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Activation of the serotonin system has been shown to induce locomotor activity following
a spinal cord transection. This study examines how the isolated spinal cord adapts
to a sensory perturbation during activation of the serotonergic system. Real-time and
persistent effects of a perturbation were examined in intact and spinal transected newborn
rats. Rats received a spinal surgery (sham or low thoracic transection) on postnatal day
1 and were tested 9 days later. At test, subjects were treated with the serotonergic
receptor agonist quipazine (3.0 mg/kg) to induce stepping behavior. Half of the subjects
experienced range of motion (ROM) restriction during stepping, while the other half
did not. Differences in stepping behavior (interlimb coordination) and limb trajectories
(intralimb coordination) were found to occur in both intact and spinal subjects. Adaptations
were seen in the forelimbs and hindlimbs. Also, real-time and persistent effects of ROM
restriction (following removal of the perturbation) were seen in ROM-restricted subjects.
This study demonstrates the sensitivity of the isolated spinal cord to sensory feedback in
conjunction with serotonin modulation.
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INTRODUCTION

The role of serotonin (5-HT) in the activation and modulation of
spinal locomotor circuits is well known, and has been demon-
strated at the anatomical, neurophysiological, and behavioral
levels of analysis. 5-HT receptors are found in high concentra-
tions in locomotor regions of the spinal cord such as the cervical
and lumbar enlargements (Jankowska et al., 1995, 1999), and bath
application of 5-HT induces fictive locomotion in the spinal cord
and spinal cord slices in vitro (e.g., Cowley and Schmidt, 1994;
Garraway and Hochman, 2001; Hayes et al., 2008). During fictive
locomotion induced by stimulation of the mesencephalic loco-
motor region, serotonergic boutons containing 5-HT7, 5-HT7a,
and 5-HT4 receptors were found to form synapses with or were
in close proximity to activated lumbar motor neurons in the cat
(Noga et al., 2009). In vivo behavioral studies further support
the role of 5-HT in activating locomotor circuits. Treatment with
5-HT receptor agonists has been shown to produce alternated
stepping behavior in intact and spinal transected fetal and new-
born rats (McEwen et al., 1997; Brumley and Robinson, 2005;
Brumley et al., 2012), adult rats (Kao et al., 2006), and adult
mice (Lapointe and Guertin, 2008; Ung et al., 2008). Further,
5-HT receptor antagonists reduce locomotor activity produced
by 5-HT treatment or electrical stimulation of the parapyra-
midal region (Cazalets et al., 1992; Liu and Jordan, 2005; Kao
et al., 2006). Taken together, these studies point to an active

role of the serotonergic system in modulating locomotor circuit
activity.

Additionally, evidence suggests that sensory stimulation in
conjunction with activation of 5-HT receptors increases locomo-
tor function in spinal injured animals. For example, walking is
improved in spinal injured mice following administration of the
5-HT>x receptor agonist quipazine and robotic hindlimb training
(Fong et al., 2005). Because 5-HT;4 receptor antagonists block
quipazine-induced activity, quipazine is believed to act at the 5-
HT)a receptor (Ung et al., 2008). Quipazine and 8-OH-DPAT
(a 5-HT1a/7 agonist) also facilitate stepping on a treadmill in
a posture-dependent manner (Slawinska et al., 2012). Barbeau
and Rossignol (1990) reported increases in step length and flexor
and extensor responses to treadmill training in spinal cats follow-
ing treatment with 5-HT substances. The degree to which such
improvements in locomotor activity are due to activation of the
5-HT system, sensory stimulation, or both, is difficult to disen-
tangle. However, it is important to understand how malleable
these isolated or injured spinal circuits remain, particularly for
the development of treatments aimed at functional recovery of
locomotor behavior.

Sensory stimulation below the site of a spinal cord injury (SCI)
is often used in rehabilitation efforts in individuals with SCI or
other spinal disorders (i.e., spina bifida) where spinal sensori-
motor systems have disrupted supraspinal regulation (Field-Fote,
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2001; Pepin et al., 2003; Teulier et al., 2009). Treadmill train-
ing is a common form of sensory stimulation used to improve
locomotor function after injury. The dramatic influence of sen-
sory stimulation can be seen most clearly in research examining
how animals adapt their behavior during and after exposure to
stimulation. For example, studies examining trip responses on
a treadmill or interlimb training have shown that training with
these forms of sensory experiences can produce both real-time
and persistent effects on limb activity and coordination (Pang
et al., 2003; Brumley and Robinson, 2010; Zhong et al., 2012).
Changes in response to sensory feedback also have been reported
in an in vitro spinal cord-hindlimb preparation (Hayes et al.,
2012). These studies point to the role of sensory feedback in
modulating locomotor recovery.

Understanding how activation of spinal locomotor circuits,
modulation of neural pathways, and sensory feedback interact
may help shed light on why some rehabilitation strategies help
and others seem to have no effect or even be harmful. The current
study attempts to examine this complex interaction by investigat-
ing how the isolated spinal cord adapts to a sensory perturbation
during activation of the 5-HT system in rats 9 days after a com-
plete low thoracic spinal cord transection. In this study, rats
received a spinal transection on postnatal day 1 (P1) and were
tested on P10. During testing, stepping behavior was induced with
the 5-HT agonist quipazine. Half of the rats received range of
motion (ROM) restriction during stepping. By comparing inter-
limb and intralimb coordination in sham and spinal subjects,
we examined the real-time and persistent effects of the sensory
perturbation (ROM restriction) on quipazine-induced stepping
behavior. We expected both sham and spinal subjects to show
real-time and persistent responses to the sensory perturbation,
as research has shown that neonatal transected rats retain con-
siderable spinal plasticity (Weber and Stelzner, 1980; Stelzner
et al., 1986). Thus, we expected subjects to keep their limbs more
proximal to the body not only during ROM restriction, but also
following removal of the perturbation.

MATERIALS AND METHODS

SUBJECTS

Thirty-two Sprague-Dawley male rats received a low thoracic
spinal cord transection or a sham operation on postnatal day 1
(P1; 24 h after birth) and were tested on P10. Adult rats were
obtained from Simonsen Laboratories and mated in the PI’s lab-
oratory. Pregnant females were pair-housed until a couple days
before birth, and then were housed individually. Animals were
kept on a 12-h light:dark cycle with food and water available ad
libitum. Animals were maintained in accordance with guidelines
on animal care and use established by the NIH and Institutes
of Laboratory Animal Resources (2011) and the Institutional
Animal Care and Use Committee at Idaho State University.

STUDY DESIGN

A total of six subjects were in each of the four groups. Subjects
received spinal surgery (half received a complete low thoracic
spinal transection; the other half underwent a sham spinal oper-
ation) on P1. To control for maternal behavior within each litter,
all pups from the same litter received the same operation. Subjects

were tested on P10: all subjects were treated with quipazine and
either experienced ROM restriction or no ROM restriction. Each
subject was tested in only one condition. Litters were culled to 6-8
pups on P1. Each subject within a group was selected from a dif-
ferent dam to avoid litter effects. Only males were used to avoid
confounding group differences with sex effects.

SPINAL SURGERY

Spinal surgery was performed on P1. Subjects were voided before
surgery commenced and showed evidence of recent feeding by
the presence of a milk band across the abdomen. Subjects were
anesthetized by hypothermia. The spinal transection technique
used was that of Kao et al. (2006). Briefly, a partial laminectomy
exposed the spinal cord from T8 to T10. For subjects that received
a spinal cord transection, the spinal cord was physically cut at the
T9-T10 level and a collagen matrix was injected into the transec-
tion site. Muscle and skin on the back was sutured. For subjects
that received the sham operation, all procedures were the same
except that the transection was not performed and no collagen
matrix was injected.

Following surgery, subjects were administered a 50 L1 subcuta-
neous injection of both Buprenex (0.1 ml of 0.04 mg/kg solution)
and 0.9% (wt/vol) saline. Each subject was then placed with lit-
termates and bedding from their home cage inside an infant
incubator maintained at 35°C. When subjects recovered from
anesthesia and looked healthy (i.e., their color was pink and
behavior was normal), they were returned to the home cage with
the dam. They remained with the dam until the day of test-
ing (P10). To ensure that the dam would take care of her pups
equally, pups from the same litter received the same type of
spinal surgery (i.e., spinal transection or sham operation); lit-
ters were not mixed. Subjects were checked daily to ensure no
complications or infections. Subcutaneous injections of saline
were injected as needed on P5 to help with weight gain and
hydration.

BEHAVIORAL TESTING

Behavioral testing took place on P10. Subjects showed evidence
of recent feeding. A minimum body weight cut-off of 15.50 g for
inclusion in the study was used to ensure that subjects were within
a fairly healthy weight range. However, comparison of body mass
between the two surgery groups revealed a significant difference
[F(1, 22) = 26.54, p < 0.001], with spinal subjects (mean £ SD:
20.41¢g £ 2.7) having lower body weights than sham subjects
(26.93 g + 3.4).

Subjects were individually tested inside an infant incubator
that controlled temperature (30°C) and humidity. They were
manually voided, and then acclimated to incubator conditions
in a small plastic dish with up to two pups 30 min prior to
testing. To start the test session, subjects were secured in the
prone posture to a vinyl-coated horizontal bar using a jacket
with adjustable straps across the neck and abdomen. The jacket
did not impede limb movement; limbs hung pendantly in the
air. Following a 5-min baseline, subjects were given an intraperi-
toneal injection of quipazine (3.0 mg/kg; Brumley et al., 2012)
with volume of injection based on body weight (25 nl/5 g of body
weight). Following injection, a 15-min ROM restriction period
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was imposed for half of the subjects. To induce ROM restric-
tion (and thus alter cutaneous and proprioceptive feedback), a
piece of Plexiglas was placed beneath the subject’s limbs at 50%
limb length when the limbs were fully extended. For the remain-
ing half of the subjects, no ROM restriction was imposed. After
the 15-min period of ROM restriction, the Plexiglas was removed
and the subject was recorded for a 15-min post-ROM restriction
period. In the no ROM restriction condition, subjects contin-
ued to be recorded for the 15-min post-ROM restriction period.
Figure 1 shows the experimental timeline. The entire 35-min test
session (5-min baseline, 15-min ROM restriction, and 15-min
post-ROM restriction) was recorded using microcameras placed
lateral and underneath the subject so that all limbs were visible.
All sessions were recorded onto DVD for later behavioral scoring.

BEHAVIORAL SCORING

Interlimb coordination: stepping behavior

Stepping was scored during DVD playback using the underneath
camera view with the software program JWatcher. Alternated and
synchronized steps, along with non-stepping limb movements
(e.g., twitches), were scored. Alternated steps were defined as
occurring when the pup’s homologous limbs exhibited sequen-
tial extension and flexion in one limb immediately followed by
sequential extension and flexion in the other limb (Brumley
et al., 2012). Synchronized steps were defined as occurring when
the pup’s homologous limbs exhibited simultaneous flexion and
extension in both legs. Forelimbs and hindlimbs were scored in
separate viewing passes. The scorer was blind to surgery condi-
tion. Intra- and interreliability for scoring was >90%.

Intralimb coordination: limh trajectories
Limb position was scored at specific time points to examine
dorsal-ventral and rostral-caudal changes in the trajectory of limb
movements, during DVD playback of the lateral camera view. The
dorsal-ventral trajectory space was divided into a proximal and
distal area, while the rostral-caudal trajectory space was divided
into a front, center and back area (see Figure 2). These areas were
calculated separately for the forelimbs and hindlimbs, for each
subject.

The right forelimb and hindlimb were scored for each sub-
ject. Maximum limb length for each subject was determined from
the baseline or post-ROM restriction period. To find maximum

Drug injection and Restriction

J_I-.restricz‘im't removed
Baseline ROM Restriction Post-ROM Restriction
5-min 15-min 15-min
T T T T T
T4 T5 T12 T19 T20 T27 T34

FIGURE 1 | Testing timeline. After a 5-min baseline, subjects were
injected with the serotonergic receptor agonist quipazine to induce
stepping behavior. This was followed by a 15-min period of either ROM
restriction (Plexiglas placed at 50% of maximum limb length) or no ROM
restriction. Testing continued for a 15-min Post-ROM restriction period to
look at the persistent effects of ROM restriction. One-minute time points
beginning at T4, T5, T12, T19, T20, T27, and T34 were used to analyze the
effects of ROM restriction on limb trajectories.

length, the ventrum of the subject and the tip of the toenail of
the longest digit when the limb was fully extended were used
as proximal and distal points on the forelimb, respectively. For
the hindlimb, the base of the tail on the ventral side and the
tip of the toenail of the longest digit when the limb was fully
extended were used as proximal and distal points, respectively.
Once the maximum length was found, a semicircle was made
using the maximum length as the radius, with the center of
the circle being placed on the appropriate proximal point (i.e.,
ventrum for forelimbs or base of tail for hindlimbs). An inner
semicircle was then drawn within the aforementioned semicir-
cle, with a radius equal to two-thirds the maximum length to

|eisig
|ewixoid

Back Front

Center

FIGURE 2 | Depiction of the limb trajectory space with the different
limb trajectory areas labeled (A) along with illustrations of the
placement of the trajectory area on proximal points for the (B)
forelimbs and the (C) hindlimbs (the ventrum of the pup and the base
of the tail, respectively).
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create two dorsal-ventral limb trajectory areas: proximal (2/3 the
distance of the maximum extension length) and distal (outer 1/3
the distance of the maximum extension length). To calculate the
rostral-caudal trajectory areas, two lines were drawn from the
appropriate proximal point (i.e., ventrum or base of tail) at 60-
and 120-degrees of the entire 180-degree semicircle, thus creat-
ing a front (0-60 degrees), center (60—120 degrees), and back
(120180 degrees) trajectory area. Figure 2 depicts the trajectory
areas and their placement on the forelimb and hindlimb proximal
points. Due to the time-consuming nature of this analysis and
preplanned comparisons, specific 1-min sections were scored:
the last minute of baseline (T4), beginning of ROM restriction
(T5), middle of ROM restriction (T12), end of ROM restriction
(T19), beginning of the post-ROM restriction period (T20), mid-
dle of post-ROM restriction (T27), and end of the post-ROM
restriction (T34) (see Figure 1). The scorer was blind to surgery
condition.

HISTOLOGY

After testing, subjects were euthanized and preserved in 10%
(wt/vol) formalin. Specimens were later examined under low
magnification to verify complete spinal cord separation between
spinal segments T9 and T10 (for spinal transected subjects) or an
intact spinal cord (for shams).

DATA ANALYSIS

Data were analyzed using SPSS statistical software. A signifi-
cance level of p < 0.05 was adopted. Post-hoc tests used Tukey’s
Honestly Significant Difference.

Stepping behavior

Forelimb and hindlimb stepping was compared during the 35-
min test session (5-min baseline, 15-min ROM restriction, and
15-min post-ROM restriction period). Frequencies of alternated
steps and synchronized steps, along with the percentage of alter-
nated and synchronized steps (calculated as a function of total
limb movements) were summarized into 5-min time bins. Data
were analyzed using repeated measures ANOVA, with surgery and
ROM restriction condition as between subjects variables and time
as a within subjects (repeated measure) variable. Forelimb and
hindlimb data were analyzed separately.

Limb trajectories

Total time in each trajectory area (proximal, distal, front, cen-
ter, and back) per 1-min section (as described above) was scored
for hindlimbs and forelimbs. Data were analyzed using repeated
measures ANOVA, with surgery and ROM restriction condition
as between subjects variables and time as the within subjects
(repeated measure) variable. Preplanned comparisons examined
differences between baseline trajectories (T4) and those seen at
the beginning of ROM restriction (T5), the end of ROM restric-
tion (T19), after removal of ROM restriction (T20), and end of
post-ROM restriction (T34) (see Figure 1). Additionally, com-
parison of sections within the ROM restriction period (T5, T12,
and T19) was performed to determine real-time changes due to
the perturbation. The time bin preceding (T19) and following
(T20) post-ROM restriction were compared to determine imme-
diate adaptations to removal of the perturbation. Comparison of

all time bins during the post-ROM restriction period (T20, T27,
and T34) was conducted to look for lasting changes. Forelimb and
hindlimb data were analyzed separately.

RESULTS

Because spinal and sham subjects differed in body weight, we
examined the correlation between body weight and total forelimb
and hindlimb movements. There was no correlation (p = n.s.)
between body weight and fore- or hindlimb activity. Therefore,
we did not examine the influence of body weight further.

INTERLIMB COORDINATION: STEPPING BEHAVIOR

Forelimb stepping

Alternated forelimb steps. For frequency of alternated forelimb
steps, there was a main effect of time [F, 120) = 12.49,p <
0.001]. Follow-up analysis did not reveal any significant differ-
ences among time points; however, as shown in Figure 3A, there
was a slight increase in forelimb steps after baseline followed by
a reduction 15-min later. Because individual subjects may differ
in their amount of total limb activity and thus the proportion
of steps among subjects may vary, the percentage of alternated
steps as a function of total movements (all steps + non-stepping
movements) was examined. For percentage of alternated fore-
limb steps, there were main effects of surgery [F(1, 20) = 6.10,p =
0.02] and time [Fs, 120) = 17.73, p < 0.001]. The percentage of
alternated forelimb steps significantly increased after baseline,
and spinal subjects showed a significantly higher percentage of
alternated steps compared to shams (Figure 3B).

Synchronized forelimb steps. For frequency of synchronized fore-
limb steps, there were effects of surgery [F(1, 20) = 4.98, p = 0.04]
and ROM restriction condition [F(;, 20y = 4.98, p = 0.04], and a
two-way interaction between surgery and time [F(s, 120) = 3.55,
p = 0.002]. As shown in Figure 3C, sham subjects expressed sig-
nificantly more synchronized steps compared to spinal subjects
at T20 and T30, with T25 approaching significance (p = 0.07).
Additionally, subjects that received no ROM restriction expressed
significantly more synchronized steps compared to subjects that
did receive ROM restriction. The results for percentage of syn-
chronized forelimb steps are very similar to those for frequency.
There were main effects of surgery [F(;, 20) = 7.94, p = 0.01]
and ROM restriction condition [F(;, 20y = 5.80, p = 0.03], and a
two-way interaction between surgery and time [Fs, 120) = 4.41,
p < 0.001]. As shown in Figure 3D, sham subjects showed a sig-
nificantly higher percentage of synchronized steps during the last
15min of the test session (T15-T30) compared to spinal sub-
jects, and subjects that did not receive ROM restriction showed
a significantly higher percentage of synchronized forelimb steps
compared to ROM-restricted subjects.

Hindlimb stepping

Alternated hindlimb steps. For alternated hindlimb steps there
were effects of surgery [F(1, 20) = 21.77, p < 0.001] and time
[F(6, 120) = 20.89, p < 0.001], two-way interactions between
surgery and time [F(g, 120) = 11.51, p < 0.001] and ROM restric-
tion condition and time [F(, 120) = 3.22, p = 0.006], and
a three-way interaction between all factors [F(s, 120) = 6.27,
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FIGURE 3 | Step frequency and percentage of forelimb steps for
sham and spinal P10 rats by ROM condition. Frequency (A) and
percentage (B) of alternated forelimb steps, and frequency (C) and
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5-min bins

percentage (D) of synchronous forelimb steps are shown. The shaded
gray region reflects the period of ROM restriction. Points show means;
vertical lines are s.e.m.

p < 0.001]. Follow-up analyses showed that significantly more
alternated hindlimb steps occurred in spinal subjects compared
to shams, and that alternated hindlimb stepping significantly
increased after baseline (Figure 4A). To examine the three-way
interaction, ROM restriction condition and time were exam-
ined within the two surgery conditions. As shown in Figure 4A,
spinal subjects that experienced ROM restriction showed sig-
nificantly fewer alternated steps at T10 and T15 compared to
spinal subjects that did not experience ROM restriction. No
significant differences were seen in shams. For percentage of alter-
nated hindlimb steps there was a main effect of time [Fs, 120) =
68.78, p < 0.001], a two-way interaction between surgery and
time [F, 120) = 6.06, p < 0.001], and a three-way interaction
between surgery, ROM restriction condition and time [F(¢, 120) =
2.66, p = 0.02]. The percentage of alternated hindlimb steps
increased after baseline and remained elevated throughout test-
ing, and spinal subjects that received ROM restriction showed
a significantly lower percentage of alternated steps at T10 com-
pared to spinal subjects that did not experience ROM restriction
(Figure 4B). Again we found no differences in sham subjects.

Synchronized hindlimb steps. For synchronized hindlimb steps
there were main effects of surgery [F(;, 20) = 5.36, p = 0.03] and
time [Fs, 120) = 5.57, p < 0.001], two-way interactions between
surgery and time [Fg, 120) = 2.47, p = 0.03], and ROM restric-
tion condition and time [F, 120) = 3.26, p = 0.005], and a
three-way interaction between all factors [F(g, 120) = 2.59, p =
0.02]. Significantly more synchronized steps occurred in spinal
subjects compared to shams, and synchronized hindlimb stepping

significantly increased after baseline (Figure 4C). To examine the
three-way interaction, ROM condition and time were examined
within the two surgery conditions. In spinal subjects, significantly
fewer synchronized steps occurred at T15 for subjects receiv-
ing ROM restriction compared to those that did not receive
restriction. There were no differences between ROM restriction
conditions in the sham group. For percentage of synchronized
hindlimb steps, there was a main effect of time [Fs, 120) = 5.33,
p < 0.001]. Follow-up analyses did not reveal any significant dif-
ferences among the different time points. However, as can be seen
in Figure 4D, most groups showed a slightly higher percentage of
synchronized steps during the last half of the test session.

INTRALIMB COORDINATION: LIMB TRAJECTORIES

Forelimb trajectories

We first examined time spent in the dorsal-ventral limb trajectory
space. The proximal area was within 2/3 distance of maximum
limb extension, whereas the distal area was the outer 1/3 distance
(see Figure 2). We only analyzed time spent in one area (distal),
as the pattern of effects are mirrored in the opposite (proximal)
area. For time spent in the distal area, there was a main effect
of time [F(g, 120) = 3.94, p < 0.001]. Significantly less time was
spent in the distal area for the forelimbs at T19 compared to base-
line, and significantly more time was spent in the distal area at
T34 compared to T19 (Figure 5).

For the rostral-caudal limb trajectory space, we divided it into
three equal areas: front, center, and back (see Figure 2). Time spent
in each of these areas was analyzed separately. For time in the
front area for the forelimbs there were effects of ROM restriction
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that received ROM restriction, (B) sham subjects that did not receive ROM
restriction, (C) spinal subjects that received ROM restriction, and (D) spinal
subjects that did not receive ROM restriction. The shaded gray region reflects
the period of ROM restriction. Points show means; vertical lines are s.e.m.
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condition [F(1, 20) = 14.52, p =0.001] and time [F, 120) =
28.86, p < 0.001], a two-way interaction between ROM restric-
tion condition and time [F, 120) = 7.67, p < 0.001], and a
three-way interaction between all factors [F(g, 120) = 2.24, p =
0.04]. ROM-restricted subjects spent significantly more time in
the front compared to subjects that did not receive ROM restric-
tion, and time in the front increased significantly after baseline.
For ROM-restricted sham subjects, significantly more time was
spent in the front at T5 and T12 and at T19 approached sig-
nificance (p = 0.07), compared to sham subjects that did not
receive ROM restriction. For ROM-restricted spinal subjects, sig-
nificantly more time was spent in the front with the forelimbs
from T5 to T27 compared to spinal subjects that did not receive
ROM restriction. When surgery and time were examined within
the two ROM restriction conditions, ROM-restricted spinal sub-
jects showed significantly more time in the front at T20-27 than
ROM -restricted shams. These effects can be seen in Figure 6.

For time in the center area with the forelimbs there were
effects of ROM restriction condition [F(;, 29y = 14.65, p = 0.001]
and time [F(s 120) = 31.07, p < 0.001], a two-way interaction
between ROM restriction condition and time [F(g, 120) = 7.37,
p < 0.001], and a three-way interaction between all factors
[Fe6, 1200 = 2.29, p =0.04]. As shown in Figure6, ROM-
restricted subjects spent significantly less time in the center with
their forelimbs compared to subjects that did not experience
ROM restriction, and that time in center decreased after base-
line. For ROM-restricted shams, significantly less time was spent
in center at T5 and T12, with T19 approaching significance

(p = 0.06), compared to shams that did not experience ROM
restriction. For ROM-restricted spinal subjects, significantly less
time was spent in center from T5 to T27 compared to spinal
subjects that did not receive ROM restriction. Also, spinal sub-
jects that experienced ROM restriction showed significantly less
time in center at T20-27 than shams that received ROM restric-
tion. Thus, both surgery groups decreased the amount of time
in center with their forelimbs during the period of ROM restric-
tion. Significant decreases in the center area also were seen in the
forelimbs of spinal subjects during the first 10 min of post-ROM
restriction (Figure 6).

For time in the back area with the forelimbs there were
effects of surgery [F(;, 20) = 4.61, p = 0.04] and ROM restric-
tion condition [F(;, 20y = 4.47, p = 0.05]. Sham subjects spent
significantly more time in the back area compared to spinal sub-
jects, and ROM-restricted subjects spent significantly less time
in back compared to subjects that did not experience restriction
(Figure 6).

Summary. No effects were seen for time spent in the distal area
for the forelimbs as a result of ROM restriction. From T5 to T12,
sham subjects that experienced ROM restriction decreased time
in center and increased time in the front area. From T5 to T27,
spinal subjects that experienced ROM restriction decreased time
in center and increased time in the front area as well.

Preplanned comparisons. For sham and spinal subjects that
experienced ROM restriction, there were significant decreases in

ROM Restriction No ROM Restriction
— Front —e— Center —o— Back —+— Front —e— Center —o— Back
A 60
50
g
@ 40
§ ¢
%230
o
=
0 20
-
[T
10
0
c 60 — ~\¢\I\: D 60
50 50
o
— S [ 40
- 2
g c
& -‘% 30 30
]
A 20 20
= )
™ :
10 l 10
- e .
0+—o——= —r o 0 — . 5 ; X
T4 T T2 T19 T20 T27 T34 T4 TS T2 T19 T20 T27 T34
5-min bins 5-min bins
FIGURE 6 | Rostral-caudal forelimb trajectories for sham and spinal P10 that received ROM restriction, (B) sham subjects that did not receive ROM
rats by ROM restriction condition. Graphs show duration of time spentin front, restriction, (C) spinal subjects that received ROM restriction, and (D) spinal
center, and back trajectory areas for 1-min sections during baseline, the ROM subjects that did not receive ROM restriction. The shaded gray region reflects
restriction period, and the post-ROM restriction period for (A) sham subjects the period of ROM restriction. Points show means; vertical lines are s.e.m.
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the center and significant increases in the front area with the
forelimbs between baseline (T4) and the following time points:
beginning of ROM restriction (T5), end of ROM restriction
(T19), start of post-ROM restriction (T20), and end of post-
ROM restriction (T34). These effects are summarized in Figure 7.
Other comparisons were not significantly different between
groups.

Hindlimb trajectories

For time in the distal area with the hindlimbs, there was an
effect of time [F(g, 120) = 19.12, p < 0.001] and an interaction
between ROM restriction condition and time [F(g, 120) = 17.22,
p < 0.001]. For ROM-restricted subjects, significantly less time
was spent in the distal area during ROM restriction (T5-T19),
compared to subjects that did not experience ROM restriction.
This can be seen in Figure 8.

For time in the front area there were effects of surgery
[F(l’ 20) = 8.01,p = 0.01] and time [F(6’ 120) = 8.54,p < 0.001],
and interactions between surgery and time [F(s, 120) = 7.31, p <
0.001] and ROM restriction condition and time [F(, 120) = 2.44,
p = 0.03]. Spinal subjects showed significantly more time in the
front with their hindlimbs compared to shams, and significantly
more time in the front after baseline (see Figure 9). Follow-up
analysis of the two-way interaction between surgery and time
revealed that spinal subjects spent significantly more time in the
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FIGURE 7 | Summary of changes in forelimb trajectories for sham and
spinal P10 rats by ROM restriction condition. Changes in limb
trajectories are show for sham subjects that experienced ROM restriction
(A,B), shams that did not receive ROM restriction (C,D), spinal subjects
that received ROM restriction (E,F), and spinal subjects that did not receive
ROM restriction (G,H). The shaded regions reflect an increase (white),
maintenance (gray), or decrease (black) from baseline within that trajectory
area during the designated time period.

front from T12 to T27 compared to shams. Follow-up analysis
of the interaction between ROM restriction condition and time
showed that ROM-restricted subjects spent significantly more
time in the front at T5 and T19 compared to subjects that did
not receive ROM restriction.

For time in the center area with the hindlimbs there were
effects of ROM restriction condition [F(;, 209) = 10.28, p = 0.004]
and time [Fg, 120) = 23.79, p < 0.001], interactions between
surgery and time [F(g, 120) = 5.30, p < 0.001] and ROM restric-
tion condition and time [F, 120) = 6.32, p < 0.001], and a
three-way interaction between all factors [Fs, 120) = 3.05, p =
0.008; Figure 9]. ROM-restricted subjects spent significantly less
time in center compared to subjects that did not experience
restriction, and time in center significantly decreased after base-
line. For shams that experienced ROM restriction, less time
was spent in center at T5 compared to subjects that did not
receive restriction. For spinal subjects, less time was spent in
center at T19 and approached significance at T12 (p = 0.07),
compared to subjects that did not receive ROM restriction.
Also, for spinal subjects that experienced ROM restriction, less
time was spent in center from T19 to T27 compared to shams
that experienced ROM restriction. These effects can be seen in
Figure 9.

For time in the back area with the hindlimbs, there
were effects of surgery [F(6,120) = 6.46, p = 0.02] and time
[F(6,120) = 7.10, p < 0.001], an interaction between surgery
and time [F(6,120) = 3.71, p = 0.002] and ROM restriction
condition and time [F(6, 120) = 2.84, p = 0.01], and an inter-
action between all factors [F(6, 120) = 2.445, p = 0.04]. Shams
spent significantly more time than spinal subjects in back with
their hindlimbs, and time in back significantly increased after
baseline. ROM-restricted shams showed significantly more time
in back at T5 compared to shams that did not experience
restriction. Also, ROM-restricted spinal subjects showed signif-
icantly more time in back at T5 compared to ROM-restricted
shams. For subjects that did not experience restriction, spinal
subjects showed significantly more time in the back area at
T20 with T19 approaching significance (p = 0.06), compared to
shams.

Summary. ROM-restricted subjects spent less time in the dis-
tal area with the hindlimbs during the restriction period.
Additionally, for shams that experienced restriction, less time was
spent in the center and more time was spent in the back at T5. For
spinal subjects that experienced restriction, less time was spent in
the center and more time was spent in the front at T19.

Preplanned comparisons. For sham subjects that experienced
ROM restriction, significantly less time was spent in the cen-
ter and distal areas with the hindlimbs between baseline (T4)
and beginning of ROM restriction (T5) and end of ROM
restriction (T19). Other comparisons were not significant in
shams. For spinal subjects that experienced ROM restriction,
there were significant decreases for time spent in the dis-
tal area with the hindlimbs between the baseline (T4) and
beginning and end of ROM restriction (T5 and T19). There
were significant decreases in center between baseline (T4) and
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FIGURE 8 | Dorsal-ventral hindlimb trajectories for sham and spinal rats
by ROM restriction condition. Graphs show duration of time spent in distal
and proximal trajectory areas for 1-min sections during baseline, ROM
restriction, and the post-ROM restriction period for (A) sham subjects that
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received ROM restriction, (B) sham subjects that did not receive ROM
restriction, (C) spinal subjects that received ROM restriction, and (D) spinal
subjects that did not receive ROM restriction. The shaded gray region reflects
the period of ROM restriction. Points show means; vertical lines are s.e.m.

FIGURE 9 | Rostral-caudal hindlimb trajectories for sham and spinal P10
rats by ROM restriction condition. Graphs show duration of time spent in
front, center, and back trajectory areas for 1-min sections during baseline,
ROM restriction, and the post-ROM restriction period for (A) sham subjects
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that received ROM restriction, (B) sham subjects that did not receive ROM
restriction, (C) spinal subjects that received ROM restriction, and (D) spinal
subjects that did not receive ROM restriction. The shaded gray region reflects
the period of ROM restriction. Points show means; vertical lines are s.e.m.
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the following times: end of ROM restriction (T19), begin-
ning of post-ROM restriction (T20), and end of post-ROM
restriction (T34). There also was a significant decrease in cen-
ter between the beginning and end of ROM restriction (T5
and T19). For sham and spinal subjects that did not receive
ROM restriction, there were no significant differences within
the different trajectory areas. These effects are summarized in
Figure 10.

DISCUSSION

This study demonstrates the sensitivity of the isolated spinal
cord to sensory (cutaneous and proprioceptive) feedback in con-
junction with 5-HT modulation. The 5-HT; receptor agonist
quipazine induced forelimb and hindlimb stepping in both sham
and spinal transected P10 rats. However, only spinal subjects
modulated their hindlimb stepping during ROM restriction. Both
sham and spinal subjects showed real-time and persistent effects
of ROM restriction on forelimb trajectories during stepping.
However, only spinal subjects showed persistent effects of ROM
restriction (on hindlimb activity). This corresponds with pre-
vious research showing that animals can adapt to and show
persistent changes in behavior following a spinal cord transection
(Viala et al., 1986; Grau, 2001; Wolpaw, 2006, 2007; Brumley and
Robinson, 2010).
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FIGURE 10 | Summary of changes in hindlimb trajectories for sham
and spinal P10 rats by ROM restriction condition. Changes in limb
trajectories are show for sham subjects that experienced ROM restriction
(A,B), shams that did not receive ROM restriction (C,D), spinal subjects
that received ROM restriction (E,F), and spinal subjects that did not receive
ROM restriction (G,H). The shaded regions reflect a maintenance (gray) or
decrease (black) from baseline within that trajectory area during the
designated time period.

EFFECTS OF ROM RESTRICTION ON INTERLIMB COORDINATION
(STEPPING)

ROM restriction influenced fore- and hindlimb step frequency
during the period of restriction. While a decrease in synchronized
forelimb stepping corroborates a previous study in 1-day old
intact rats (Brumley et al., 2012), ROM-restricted spinal pups
in the current study also exhibited a reduction in alternated
hindlimb stepping during the restriction period. As shown in
Figure 4A, non-ROM-restricted spinal pups showed a 3-fold
increase in alternated hindlimb steps following quipazine treat-
ment. However, ROM restriction suppressed this effect. Because
ROM restriction suppressed hindlimb stepping starting 10-min
after restriction, but not within the first 5-min, perhaps the ini-
tial increase in stepping gave spinal subjects more “trials” with
the perturbation and hence more sensory feedback to respond
to (compared to shams). Thus, additional steps may have helped
facilitate responsiveness to ROM restriction. Another possibil-
ity is that quipazine had different neuromodulatory effects on
sensory responsiveness in sham vs. spinal subjects. For exam-
ple, Chopek et al. (2013) showed that quipazine preferentially
increases the monosynaptic reflex of flexor nerves in spinal-
transected compared to spinal-intact adult rats. Thus, sensory
processing of the perturbation was likely different in the two
surgery conditions.

Despite subjects showing real-time effects, no persistent effects
of ROM restriction (following removal of the perturbation) were
seen on step frequency. One possibility for lack of persistent
changes may be a result of limited exposure to ROM restriction.
Previous studies of interlimb motor learning after spinal tran-
section, such as conjugate limb yoking studies, typically expose
subjects to the sensory perturbation (interlimb yoke) for around
30 min (Brumley and Robinson, 2010). Thus, extending the expo-
sure time in the current study may have allowed persistent effects
to emerge. However, given that quipazine markedly increases
motor activity in neonatal rats, we assumed that more motor
activity might provide more sensory feedback and thus a shorter
exposure time might be sufficient to induce persistent effects.
Another possibility is that persistent effects are age-dependent. In
a study with human infants, persistent adaptations to trip train-
ing on a treadmill were not reliably seen until about 9 months of
age, despite infants showing real-time changes (Pang et al., 2003).
Given research that equates P10 rats with 9—10 month old human
infants in terms of locomotor development (Vinay et al., 2005),
but only the late-term human fetus in terms of brain development
(Clancy et al., 2001), our subjects may be too immature to show
reliable lasting effects. However, studies examining interlimb yoke
training have found persistent changes in motor coordination in
rat fetuses and newborns (Robinson, 2005; Robinson et al., 2008;
Brumley and Robinson, 2010), suggesting that persistent inter-
limb changes should be possible. Therefore, future studies should
examine key features necessary to produce reliable, persistent
coordinative changes following a spinal cord transection.

It is curious that ROM restriction leads to a decrease in step
frequency, given the large body of research showing that sen-
sory feedback often facilitates locomotor recovery after SCI (e.g.,
Carhart et al., 2004; Teulier et al., 2009). However, as observed in
the current study, subjects that received ROM restriction changed
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their intralimb trajectories (discussed below). This alteration in
intralimb coordination may have compromised the ability of the
pup to maintain interlimb coordination during stepping.

EFFECTS OF ROM RESTRICTION ON INTRALIMB COORDINATION (LIMB
TRAJECTORIES)

During ROM restriction, the perturbation blocked part of the
center and distal limb trajectory areas. Consequently, ROM-
restricted pups produced fewer limb movements in these areas.
To adapt, pups tended to move their forelimbs mostly to the front
area during ROM restriction. For the hindlimbs, pups moved
more-or-less equally to front and back areas, while avoiding the
center during restriction. Further, during restriction, intralimb
adaptations in spinal subjects appeared to be more drastic in
the hindlimbs compared to forelimbs (i.e., much less time was
spent in center and distal areas). As noted above, these intral-
imb adaptations may have interfered with interlimb coordination.
One reason that the limbs may have adapted by mainly moving to
the front of the subject rather than behind, may be related to the
differential effect of serotonergic stimulation on flexor and exten-
sor motor output. Quipazine has been shown to preferentially
increase flexor motor output in spinal rats (Chopek et al., 2013),
and likewise a lack of serotonin increases limb extension (Pflieger
et al., 2002). In the current study, the limbs could be relatively
flexed and remain in the front of the animal, but to move to the
back the limbs would require significant extensor activity. Thus,
perhaps the movement of the limbs mainly to the front trajec-
tory area is indicative of a stronger effect on flexor activity rather
than extensor activity, following treatment with a 5-HT receptor
agonist.

Persistent effects of ROM restriction were seen immediately
after the perturbation was removed in both fore- and hindlimbs.
Persistent forelimb effects lasted for a longer period of time in
spinal pups. One possibility for longer lasting persistent effects
in spinal pups may be due to the isolation of the forelimbs from
the hindlimbs. Blocking ascending input from the caudal spinal
cord, including propriospinal neurons, may make sensory feed-
back from the forelimbs more salient since there is less input into
the rostral cord (compared to shams). Blocking caudal input may
be especially important given research suggesting that quipazine-
induced hindlimb activity may help drive the forelimbs (McEwen
et al., 1997; Brumley and Robinson, 2005). Another possibility
is changes in somatosensory cortex processing. Hindlimb areas
within the cortex failed to respond to hindlimb stimulation but
instead responded to forelimb stimulation, in adult rats tran-
sected as neonates (Kao et al., 2011). Thus, feedback from the
forelimbs may be activating more brain regions in spinal animals
and facilitate lasting intralimb adaptations. Alternatively, given
that spinal pups in the current study had been living with a spinal
cord transection for 9 post-operative days, they may have adopted
novel posture and movement strategies during this period. The
duration of such intralimb adaptations, or whether or not such
changes might persist from one test session to the next, remains
to be determined.

Besides changes in intralimb coordination for ROM-restricted
subjects, quipazine also altered intralimb coordination for pups
in both surgery conditions. Specifically, pups showed a decrease

in the center and distal areas following treatment with quipazine.
This is likely the result of quipazine increasing the amount of
stepping behavior, as stepping involves both limb flexion and
extension, with the limbs typically showing locomotor-like swing
and stance limb excursions. Thus, it is not surprising that pups
treated with quipazine (but not ROM restriction) utilized their
movement space differently from baseline.

QUIPAZINE-INDUCED STEPPING IN SPINAL SUBJECTS

As mentioned above, P10 rats that received a low thoracic spinal
cord transection on P1 showed three times as many hindlimb
steps following treatment with quipazine, compared to shams.
Researchers looking at what has been termed “hindlimb super-
sensitivity” have found changes in the spinal cord following a
transection that may help account for this apparent sensitivity
to stimulation at 5-HT receptors. For example, in chronic tran-
sected rats the concentration of 5-HT, receptors has been shown
to increase 3 to 5-fold throughout motor neuronal somata and
dendrite regions, within the caudal cord (Kong et al., 2010). A
study that examined the time course of changes in 5-HT recep-
tors after a complete spinal transection reported an increase in
5-HT, receptors beginning 24 h after surgery (Kong et al., 2011).
Another study examined changes in motor neuron excitability
and found that small doses (10-50 wM) of a 5-HT, agonist pro-
duced cell depolarization, increased input resistance, and large
persistent inward currents in adult spinal rats (Harvey et al,
2006). Specifically, 5-HT,4 receptor stimulation has been shown
to restore hyperpolarizing inhibition in spinal motor neurons
via upregulating activity and expression of the K-Cl cotrans-
porter KCC2 in the isolated neonatal rat spinal cord in vitro
(Bos et al., 2013). This permits endogenous reciprocal inhibi-
tion necessary for maintaining left-right alternation seen during
locomotion, which can be activated in the isolated spinal cord
in vitro and in vivo with 5-HT,areceptors (Norreel et al., 2003;
Pearlstein et al., 2005). Thus, it is possible that spinal pups in
the current study experienced an up-regulation of 5-HT, recep-
tors, motor neuronal hyperexcitability responses to quipazine,
and enhanced reciprocal inhibition, and therefore the effects
of quipazine (a 5-HT;areceptor agonist) were much more pro-
nounced in these pups compared to shams. Further support for
the role of serotonergic stimulation in regulating lumbar net-
works during early development comes from studies that have
demonstrated impaired locomotor coordination, posture, and
motor neuron excitability following serotonin depletion (Myoga
et al.,, 1995; Nakajima et al., 1998; Pflieger et al., 2002).

An interesting finding in the current study was the occur-
rence of alternated forelimb stepping in spinal pups treated
with quipazine (although the amount of forelimb stepping was
much lower than hindlimb stepping). Previous studies looking
at quipazine-induced stepping in perinatal rats have reported
robust hindlimb stepping, but very little forelimb stepping after
a mid-thoracic spinal transection (McEwen et al., 1997; Brumley
and Robinson, 2005). However, the current study differs from
these studies in a couple of important ways, which may help to
explain this difference in forelimb behavior. First, the previous
studies performed behavioral testing within 24 h after spinal tran-
section, whereas in the current study pups were allotted 9 days
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after surgery to recover before testing. Therefore, longer recov-
ery time may have allowed pups to fully recover from any spinal
shock rostral to the injury site. Second, the current study used a
low thoracic spinal cord transection, whereas the previous studies
used mid-thoracic transections. Thus, it is possible that the neu-
ral circuitry for forelimb stepping extends into the high thoracic
area, and therefore a mid-thoracic transection interferes with or
damages forelimb stepping circuitry. However, with a low tho-
racic transection, perhaps we missed that circuitry altogether,
and therefore animals could easily show stepping behavior in the
forelimbs.

CONCLUSIONS

Findings from this study suggest that the immature, isolated
spinal cord modulates inter- and intralimb coordination in
response to sensory feedback during locomotor activity induced
by serotonergic stimulation. Furthermore, we found that the
spinal cord is able to support persistent behavioral changes after
exposure to a sensorimotor perturbation. A number of stud-
ies have shown the importance of pairing sensory input with
spinal cord circuitry activation. In these studies, the addition of
5-HT receptor stimulation is often shown to modulate changes
in recovery. For example, subjects given motor training typically
do not recover to the same extent as subjects given motor train-
ing plus treatment with a 5-HT agonist. Interestingly, a study
that examined mice and rats with a chronic spinal cord contu-
sion found that increases in behavioral recovery were correlated
with an increase in 5-HT receptor expression in the spinal cord
(Wang et al., 2011). Thus, 5-HT stimulation is not just a tool to
activate locomotor circuits but is likely part of a dynamic system
involved in the production, modulation, and recovery of func-
tional movement. By understanding how 5-HT modulates loco-
motor behavior and how sensory feedback and supraspinal input
changes 5-HT expression, we can gain a more accurate picture of
how to tailor therapies toward better recovery. Such therapeutic
strategies can already be seen in studies with humans where sen-
sory feedback (i.e., treadmill training) is paired with activation
of local spinal circuits (e.g., epidural stimulation) (Carhart et al.,
2004).
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