as the peak of transient responses to unpredicted
reward. By contrast, in our simulations shown in Figure 4E, aver-
age RPE for all the trials at state S5 is about 0.158, which is smaller
than RPE for unpredicted reward of the same size in our model
(it is 1.0). This appears to deviate from the results of the exper-
iments. However, there are at least three potential reasons that
could explain the discrepancy between the experiments and our
modeling results, as we describe below.

First, in the experiments, whereas there was only a small dif-
ference between the peak of DA response to free reward and the
peak of DA ramping during the maze task when averaged across
sessions, the slope of the regression line between these two val-
ues (DA ramping / DA to free reward) in individual sessions
(Extended Data Figure 5a of Howe et al., 2013) is much smaller
than 1 (it is about 0.26). Indeed, that figure shows that there were
rather many sessions in which the peak of DA response to free
reward was fairly large (>15 nM) whereas the peak of DA ramp-
ing during the maze task was not large (<15 nM), while much
less sessions exhibited the opposite pattern. How the large vari-
ability in DA responses in the experiments reflects heterogeneity
of DA cells and/or other factors is not sure, but it might be possi-
ble to regard our model as a model of cells or conditions in which
response to free reward was fairly large whereas ramping during
the maze task was not large. Second, it is described in Howe et al.
(2013) (legend of Extended Data Figure 5a) that DA response to
free reward was compared with DA ramping measured from the
same probes during preceding behavioral training in the maze.
Given that the same type of reward (chocolate milk) was used
in the task and as free reward, and that the measurements of DA
response to deliveries of free reward were made after the measure-
ments of DA ramping during 40 maze-task trials in individual
sessions, we would think that there possibly existed effects of
satiety. Third, the degree of unpredictability of the “unexpected
reward” in the experiments could matter. Specifically, it seems
possible that there were some sensory stimuli that immediately
preceded reward delivery and informed the subjects of it such as
sounds (generated in the device for reward supply) or smells. In
such a case, conventional RPE models without decay predict that,
after some experience of free reward, RPE of nearly the same size
as that of RPE generated upon receiving ultimately unpredictable
reward is generated at the timing of the sensory stimuli (unless
time discount is extremely severe: size becomes smaller only due
to time discount), and no RPE is generated at the timing of actual
reward delivery. In contrast, and crucially, our model with decay
predicts that, after some experience of free reward, RPE generated
at the timing of the sensory stimuli is significantly smaller than
RPE generated upon receiving ultimately unpredictable reward,
and positive RPE also occurs upon receiving reward but it is also
smaller than the ultimately unpredictable case (if the timing of
the sensory stimuli is one time-step before the timing of reward
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in the model with the parameters used for Figure 4, RPE val-
ues at those two timings after 15 experiences are about 0.87 and
0.16, respectively; these two RPEs are about 0.99 and 0.00 in the
case without decay). The mechanism of this can be schematically
understood from Figure 2Bb by viewing Vn − 1 (bar height) and
δn (space above the bar) as RPEs at the timings of the preceding
sensory stimuli and the actual reward delivery, respectively (as
for the former, except for time discount); they are both smaller
than the reward amount (“R”), which is the size of RPE generated
upon receiving this reward ultimately unpredictably. With these
considerations, we would think that the discrepancy between the
experiments and the model in the relative sizes of the peak DA
response to free reward and the peak DA ramping in the maze
task could potentially be explained.

Other than the point described above, there are at least six
fundamental limitations of our model. First, our model’s behav-
ior is sensitive to the magnitude of rewards. As shown in the
Results, in our original model assuming decay with a constant
rate, overall temporal evolution of RPE is proportionally scaled
according to the amount of reward (Figure 2Cd). However, such
a scalability no longer holds for the elaborated model incorporat-
ing the magnitude-dependent rate of decay, because the assumed
magnitude-dependence (Figure 3Ba) is sensitive to absolute
reward amount. Consequently, the patterns of RPE shown in
Figures 3 and 4 will change if absolute magnitude of rewards is
changed. In reality, it is possible that magnitude-dependence of
the rate of decay of learned values (synaptic strength) itself can be
changed, in a longer time scale, depending on the average magni-
tude of rewards obtained in the current context. Second, whereas
the free-choice task used in the experiments (Howe et al., 2013)
involved cue-reward association, our simplified model does not
describe it. Because of this, the state in our model is assumed to
represent relative location on the path expected to lead to, or the
path after passing, the rewarded or unrewarded goal or at either
of the goals in each trial (as described before), but not absolute
location since the absolute location of rewarded/unrewarded goal
in the experiments was determined by the cue, which changed
from trial to trial. Third, our model only has abstract represen-
tation of relative time and space, and how they are linked with
absolute time and space is not defined. Fourth, validity of our
key assumption that plastic changes of synapses are subject to
time-dependent decay remains to be proven. There have been
several empirical suggestions for the (rise and) decay of synap-
tic potentiation (Gustafsson et al., 1989; Boeijinga et al., 1993;
Xiao et al., 1996) and spine enlargement (Matsuzaki et al., 2004)
in the time scale of minutes, which could potentially fit the time
scale of the maze task simulated in the present study, but we are
currently unaware of any reported evidence for (or against) the
occurrence of decay of DA-dependent plastic changes of synapses
in animals engaged in tasks like the one simulated in the present
study. Also, we assumed simple equations for the decay, but they
would need to be revised in future works. For example, any plastic
changes will eventually decay back to 0 according to the mod-
els in the present work, but in reality at least some portion of
the changes is likely to persist for a long term as shown in the
experiments referred to in the above. Fifth, regarding the origin
of the ramping DA signal and its potential relationships with the

DA=RPE hypothesis, there are potentially many possibilities, and
the mechanism based on the decay of learned values proposed in
the present study is no more than one of them (see the next sec-
tion for two of other possibilities). Sixth, potential modulation
of DA release apart from DA neuronal firing is not considered in
the present study. We have assumed that the observed ramping
DA signal in the striatum (Howe et al., 2013) faithfully reflects
DA neuronal firing, which has been suggested to represent RPE.
However, as pointed out previously (Howe et al., 2013; Niv, 2013),
whether it indeed holds or not is yet to be determined, because
DA neuronal activity was not measured in that study and DA
concentration can be affected by presynaptic modulations of DA
release, including the one through activation of nicotinic recep-
tors on DA neuronal axons by cholinergic interneurons (Threlfell
et al., 2012), and/or saturation of DA reuptake. Addressing these
limitations would be interesting topics for future research.

COMPARISONS AND RELATIONS WITH OTHER STUDIES
Regarding potential relationships between the ramping DA sig-
nal in the spatial navigation task and the DA=RPE hypothesis,
a recent theoretical study (Gershman, 2014) has shown that DA
ramping can be explained in terms of RPE given nonlinear rep-
resentation of space. This is an interesting possibility, and it
is entirely different from our present proposal. The author has
argued that his model is consistent with important features of the
observed DA ramping, including the dependence on the amount
of reward and the insensitivity to time until the goal is reached.
Both of these features could also potentially be consistent with
our model, although there are issues regarding the sensitivity of
model’s behavior to reward magnitude and the lack of represen-
tation of absolute time and space, as we have so far described. It
remains to be seen whether the limitations of our model, includ-
ing the large difference between rewarded and unrewarded trials,
are not the case with his model. Notably, these two models are
not mutually exclusive, and it is possible that the observed DA
ramping is a product of multiple factors. Also, the possible cor-
respondence between the differential DA signal in the ventral
vs. dorsal striatum and Q-learning vs. SARSA mentioned in the
Results could also hold with Gershman’s model.

It has also been shown (Niv et al., 2005) that the conventional
reinforcement learning model (without decay) can potentially
explain ramping of averaged DA neuronal activity observed in
a task with probabilistic rewards (Fiorillo et al., 2003), if it is
assumed that positive and negative RPEs are asymmetrically rep-
resented by increase and decrease of DA neuronal activity from
the baseline, with the dynamic range of the decrease narrower
than that of the increase due to the lowness of the baseline fir-
ing rate. This mechanism did not contribute to the ramping of
RPE in our simulations, because such asymmetrical representa-
tion was not incorporated into our model; actually, negative RPE
did not occur in the 1000-trials simulations of our Q-learning
model for Figures 4C,Db,E, while negative RPE occurred rather
frequently in the SARSA model (Figure 4Fb). Notably, according
to the mechanism based on the asymmetrical RPE representa-
tion by DA (Niv et al., 2005), ramping would not appear in
the I-maze task where reward is obtained in every trial without
uncertainty (Figure 2A) because negative RPE would not occur
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in such a situation, different from the cases of the decay-based
mechanism proposed in the present work and the mechanism
proposed by Gershman (Gershman, 2014) mentioned above.
Experimental examination of the I-maze would thus be poten-
tially useful to distinguish mechanisms that actually operate. In
the meantime, the mechanism based on the asymmetrical RPE
representation by DA is not mutually exclusive with the other two,
and two or three mechanisms might simultaneously operate in
reality.

FUNCTIONAL IMPLICATIONS
Given that the observed DA ramping is indicative of decay
of learned values as we have proposed, what is the functional
advantage of such decay? Decay would naturally lead to forget-
ting, which is rather disadvantageous in many cases. However,
forgetting can instead be useful in certain situations, in partic-
ular, where environments are dynamically changing and sub-
jects should continually overwrite old memories with new ones.
Indeed, it has recently been proposed that decay of plastic changes
of synapses might be used for active forgetting (Hardt et al., 2013,
2014). Inspired by this, here we propose a possible functional
advantage of synaptic decay specifically for the DA-CBG system
involved in value learning. In value learning, active forgetting is
required when associations between rewards and preceding sen-
sory stimuli are changed, such as the case of reversal learning in
which cue-reward association is reversed unpredictably. In theory,
flexible reversal of leaned association should be possible based
solely on RPE without any decay: old association can be erased
by negative RPE first, and new association can then be learned by
positive RPE. However, in reality there would be a problem due
to a biological constraint. Specifically, it has been indicated that
the dynamic range of DA neuronal activity toward the negative
direction from the baseline firing rate is much narrower than the
positive side, presumably for the sake of minimizing energy cost
(c.f., Laughlin, 2001; Bolam and Pissadaki, 2012; Pissadaki and
Bolam, 2013), and thereby DA neurons can well represent positive
RPE, but perhaps not negative RPE (Bayer and Glimcher, 2005)
(see also Potjans et al., 2011). This indication has been challenged
by subsequent studies: it has been shown (Bayer et al., 2007) that
negative RPE was correlated with the duration of pause of DA
neuronal firing, and a recent study using FSCV (Hart et al., 2014)
has shown that DA concentration in the striatum in fact sym-
metrically encoded positive and negative RPE in the range tested
in that study. Nevertheless, it could still be possible that repre-
sentation of negative RPE by DA is limited in case the baseline
DA concentration is low. In such a case, synaptic decay could be
an alternative or additional mechanism for erasing old, already
irrelevant cue-reward associations so as to enable flexible rever-
sal/reconstruction of associations, with possibly the rate of decay
itself changing appropriately (i.e., speeding up just after the rever-
sal/changes in the environments) through certain mechanisms
(e.g., monitoring of the rate of reward acquisition). We thus pro-
pose that decay of learned values stored in the DA-dependent
plastic changes of CBG (corticostriatal) synapses would be a fea-
ture of the DA-CBG circuits, which endows the reinforcement
learning system with flexibility, in a way that is also compatible
with the minimization of energy cost.

With such consideration, it is suggestive that DA ramping was
observed in the study using the spatial navigation task (Howe
et al., 2013) but not in many other studies (though there could be
symptoms as we discussed above). Presumably, it reflects that the
spatial navigation task is ecologically more relevant, for rats, than
many other laboratory tasks. In the wild, rats navigate to forage
in dynamically changing environments, where flexibility of learn-
ing would be pivotal. Moreover, the overall rate of rewards in wild
foraging would be lower than in many laboratory tasks, and given
the suggestion that the rate of rewards is represented by the back-
ground concentration of DA (termed tonic DA) (Niv et al., 2007),
tonic DA in foraging rats is expected to be low and thus represen-
tation of negative RPE by DA could be limited as discussed above.
The rate of decay of learned values would therefore be adaptively
set to be high so as to turn on the alternative mechanism for
flexible learning, and it would manifest as the prominent ramp-
ing of DA/RPE in the task mimicking foraging navigation (even
if the rate of rewards is not that low in the task, different from
real foraging). If this conjecture is true, changing the volatility of
the task, mimicking changes in the volatility of the environment,
may induce adaptive changes in the rate of decay of learned values
(synaptic strengths), which could cause changes in the property of
DA ramping (c.f., Figure 2Cc): a testable prediction of our model.

Apart from the decay, DA ramping can also have more direct
functional meanings. Along with its roles in plasticity induction,
DA also has significant modulatory effects on the responsiveness
of recipient neurons. In particular, DA is known to modulate
the activity of the two types of striatal projection neurons to
the opposite directions (Gerfen and Surmeier, 2011). Then, given
that DA neurons compute RPE based on value-representing BG
inputs, on which the activity of striatal neurons have direct and/or
indirect impacts, ramping DA, presumably representing a grad-
ual increase of RPE according to our model, would modulate the
activity of striatal neurons and thereby eventually affect the com-
putation of RPE itself. Such a closed-loop effects (c.f., Figure 1A)
can potentially cause rich nonlinear phenomena through recur-
rent iterations. Exactly what happens depends on the precise
mechanism of RPE computation, while the present work does
not assume specific mechanism for it so that the results pre-
sented so far can generally hold. Just as an example, however,
when the model of the present study is developed into a model
of the DA-CBG circuit based on a recently proposed mechanism
for RPE computation (Morita et al., 2012, 2013; Morita, 2014),
consideration of the effects of DA on the responsiveness of striatal
projection neurons can lead to an increase in the ratio of correct
trials, indicating occurrence of positive feedback (unpublished
observation). This could potentially represent self-enhancement
of internal value or motivation (c.f., Niv et al., 2007). Such
an exciting possibility is also expected to be explored in future
work.
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