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During goal-directed behavior, the prefrontal cortex (PFC) exerts top-down control over
numerous cortical and subcortical regions. PFC dysfunction has been linked to many
disorders that involve deficits in cognitive performance, attention, motivation, and/or
impulse control. A common theme among these disorders is that neuromodulation of
the PFC is disrupted. Anatomically, the PFC is reciprocally connected with virtually all
neuromodulatory centers. Recent studies of PFC neurons, both in vivo and ex vivo, have
found that subpopulations of prefrontal projection neurons can be segregated into distinct
subcircuits based on their long-range projection targets. These subpopulations differ in
their connectivity, intrinsic properties, and responses to neuromodulators. In this review
we outline the evidence for subcircuit-specific neuromodulation in the PFC, and describe
some of the functional consequences of selective neuromodulation on behavioral states
during goal-directed behavior.
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INTRODUCTION
The prefrontal cortex (PFC) guides experience-driven, goal-
directed behavior. Hallmarks of PFC damage include incapacity
to suppress impulsive responses and inability to switch strate-
gies when a previously learned rule is no longer successful
(Milner, 1963; Shallice and Burgess, 1991; Aron et al., 2004).
Similar deficits are observed in non-human primates perform-
ing rule-guided tasks after the PFC is lesioned or inactivated
(Brozoski et al., 1979; Dias et al., 1996). Although rodents do
not exhibit goal directed behaviors as sophisticated as those
observed in primates, disrupting functionally analogous regions
of the rodent PFC impairs performance in a variety of tasks
designed to test executive function: temporal control (Risterucci
et al., 2003; Narayanan and Laubach, 2006; Narayanan et al.,
2013), attention (Broersen and Uylings, 1999; Chudasama et al.,
2005; Kahn et al., 2012), working memory (Floresco et al.,
1997; Dias and Aggleton, 2000; Lee and Kesner, 2003), and
strategy shifting (Ragozzino et al., 1999a,b, 2003; Rich and
Shapiro, 2007, 2009). Different components of PFC function
may be mediated by different PFC subregions (well reviewed
in Robbins, 1996; Uylings et al., 2003; Kesner and Churchwell,
2011). Elucidating the precise cellular constituents and mecha-
nism(s) underlying PFC function, and how it exerts top-down
control over other brain regions, remains an important area of
exploration.

One critical component for PFC function is the contribution
of neuromodulatory inputs. How neuromodulation contributes
to the executive control of goal directed behavior has been largely
examined on two separate levels: actions of neuromodulators
on generic neurons and/or synapses within the PFC, and the
effects of neuromodulators on network activity in conjunction

with behavioral performance. The goal of this review is to begin
to bridge these two levels of analysis by detailing recent advances
in mapping out connectivity, neuromodulatory responses and the
intrinsic properties of different classes of projection neurons in
the rodent PFC.

NEUROMODULATION AND THE PREFRONTAL CORTEX
The efficacy by which the PFC drives behavior is highly sensitive to
the actions of neuromodulators. Best studied among these include
noradrenaline (NA), acetylcholine (ACh), serotonin (5-HT), and
dopamine (DA). Other neuromodulators (histamine, adenosine,
and many neuropeptides) can also alter PFC function, but for
the purposes of this mini review we will focus on these four.
The primary source of neuromodulators in the PFC is from
terminals originating from subcortical neuromodulatory systems
(Figure 1A). Infusing neuromodulators or their receptor ago-
nists/antagonists directly into the PFC changes behavioral per-
formance (Febvret et al., 1991; Broersen et al., 1995; Ragozzino
and Kesner, 1998; Mao et al., 1999; Wall et al., 2001; Winstanley
et al., 2003; Bang and Commons, 2012; Yang et al., 2013).
Optimal PFC function occurs within a tight range of neuro-
modulatory action: both too little and too much of a given
neuromodulator will impair task performance (Broersen et al.,
1995; Zahrt et al., 1997; Ragozzino and Kesner, 1998; Mao et al.,
1999; Granon et al., 2000; Wall et al., 2001; Winstanley et al.,
2003; Vijayraghavan et al., 2007; Wang et al., 2007; Yang et al.,
2013).

Anatomically, the PFC is reciprocally connected with these
neuromodulatory centers (Figure 1A). While none of the neu-
romodulatory centers exclusively targets the PFC, there is a
topographical organization to these outputs (Berger et al., 1991;
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FIGURE 1 | (A) Schematic of descending connections from PFC to
neuromodulatory centers showing the cellular targets of PFC fibers.
Noradrenaline (NA) is released from terminals projecting from the locus
coeruleus (LC). Cholinergic (ACh) terminals originate from the basal forebrain.
Serotonin (5-HT) terminals originate from the medial and dorsal raphe nuclei
(RN). Depending on the species of animal, terminals from the ventral
tegmental area (VTA) and/or the substantia nigra (SN) are sources of dopamine
(DA) within the PFC (for a review, see Berger et al., 1991). PFC fibers connect
onto neuromodulator-synthesizing projection neurons (shaded circles),
inhibitory interneurons (open diamonds), or both. In the case of locus

coeruleus, PFC inputs synapse onto the dendrites of noradrenergic neurons.
(B) Schematic of identified connections within the rodent mPFC. Pyramidal
tract (PT, green) and intratelencephalic (IT, red) neurons are embedded within
the PFC network differently. PT neurons are confined to L5/6 while IT neurons
are found throughout L2-6. PT neurons receive inputs from PT, IT, and inhibitory
interneurons. IT neurons receive only inputs from other IT neurons. L5 PT and
IT neurons are shown in proximity for the purposes of the schematic, in the
tissue they are interspersed amongst one another. Abbreviations: BF, basal
forebrain; ACh, acetylcholine; VTA, ventral tegmental area; DA, dopamine; RN,
raphe nuclei; 5-HT, serotonin; LC, locus coeruleus; NA, noradrenaline.

Bang et al., 2012; Zaborszky et al., 2013). For example indi-
vidual LC inputs, but not BF inputs, preferentially target either
the ventral mPFC or dorsal mPFC (Chandler and Waterhouse,
2012). The PFC neuromodulatory inputs may be specialized
in some cases. The PFC is one of few cortical regions that
receive input from both the medial and dorsal portions of the
RN (Bang et al., 2012). Similarly, dopaminergic fibers origi-
nate from the VTA and SN in the rodent PFC (Berger et al.,
1991). The density of cholinergic fibers, and of the enzyme

acetylcholinesterase (the enzyme responsible for removing extra-
cellular acetylcholine), is densest in the mPFC, suggesting that
cholinergic input is particularly tightly controlled there (Werd
et al., 2010; Zaborszky et al., 2012). It is important to note
that in addition to the neuromodulatory substance each cen-
ter produces, some of their projections also can contain fast
inhibitory (GABAergic) and/or excitatory (glutamatergic) trans-
mitters (Febvret et al., 1991; Hur and Zaborszky, 2005; Bang and
Commons, 2012; Chandler and Waterhouse, 2012). Thus, the
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effect of neuromodulatory centers on the PFC may act on multiple
time scales.

In addition to receiving input from subcortical neuromodu-
latory systems, glutamatergic outputs from PFC selectively target
specific neuron populations within each neuromodulatory center.
In the VTA, prefrontal inputs synapse upon the dopaminergic
neurons that project back to the PFC, but not with neurons pro-
jecting to the accumbens. Conversely, prefrontal inputs synapse
onto GABAergic neurons projecting to nucleus accumbens, but
not those projecting to the PFC (Carr and Sesack, 2000). Pre-
frontal inputs to LC synapse onto the dendrites of noradrener-
gic neurons in the peri-LC region (Luppi et al., 1995). In the
dorsal RN, prefrontal inputs synapse primarily onto GABAergic
interneurons, although they also synapse on serotonergic neurons
as well (Jankowski and Sesack, 2004; Commons et al., 2005).
Similarly prefrontal projections to the BF synapse onto inhibitory
parvalbumin-positive interneurons, but not cholinergic projec-
tion neurons, in the horizontal limb of the BF (Zaborszky et al.,
1997). Consistent with selective innervation of neuromodula-
tory centers, PFC stimulation promotes burst firing in VTA and
increased activity in LC, but inhibits firing in dorsal raphe nuclei
(DRN) and BF (Overton et al., 1996; Tong et al., 1996; Jodo and
Aston-Jones, 1997; Jodo et al., 1998; Celada et al., 2001). As such,
the PFC is able to regulate its own neuromodulatory input by
driving or inhibiting subcortical centers.

In addition to regulating its own neuromodulatory input, the
PFC may also alter the output of neuromodulatory centers to
other brain areas. This provides an interesting means by which the
PFC might exert a more global “top-down” control of behavior.
A small population of PFC neurons may be responsible for this
output, as individual neurons within the PFC innervate more than
one neuromodulatory center. For instance, a small population of
PFC neurons project to both the RN and the VTA (Gabbott et al.,
2005; Vázquez-Borsetti et al., 2009, 2011). Similarly, a subset of
PFC neurons project to both RN and LC (Lee et al., 2005). The
extent to which these projections represent a means to exert top-
down control over other brain regions represents an exciting area
of exploration for future studies.

PFC PROJECTION NEURONS
By using optogenetic stimulation in vivo, several studies have
demonstrated that the PFC can alter behavior. In one impor-
tant study, Warden et. al. tested the effects of optogenet-
ically driving the PFC during a forced-swim test (Warden
et al., 2012). Driving PFC output to the DRN promoted
active escape, while driving PFC output to the lateral habenula
inhibited escape behavior. These results suggest that different
subsets of PFC output neurons drive distinct, even mutually
antagonistic, behaviors. Other groups have shown that PFC
output to the amygdala, striatum, and DRN shift behav-
ioral output (Challis et al., 2014; Vialou et al., 2014). But
what is the identity of these output neurons, and what elec-
trophysiological properties and connectivity patterns do they
exhibit?

To better understand how the PFC exerts top-down control
over downstream targets, it is useful to identify and characterize
the neurons that provide output from the PFC. Most of this

work has been done in the rodent medial prefrontal cortex.
Cytoarchitectonically, the rodent PFC differs from the primate
PFC in that it is agranular cortex, meaning that it lacks a granule-
cell layer 4. Despite this, supragranular pyramidal neurons (in
layers 2–3) can be demarcated from infragranular pyramidal
neurons (in layers 5–6) by a band of thalamocortical fibers in deep
layer 3 (Kubota et al., 2007; Cruikshank et al., 2012; Hirai et al.,
2012).

Output neurons of the PFC are broadly divided into two
categories: (1) pyramidal tract, or PT neurons, and (2) intrate-
lencephalic, or IT neurons (Molnár and Cheung, 2006; Shepherd,
2013). PT neurons project subcortically via the pyramidal tracts
projecting to ipsilateral striatum, thalamus, and/or brainstem.
PT neurons are located within the infragranular layers. Unlike
motor and sensory cortex, both PT and IT L5 neurons in the
PFC are distributed throughout L5A and L5B (Dembrow et al.,
2010; Hirai et al., 2012; Ueta et al., 2013, but see Cowan and
Wilson, 1994). IT neurons are present in both supragranular and
infragranular layers of PFC. They make long-range projections
to ipsilateral perirhinal cortex, amygdala and striatum, as well
as to the contralateral striatum and cortex (Gabbott et al., 2005;
Hirai et al., 2012). The IT and PT categories express disparate
transcription factors during development that guide their differ-
ent long-range projections (Molyneaux et al., 2007, 2009; Fame
et al., 2011). Recently, it has become evident that L5 PT and
IT neurons within rodent PFC possess distinct intrinsic prop-
erties, local connectivity, and long-range inputs. Although most
of these differences have been characterized in rodents, different
categories of PFC pyramidal neurons are also present in humans
and non-human primates (Foehring et al., 1991; Tasker et al.,
1996; Chang and Luebke, 2007). PT and IT neuron categories
can be further subdivided into groups based on gene expression,
specific projection targets and laminar distribution. IT neurons
are particularly diverse (Molyneaux et al., 2009). PT neurons
project to the thalamus or spinal cord depending upon whether
they are in L5A or 5B, respectively (Hirai et al., 2012; Ueta et al.,
2013).

PT and IT neurons are connected within the PFC differently
(Schematic Figure 1B). Most of this work has been done by
Kawaguchi and colleagues in the cortical subregion immediately
dorsal to, or within, the most dorsal part of mPFC. L2/3 IT and
L5 IT neurons receive inputs from other IT neurons, but very
infrequently from PT neurons (Morishima and Kawaguchi, 2006).
In contrast, PT neurons receive inputs from both L2/3 and L5 IT
neurons, as well as from other PT neurons. PT neurons exhibit
higher rates of reciprocal connections (where two PT neurons
mutually excite one another) than do IT neurons (Morishima and
Kawaguchi, 2006; Morishima et al., 2011). Paired recordings of
PT-like and IT- like neurons (categorized by their morphology)
suggest that PT to PT connections display more synaptic aug-
mentation (Wang et al., 2006). Such synaptic specializations may
underlie the robustness of behavior-dependent persistent activity
of neurons in the PFC, as compared with other cortical areas
(Hempel et al., 2000; Wang et al., 2006, 2008). PT and IT neurons
receive different inhibitory inputs from local interneurons as well.
PT and IT neurons seem to be equivalently connected to fast
spiking interneurons (Otsuka and Kawaguchi, 2013), however PT
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neurons receive stronger inhibition from parvalbumin-positive
fast spiking interneurons (Lee et al., 2014). Therefore, PT neu-
rons may represent a final convergence point for numerous local
excitatory and inhibitory synaptic inputs.

Equally important to the connections they make and receive,
PT and IT neurons exhibit subpopulation-specific intrinsic elec-
trophysiological properties. Such differences cause PT and IT
neurons to respond to time-varying signals differently (Dembrow
et al., 2010). When injected with a sinusoidal current with
increasing frequency, PT neurons respond most strongly in the
theta-frequency range (4–10 Hz), while IT neurons respond
optimally to slower (<2 Hz) signals (Figure 2). The distinct
subthreshold physiological properties of PT and IT neurons
are consistent with differences in the hyperpolarization-activated
cyclic nucleotide gated cation current (h-current) in these neu-
rons. Blocking h-current changes the subthreshold properties of
both neuron types, abolishing differences in the time-dependent
membrane filtering both at the soma and dendrite (Dembrow
et al., 2010; Kalmbach et al., 2013). In the apical dendrites,
where h-channels are preferentially targeted in pyramidal neurons
in the hippocampus and somatosensory cortex (Magee, 1999;
Williams and Stuart, 2000; Berger et al., 2001), subthreshold
differences between IT and PT neurons are more pronounced
(Kalmbach et al., 2013). As a result of h-current related proper-
ties, PT neurons integrate dendritic inputs over a narrow time
window, and are thus preferentially responsive to coincident
inputs. On the other hand, IT neurons summate over wider
time windows, allowing them to better integrate nonsynchronous
input.

PT and IT neurons in PFC also express different active
properties. IT neurons have a lower threshold for action potential
initiation, and greater action potential half-width than PT neu-
rons (Dembrow et al., 2010). These differences are also observed
in anaesthetized animals in vivo (Cowan and Wilson, 1994).
Once driven to spike, PT and IT neurons exhibit differing firing
patterns. In response to a long (10 s) square step of current
sufficient to drive action potentials depolarization, PT neurons
show spike frequency acceleration. In contrast, IT neurons show
significant spike frequency accommodation (Morishima and
Kawaguchi, 2006; Otsuka and Kawaguchi, 2008; Dembrow et al.,
2010). In other cortical regions, the acceleration in spiking in
is caused by a “D”-type potassium current (Miller et al., 2008).
The source of IT spike accommodation is less clear. Enhancing
small conductance calcium-activated potassium channel (SK)-
type currents can contribute to spike frequency accommodation
(Pedarzani et al., 2005). IT neurons display a pronounced slow
afterhyperpolarizations (Kalmbach et al., 2013), which may be
partially caused by calcium-sensitive potassium channels (but see
Gulledge et al., 2013). Alternatively, differences in accommoda-
tion may be caused by m-current, sodium-dependent potassium
current, sodium pump activity, or differences in the inactiva-
tion recovery time of sodium channels that drive the spikes
(Schwindt et al., 1989; Santini and Porter, 2010; Gulledge et al.,
2013).

The importance of differences in ion channel expres-
sion in PT and IT neurons is highlighted by observations
that manipulating these ion channels alters working memory

performance. Manipulations of h-current within the PFC
alter working memory task performance in both monkeys
and rodents. Removal the hyperpolarization-activated cyclic
nucleotide-gated channel 1 (HCN1) subunit from the mPFC
impaired performance on a delayed alternation task (Thuault
et al., 2013), while h-channel blockade, or HCN1 knockdown,
improved memory performance (Wang et al., 2007). Similarly,
both SK channel and m-current blockade can enhance working
memory function (Brennan and Arnsten, 2008; Wang et al.,
2011). Differences in ion channel expression in prefrontal PT
and IT neurons likely contribute to their functional role within
executive circuits.

PROJECTION-SPECIFIC NEUROMODULATION
PT and IT neurons also respond differently to neuromodulation.
Neuromodulators change both subthreshold and suprathreshold
responses in PT and IT neurons. In the presence of muscarinic
activation, PT neurons display a subtle reduction in their sub-
threshold resonance (Dembrow et al., 2010). More strikingly,
PT neurons shift into a persistent firing-primed state, wherein
they respond to a brief suprathreshold input with persistent
firing lasting tens of seconds (Figure 2, #4). While cholinergic
modulation enhances the afterdepolarization in IT neurons, it
causes no change in their subthreshold resonance, results in little,
if any, persistent firing. Thus, PT and IT neurons respond to
cholinergic input differently. Similarly, metabotropic glutamate
receptor group I activation causes both PT and IT neurons to
exhibit a slow after depolarization, but causes a long lasting
reduction in h-related parameters only in PT neurons (Figure 2,
#2: Kalmbach et al., 2013). Alpha-2A noradrenergic modulation
alters h-related properties as well. As a result, noradrenergic
and metabotropic glutamate receptor shift PT neurons from
preferentially responding to coincident inputs to more broadly
tuned integrators, effectively making them similar to IT neurons.
Importantly, alpha-2A adrenergic modulation increases the input
resistance of both PT and IT neurons, increasing their action
potential output in response to depolarization (Figure 2, #3:
Dembrow et al., 2010). Similarly, adenosine hyperpolarizes both
IT-like neurons PT-like neurons via the A1 receptor, although the
amount of hyperpolarization is greater in IT neurons (van Aerde
et al., 2013). In all of these cases, the responses of PT and IT
neurons to neuromodulatory stimulation are constrained by their
differential patterns of ion channel expression.

Alternatively, the difference in neuromodulatory responses is
the function of cell-type-specific expression of various receptor
subtypes in IT and PT neurons. PT neurons are inhibited by sero-
tonin via 5-HT1A receptors (Figure 2, #5), while IT neurons are
excited by serotonin via 5-HT2A receptors (Avesar and Gulledge,
2012). Interestingly, 2A-dependent excitation also occurred in
supragranular IT neurons that projected contralaterally, while
other L2/3 pyramidal neurons were inhibited by serotonin (Avesar
and Gulledge, 2012). Consistent with this, in BAC mice expressing
green fluorescent protein driven by 5-HT2A receptor expression in
the neocortex was most dense in L5A (Weber and Andrade, 2010),
a sublayer enriched with IT-like neurons in sensory and motor
cortical regions (Reiner et al., 2003; Anderson et al., 2010; Groh
et al., 2010).
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FIGURE 2 | Neuromodulators shift the dynamic properties of L5 PFC
projection neurons. Pyramidal tract (PT, green) and intratelencephalic (IT,
red) have different response profiles in their subthreshold (1–2) and spiking
(3–5) properties. (1) Summation of synaptic inputs. In IT neurons,
excitatory potentials spread out in time summate to trigger action
potentials, while in PT neurons temporal summation is limited by intrinsic
membrane properties. (2) While IT neurons respond preferentially to low
frequency signals (1–2 Hz), PT neurons respond preferentially to theta
frequency oscillatory input. (3) In response to a step current injection, PT
neurons produce fewer action potentials than do IT neurons. (4) When
synaptic activity is blocked, both neurons respond to depolarizing current

steps, but return to quiescence once the stimulus is removed. In the
presence of D2R activation or mAChR activation, PT neurons remain
persistently active after the stimulus is removed. (5) A brief application of
serotonin has opposing effects on active PT and IT neurons. Abbreviations:
mAChR, muscarinic acetylcholine receptor; a2AR, alpha-2A-adrenergic
receptor; D1R, dopamine subtype 1 receptor; D2R, dopamine subtype
2 receptor; mGluR, metabotropic glutamate receptor; 5-HT1A, serotonin
subtype 1A receptor, 5-HT2A, serotonin subtype 2A receptor; NMDAR,
NMDA receptor. Effects of neuromodulators are adapted from Dembrow
et al. (2010), Avesar and Gulledge (2012), Gee et al. (2012) and Seong and
Carter (2012).

Dopaminergic modulation also depends on long-range pro-
jection types. Reports on the effects of DA in PFC neurons have
been complicated by the diversity of response types, which may be
due to several complicating factors: dopamine’s instability, diverse
actions on interneurons, effects on glutamatergic transmission,
and the diversity of DA receptor subtypes. The recent generation
of BAC mice selectively expressing reporter genes in neurons
that express different DA receptor subtypes has clarified some of
this ambiguity. L5 neurons expressing D1 receptors exhibit the
physiological and anatomical hallmarks of IT neurons, while D2
receptor expressing L5 neurons have properties consistent with
PT neurons (Gee et al., 2012; Seong and Carter, 2012). Further,
D1 agonists enhance the firing responses of IT-like neurons via
PKA (Figure 2, #3). Conversely, prolonged optogenetic activation
of glutamatergic inputs paired with the D2 agonist quinpirole
generates a long-lasting afterdepolarization that can produce
persistent firing in PT-like, but not IT-like, projection neurons
(Figure 2, #4). It remains less clear whether all IT neurons are D1-
receptor positive, or whether they are limited to specific subpop-
ulations of IT neurons (e.g., those projecting to the contralateral

cortex versus amygdala). Similarly, all PT neurons may not be
D2-receptor positive. An earlier study in rats examining recep-
tor mRNA expression in different projection neurons reported
that corticothalamic, corticocortical and corticostriatal neurons
express D1 and/or D2 receptors, while D2 receptors are absent
from corticopontine, corticospinal, and corticothalamic neurons
(Gaspar et al., 1995), a result at odds with data from the BAC
mice. Further studies will be needed to clarify these discrepancies,
and to test whether the expression of other dopamine receptor
subtypes (D3, D4, D5) are segregated by projection subtype.

The importance of selective modulation of IT neurons in PFC
has been recently highlighted in several in vivo studies. Mice
trained in an operant delay task, where they were trained to nose-
poke for food 20 s after a light stimulus, were unable to per-
form correctly timed responses when D1-positive neurons in the
PFC were photoinactivated (Narayanan et al., 2012). Conversely,
stimulating the D1-positive neurons enhanced temporal precision
of behavior. These data are in line with data that infusion of
D1 antagonists into the PFC impairs temporal precision in the
same task in rats. There may also be a D1-sensitive, IT-subcircuit
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important for driving food consumption. Infusion of a D1 antag-
onist into the PFC alters consumption (Touzani et al., 2010;
Nair et al., 2011), while feeding activates D1-positive neurons in
the PFC. Optogenetically stimulating them increases food intake,
while bilateral inactivating them reduces food intake (Land et al.,
2014). The downstream target of these neurons is the ipsilateral
amygdala. Combined, these studies suggest that the disparate
effects of neuromodulatory transmitters may reflect differential
expression of receptor subtype and ionic mechanisms in pre-
frontal neurons projecting to specific downstream brain regions.

FUTURE DIRECTIONS
PFC-neuromodulatory circuits are beginning to be mapped at the
cellular and subcellular level. Rather than uniformly increasing or
decreasing activity, the effect of neuromodulators on prefrontal
neurons depends upon their long-range targets. Understanding
how these modulatory systems contribute to information flow in
the PFC will be important for understanding how the PFC exerts
top-down control of behavior. This map, however, represents an
initial step towards elucidating how these dynamic and plastic
systems function (Marder, 2012). Future studies will need to
identify the specific neuron subtypes contributing to mnemonic
persistent activity, and how neuromodulatory systems selectively
regulate synaptic connections and intrinsic excitability within
this network. Most importantly, complex models that take into
account differences in connectivity, information processing, and
long range connections to downstream targets will be necessary
to elucidate how the PFC drives goal-directed behaviors.
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