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Neurons in the visual cortex of all examined mammals exhibit orientation or direction
tuning. New imaging techniques are allowing the circuit mechanisms underlying
orientation and direction selectivity to be studied with clarity that was not possible a
decade ago. However, these new techniques bring new challenges: robust quantitative
measurements are needed to evaluate the findings from these studies, which can involve
thousands of cells of varying response strength. Here we show that traditional measures
of selectivity such as the orientation index (Ol) and direction index (DI) are poorly
suited for quantitative evaluation of orientation and direction tuning. We explore several
alternative methods for quantifying tuning and for addressing a variety of questions that
arise in studies on orientation- and direction-tuned cells and cell populations. We provide
recommendations for which methods are best suited to which applications and we offer
tips for avoiding potential pitfalls in applying these methods. Our goal is to supply a solid
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INTRODUCTION

In the visual cortex of all examined mammalian species (Hubel
and Wiesel, 1959, 1962), many neurons respond strongly to bars
or edges at a particular preferred orientation. In some mammals
such as carnivores, primates, and tree shrews, these orientation-
selective cells are organized into functional columns (Hubel
and Wiesel, 1962, 1968; Humphrey and Norton, 1980), and in
other animals such as rodents there are no maps of orientation
selectivity yet individual cells exhibit strong orientation selectiv-
ity (Girman et al., 1999; Ohki et al., 2005; Van Hooser et al.,
2005; Mrsic-Flogel et al., 2007). Further, a substantial subset of
orientation-selective cells also exhibit direction selectivity (Hubel
and Wiesel, 1962; Weliky et al., 1996). That is, they respond more
strongly to a properly oriented bar moving in a preferred direc-
tion as compared to any other direction. The functional organiza-
tion and development of orientation- and direction-selective cells
are the focus of intense current research.

A number of measures have been devised to assess the strength
and significance of orientation and direction selectivity for a
given cell (Henry et al., 1974; De Valois et al., 1982; Swindale,
1998; Ringach et al., 2002; Grabska-Barwinska et al., 2012).
Traditionally, these techniques were applied to spike responses
obtained from cells recorded extracellularly with microelectrodes.
These cells were often identified as candidates for recording pre-
cisely because they exhibited some substantial selectivity to an
oriented test stimulus that was employed while the investigator
moved the electrode, hunting for cells.

New challenges—the advent of unbiased optical recording
techniques such as 2-photon calcium imaging that sample all cells

quantitative foundation for studies involving orientation and direction tuning.
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regardless of selectivity (Stosiek et al., 2003; Kerr et al., 2005;
Garaschuk et al., 2006) and the need to characterize cells in devel-
oping animals with poor, emerging selectivity—have introduced
new difficulties for assessing orientation and direction selectiv-
ity. Some of the traditional measures of selectivity can give noisy
or spuriously high values when applied to cells that don’t exhibit
at least moderate selectivity. Further, exciting new molecular and
circuit techniques are permitting the testing of very precise cir-
cuit hypotheses about the mechanisms underlying orientation
and direction selectivity. Knowledge about statistical power—the
number of cells or repetitions of a stimulus that are needed in
order to observe a change in selectivity of a particular size—is
critical for these studies.

Here we characterize the robustness of several measures of
orientation and direction selectivity on simulated responses. We
provide a recommendation for analysis methods for the prin-
ciple questions that investigators usually ask: (1) How much
orientation or direction selectivity does a cell exhibit? (2) Does
a cell exhibit significant orientation or direction selectivity?
(3) Has a manipulation introduced a significant change in the
amount of orientation or direction selectivity at the popula-
tion level? Further, we provide tables for statistical power, to
estimate the amount of data that would be required to accu-
rately answer these questions. These methods could in princi-
ple be extended to other sensory response properties or other
modalities; however, their performance depends on the form
of the underlying response function, so they may perform
less reliably in domains aside from orientation and direction
selectivity.
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MATERIALS AND METHODS

COORDINATE SYSTEMS

There is no standard coordinate system for indicating orientation
or direction space. In this paper, we use “compass” coordinates, in
which a horizontal bar moving upward is considered to be mov-
ing at 0°, and angles increase in a clockwise manner. Another
common coordinate system is the Cartesian system, where 0°
indicates a vertical bar moving to the right, and angles increase in
a counterclockwise direction. One can transform between these
two systems using the following equations:

o
Ocartesian = 90° — ecompuss

o}
gcompass = 90° — Ocartesian

Because there is no standard coordinate system for orientation
and direction, and because some readers may be unfamiliar with
orientation and direction, it is helpful to use pictures to indi-
cate stimulus orientation and direction in slides and in published
figures, as we do here.

ANGULAR ADDITION

In several equations, we express angles in terms of the sum of
angles. For example, for a direction tuning curve we define the
positive orthogonal orientation as follows: Oy1 = Oprer + 90°.
Note that these angles are summed modulo 360° in direction
space and modulo 180° in orientation space. For example, in
direction space, 359° + 2° = 361° modulo 360° = 1°.

RELATIONSHIP OF 0/ AND D/ TO OTHER COMMONLY USED MEASURES
OF ORIENTATION AND DIRECTION SELECTIVITY

In this paper, we use OI and DI as the normalized mea-
sures of “peak to trough” orientation selectivity and direction
selectivity (see “Results”): OI = (Rpref_ori — Rorth)/Rpref_ori and
DI = (Rpref — Ruunt)/Rpres. Many papers use a slightly mod-
ified version of these measures that we will call the OSI
and DSI: OSI = (Rpref_ori - Rorth)/(Rpref_ori + Rorth) and DSI =
(Rpref = Ruutt) / (Rpref + Ry Still other papers use the “orthog-
onal to peak” ratio to quantify orientation selectivity: O/P =
Rortn/Rpref_ori = 1 — OI. In making quantitative comparisons
across papers, the reader should note carefully which is being
used.

The response at the preferred orientation Rynf oi and the
response at the preferred direction Ry,s can be determined in
different ways. In some measures, these are taken to be the best
response to one of the stimulus orientations or directions that was
explicitly measured; that is, if we measure responses at stimulus
directions 61, 0,, . . ., 6,, then we choose the response at the best
0;. In other measures, we perform a fit to the tuning curve, and
choose the maximum value of the fit as Ryref_ori O Rpref-

MONTE CARLO SIMULATIONS

In Monte Carlo simulations of orientation and direction tuning
curves, the “true” preferred angle and tuning widths were varied
randomly so that a variety of tuning curve shapes were analyzed.
Ranges were selected to correspond to typical values observed in
V1 neurons. Each underlying “true” curve was a double Gaussian.
The underlying angle preferences were chosen according to a

uniform distribution between 0° and 360°. Tuning widths were
chosen randomly according to a Gamma distribution with shape
3 and scale 6: 0 = (Gamma(3, 6) + 10°)/1.18.

In many of the figures, we examined curves with 21 values of
underlying OI or DI. These were produced in the double Gaussian
equation (see Results) by setting the baseline rate C = 10 — (i —
1)/2,Ry = (i—1)/2, Ry, = (i — 1)/4, for i from 1 to 21. In other
figures we examined 21 values of underlying DI: C = 0, R, = 10,
R, =10 — (i — 1)/2. Note that all of these curves with varying
direction selectivity exhibit high orientation selectivity (that is,
orientation selectivity and direction selectivity levels were not co-
varied).

To calculate statistical power for simulated 2-condition exper-
iments, we simulated underlying orientation or direction curves
with exactly the OI or DI specified, and randomly varied the pre-
ferred angle and tuning width as described above. We simulated
100 populations of increasing sizes, and calculated the minimum
size when X% of these simulations produced significant differ-
ences by applying a t-test with confidence X%, for X = 95, 99,
and 99.9.

NOISE MODELS

In each set of simulations, the simulated noise parameter is
described. We used two types of noise. The most common type of
noise, intended to capture the statistics of spikes recorded with an
extracellular electrode, was a constant Gaussian noise value that
was added to responses of all orientations on all trials. This con-
stant value is often expressed as a percentage of the maximum
response, which was usually 10 Hz. So, 20% noise means 2 Hz
noise was added to individual trial measurements.

A more recent technique for recording neural responses is 2-
photon imaging with Oregon Green BAPTA-1 AM (OGB-1AM)
(Stosiek et al., 2003; Ohki et al., 2005; Garaschuk et al., 2006).
This method involves bulk loading of neural tissue with a cal-
cium indicator bound to an AM-ester, leading to the uptake of the
calcium indicator by all neurons within the loading region. This
technique produces noise characteristics that differ from extra-
cellular spike recordings. Specifically, because 2-photon calcium
imaging records intracellular calcium concentration rather than
membrane voltage, it tends to show a lower signal-to-noise ratio
and a constant background signal. By examining the responses in
previous experiments (Li et al., 2008), we modeled this noise as
Gaussian noise with magnitude equal to a constant factor plus a
component that depended on the response at each direction, such
that noise = 20% + 10% * response magnitude.

RESULTS
Orientation selectivity has been observed in the visual cortex
of every mammal that has been examined, including carnivores
(Hubel and Wiesel, 1962), primates (Hubel and Wiesel, 1968),
rodents, including murid (Girman et al., 1999; Niell and Stryker,
2008), and sciurid rodents (Heimel et al., 2005; Van Hooser et al.,
2005), and marsupials (Rocha-Miranda et al., 1976; Ibbotson and
Mark, 2003).

Orientation selectivity is traditionally assessed by sweeping a
bar or by drifting sinusoidal gratings across the cell’s receptive
field in different directions (Hubel and Wiesel, 1962; Movshon
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etal., 1978, pp.101-120), although it can also be assessed by flash-
ing static bars at different orientations (Palmer and Davis, 1981).
The example cell in Figure 1A exhibits a substantial response to
bars that are rotated at a 45° angle from horizontal. The stimulus
in Figure 1A moves in two opposite directions. The response to
upward and rightward motion (45°) is stronger than the response
to downward and leftward motion (225°), indicating that the cell
is sensitive not only to the orientation of the stimulus but also its
direction of motion. Note that every cell that is direction-selective
by this criterion is also orientation-selective, but an orientation-
selective cell is not necessarily direction-selective, because a cell
could exhibit equal responses to the two opposite directions.

The responses of this example cell are shown on a graph in
Figure 1B. Each response is presented as a firing rate: the num-
ber of spikes evoked by each stimulus has been divided by the
duration of the stimulus in seconds. We imagine that the exper-
imenter has collected some responses to “blank” stimuli, where
the screen remains blank for the same time duration as for each
bar stimulus, and has subtracted these “blank” or “background”
responses from each measurement so that we are examining the
contribution of the oriented stimulus to the cell’s firing rate and
not ongoing background activity. This collection of responses to
a set of different orientations or directions is called an “orien-
tation tuning curve” or a “direction tuning curve,” respectively.
The major descriptive features of orientation and direction tuning
curves are illustrated. The stimulus angle that evokes the maxi-
mum response Ry is called the preferred direction (6pyf), while
the opposite direction is called the null direction (6pr + 180°).

QUANTIFYING THE DEGREE OF ORIENTATION AND DIRECTION
SELECTIVITY

From the graphical tuning curve in Figure 1B, it is easy to imagine
two major notions of orientation selectivity. One is a comparison
of the cell’s response to the preferred orientations (Rpref + Ruuir)
compared to the responses (Ryr¢h+ and Rypy— ) at the orientations
that are orthogonal (Oyrshy = Opref + 90°, Oprth— = Oprer — 90°)
to the preferred orientation. This method has been employed in
numerous studies, and we refer to it here as the orientation index
(On):

Ol = (Rpref + Ryun — (Rorth+ + Rorh—) )/ (Rpref + Rnull)

Note that it is not necessary to stimulate with directional stim-
uli in order to obtain a measure of orientation selectivity.
Indeed, in many studies, the bars are drifted back and forth
and the responses to each pair of opposite directions are aver-
aged together. In this “orientation space,” the angle of stimulation
ranges from 0° to 180°. We can calculate the orientation selectiv-
ity index in this case by using the preferred response (Rpref ori)
and the response R, at the orthogonal orientation (0, =
Opref + 90°)

Ol = (Rpreffori - Rorth)/Rpreffori‘

The OI can nominally vary from 0 (no selectivity) to 1 (perfect
selectivity), although it can exceed 1 if the response to the orthog-
onal orientation drops below the background firing rate, that is,
when Ry, is negative.
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FIGURE 1 | lllustration of the assessment of orientation and direction
selectivity. (A) Left: Depiction of a bar stimulus moving at different
orientations across the receptive field of an example cell. The cell’s
responses to each orientation are indicated at the right. The preferred
orientation is 45°. During each presentation of the bar stimulus, the
stimulus moves back and forth in two opposite directions. This cell
responds more strongly to movement of the bar toward 45° than it does to
the opposite direction (225°). (B) A graph of responses to the same cell to
sinusoidal gratings drifting in several directions. The cell gives the largest
response (Rpref) 10 45° (Bpref), and a weaker response (Rp,) to the opposite
direction 225° (6,,). The cell responds less strongly to stimulation at either
of the two orthogonal orientations (6yh+ and Oorin4). The cell’s response
decreases as the direction of the stimulus deviates from 6ef; the
difference between 6y and the angle that causes the response to drop to
half (Rpp) its maximum value is called the half width at half height (6p,np).

In direction space, a direction index can be defined similarly:

DI = (Rpref - Rnull) /Rpref.

Another major notion of orientation or direction selectivity is the
sensitivity of the response to the preferred angle. One can imagine
measuring the amount one needs to change the orientation (or
direction) angle from the preferred for the response to drop by
some amount, such as by half (Ryy, the response at half-height).
The angle difference 6y, indicates how far in orientation space
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one must adjust the angle from the optimal to obtain half of the
response height. This type of selectivity has been referred to as a
cell’s orientation tuning width. Measuring the orientation tuning
width requires either substantial sampling of responses to differ-
ent angles, or performing a tuning curve fit, which we will turn to
later.

Owing to the mathematical simplicity of the OI, most studies
over the years have employed the OI to assess orientation selec-
tivity. By ear, it is easy to assess whether or not a cell exhibits
perfect orientation selectivity with the OI (that is, when there are
no responses to the orthogonal angle), and the OI is very easy to
compute numerically even when one is measuring spikes or firing
rates. When applied to cells with substantial selectivity, it provides
a simple and valid measure of orientation selectivity. Figure 2
shows simulated responses from a model neuron (i) with a the-
oretical or “true” OI of 0.77; we have simulated 10 repeated trials
of each direction; 5 Hz of random noise was added to each simu-
lated trial, and the means are plotted. The empirical OI, measured
by taking the average of the responses at the preferred orientation
subtracting the responses at the orthogonal orientation, and nor-
malizing, we obtain a value (0.83) very close to the “true” OI value
of 0.77.

However, the case of a model cell (ii) with no orientation selec-
tivity is also shown in Figure 2. Again, we have simulated 10 trials
with 5 Hz of added noise. If we blindly report the empirical mea-
sure of OI, we obtain a value 0.58, a value much larger than the
“true” value of 0. The reason is that we always choose the angle of
the empirical maximum response to be “preferred,” and, in this
case, that angle was just the angle that had the largest response due
to noise only (there was no orientation signal). By random chance
in this example, the responses at the angles that correspond to the
orthogonal orientations (represented by the squares) are both less
than the responses to the preferred orientation (represented by
the triangles), so the Ol is large.

In single unit recording studies in adult animals, one often
ignores cells with weak responses, but if one is conducting an
imaging study of 100’s of neurons, or developmental research
in animals with weakly responsive cells, it is highly likely that
some neurons will exhibit weak orientation selectivity. If the OI
is applied blindly, it is likely that many of these weakly selective
neurons will have empirical OI values that are high, only due to
noise.

VECTOR SPACES FOR ORIENTATION AND DIRECTION
We can improve the situation by plotting the responses to indi-
vidual stimuli in a vector space. In Figure 3, we have replotted
the responses of model cells (i,ii) and a new model cell (iii) in
polar plots. Figure 3A shows the responses plotted in orientation
space, where values for responses to the two opposite directions
have been averaged, and angles vary from 0° and 180°. Figure 3B
shows the responses plotted in direction space, where angles vary
from 0° to 360°. The graphs also show, in gray, the vector that
is the sum of all of the mean responses in vector space. In these
examples, the length of the vector sum is more related to the
amount of orientation selectivity as compared to the OI index.
The normalized length of this vector in orientation space is
computed as follows:

_ ’ >« R(Ok) exp (2i6k)

R(6r)

’

where R(6) is the response to angle k. In direction space this
length is the following:

(6k) exp (16k)

Lg, =
dir = gk)

‘Zk

The normalized vector length is related to a classic quantity in
circular statistics called the circular variance (Batschelet, 1981;

121 “True” Ol = 0.77
Empirical Ol = 0.83

10} A -
Empirical Ol = —D

A

Firing rate (Hz)
[}

121 “True” Ol = 0.00
Empirical Ol = 0.58
10}
sl
6l

N

L]
Ty

ERVETRH %
FIGURE 2 | Calculation of the empirical orientation selectivity index (Ol).
(i) Simulated responses (10 trials, 5Hz per trial noise) to a model cell with an
underlying direction tuning curve indicated in gray. Error bars indicate
standard error around the mean of the simulated responses. To calculate O/,

responses from the preferred orientation angle are averaged together
(triangles) and the responses to the orthogonal angles (squares) are

ERDBETRG %
subtracted. This quantity is normalized by the response to the preferred
orientation angle (triangles). There is good qualitative agreement between
the empirical O/ and the “true” O. (ii) Same, for a model cell that is not
orientation selective. The empirical Ol is still very large due to the noise in

the simulated responses, and is not qualitatively similar to the “true”
underlying Ol.
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FIGURE 3 | Responses of model cells in polar coordinates on the
complex plane. (A) Responses of model cells in orientation space.
Response (in spikes per second) at each angle is indicated by the
distance from the origin. Orientation angles vary from 0 (horizontal) to
90° (vertical) and back to 0°/180° (horizontal). Gray arrow indicates the
vector mean of the responses to individual orientations. The normalized
length of the mean response vector is the quantity Lo, which is
1minus the circular variance (1-CirVar). Model cells i and ii are the
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same as in Figure 2. (B) Responses of the same cells plotted in
direction space. Direction of motion is indicated, response at each
angle is indicated by the distance from the origin. Note that 0° and
180° both correspond to horizontal stimulus orientations, but moving in
upward and downward directions, respectively. Gray arrow indicates the
vector mean of responses to individual directions. Note that cell iii is
highly orientation selective for oblique bars but is poorly selective for
stimulus direction.

Ringach et al., 2002):
1 — CirVar = Ly

We use the abbreviation CirVar to differentiate the circular vari-
ance from the classic statistical quantity called “coefficient of
variation,” which is often abbreviated as CV. We similarly define a
quantity called 1-DirCirVar:

1 — DirCirVar = Ly,

This definition differs (by a factor of 2) from the classic definition
of circular variance in direction space (Batschelet, 1981), but we
leave off the factor of 2 here so that a cell with maximal selectivity
has a 1-DirCirVar of 1 (rather than 2).

The vector lengths in orientation space (1-CirVar) and in
direction space (1-DirCirVar) for the model cells i—iii are shown
in Figure 3. There are two important things to notice in compar-
ison to the OI. First, model cell ii has a high (spurious) empirical

OI value (Figure 2ii) but has a small 1-CirVar value, indicating
that 1-CirVar is closer to the true selectivity of the cell, which
is 0. Second, a cell can only have a 1-CirVar value of 1 when
it exhibits a response to 1 orientation and no other orienta-
tions. Cells with high selectivity that would have OI values near
1, such as model cells i and iii, generally have lower 1-CirVar
values, since cells typically respond to more than a single ori-
entation; that is, the response tuning generally has some width.
Thus, circular variance depends on both selectivity and tuning
width.

COMPARING O/ AND CIRCULAR VARIANCE (AND D/ AND DIRECTION
CIRCULAR VARIANCE)

When one records a neuron experimentally, one can only obtain a
limited number of samples of the neuron’s responses. One would
like to use these sampled responses to make the best guess about
the neuron’s “true” properties, which cannot be examined directly
but can only be inferred from experimental observations. Here

we used Monte Carlo simulations to consider which index, OI or
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circular variance, allows one to make the best guess about the true
orientation selectivity.

We created 21 model orientation tuning curves that ranged
in “true” selectivity from 0 to 1 (Figure 4A). From each model,
we simulated 100 tuning curves with 10 experimental trials each
by adding 50% single trial noise; the exact angle preference and

tuning width was chosen randomly (see Materials and Methods).
We then calculated the OI and 1-CirVar for each simulation
(Figure 4).

The percentile distribution of empirical OI values for each
“true” OI value is shown in Figure 4B. There is a wide range
of empirical OI values; for example, when the “true” OI is 0,

+50%
noise
per trial

/ /
A =

TA3NIveRT T2-3v et T2>2NI Vv erRT tT2-3vi et T2>2NI Vv erRT
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FIGURE 4 | Comparison of O/l and circular variance measures for
simulated data. \We created 100 simulations of tuning curves for each of 21
underlying “true” tuning curves, ranging from O/ = 0 to O/ = 1, some shown
in (A). Each trial had 50% noise added. (B) Percentiles of the empirically
determined O/ for the 100 simulations at each underlying “true” Ol value.
Note that for cells with 0 true selectivity, the empirical O/ values range from
slightly negative to almost 0.5. (C) Percentiles of the empirically determined
1-CirVar index for each of the underlying “true” Ol values. Note that when
“true” Ol is low, the 1-CirVar is always low. The index 1-CirVar increases as
“true” Ol increases but the range of values remains narrower than the

0 0.1020304050607080910
Empirical 1-CirVar value

corresponding range of empirical O/ values in (B). (D) The inverse of (B);
given we observed an empirical O/ value of x, what is the range of possible
“true” Ol values that produced x in our simulations? An empirical O/ of 0
could have arisen from cells with “true” Ol values ranging from 0 to 0.5, and
an empirical O/ of 0.5 could have arisen from cells with a “true” O/ ranging
from about 0.1 to about 0.8. (E) The inverse of (C). A 1-CirVar of 0 could have
arisen from a “true” Ol ranging from 0 to about 0.3, and 1-CirVar of 0.25
could have arisen from a “true” Ol ranging from about 0.4 to 0.8. The range
of possible underlying “true” Ol values is much narrower when 1-CirVar is
used as a readout as compared to O/.
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empirical OI values ranged from slightly negative to about 0.5. By
contrast (Figure 4C), the distribution of circular variance values
is much tighter; when “true” OI is 0, the 1-CirVar value is always
nearly 0.

While the results in Figures 4B,C show the range of empir-
ical OI and 1-CirVar values that one might expect for a given
“true” OI, the most relevant relationship for experimentalists is
the inverse relationship: given that one observes an empirical OI
value of X or a 1-CirVar value of Y, what are the likely “true”
OI values that could underlie these empirical values? As shown
in Figure 4D, knowing the empirical OI value tells one very little
about the “true” OI value: for example, if the empirical OI is 0, the
“true” OI could be as high as 0.5. On the other hand (Figure 4E),
the circular variance gives more information about the “true” OI:
if we obtain an empirical 1-CirVar of 0, the “true” OI is likely to
be less than 0.3; if we obtain an empirical 1-CirVar of 0.25, the
“true” OI is likely to be between 0.4 and 0.7.

We performed similar simulations for direction selectivity,
comparing the empirical DI with the empirical 1-DirCirVar
(Figure 5). The difference in uncertainty about the “true” DI
between the DI and 1-DirCirVar is less pronounced than the
difference in uncertainty between the OI and 1-CirVar, but nev-
ertheless the empirical 1-DirCirVar provides more information
about the “true” DI than the empirical DI.

The Monte Carlo simulation results presented in Figures 4, 5
provide strong evidence that circular variance is a more robust
and reliable indicator of the amount of orientation or direc-
tion selectivity than the OI or DI. The circular variance works
well when selectivity is strong or weak. We recommend the use
of circular variance whenever quantification of the amount of
orientation or direction selectivity is necessary.

Experimentalists are also interested in knowing how many
stimulus trials and stimulus angle steps should be presented to
the animal in order to provide a quality estimate of the neuron’s
true orientation or direction selectivity. We performed Monte
Carlo simulations where we systematically varied the single trial
noise, number of stimulus trials, and the number of stimu-
lus angles in order to understand how these factors influenced
error in uncovering the “true” OI or DI (Figure 6). As expected,
more trials and more angles were always better, but 45° angle
steps and eight trials (or 22.5° steps with four trials) appear
to be the minimum required for a quality assessment of direc-
tion selectivity. Naturally, this result depends on the reliability
of the neuron being studied; neurons with lower responsive-
ness or higher noise will require more trials and/or stimulus
angles.

SIGNIFICANCE OF ORIENTATION AND DIRECTION TUNING

When one suspects a cell is selective for stimulus orientation
and/or direction, it is often important to verify this selectiv-
ity statistically. We need tools that allow us to answer the
question “is a cell’s selectivity for orientation/direction sta-
tistically significant?” In principle, one could simply measure
a selectivity coefficient on each trial and perform statistics
on this distribution of coefficients. However, the flaw in this
analysis is in determining the null hypothesis with selectivity
coefficients, and the flaw applies whether one uses OI/DI or

1-CirVar/1-DirCirVar. Specifically, for all these coefficients, the
expected value in the absence of selectivity is greater than zero
because any variance across stimulus angles, whether stimulus-
driven or random, always produces coefficient values greater
than zero. Thus, one could not use this method to prove that
a particular measured coefficient was not simply produced by
noise.

We have found that the best way to detect selectivity is to mea-
sure the magnitude of orientation or direction vectors (Figure 7).
For this test, we organize data into “trials,” where a trial is one
response at each stimulus orientation or direction. The orienta-
tion or direction vector is calculated on each trial as the vector
sum of responses on that trial measured in orientation or direc-
tion space, respectively. The magnitude of the vector correlates
with the degree of selectivity, and the expected magnitude is zero
for zero selectivity. Hence we can perform statistics on the distri-
bution of vector magnitudes against the null hypothesis HO: that
the magnitude equals zero.

For detecting orientation selectivity we use Hotelling’s T>-test,
which is a multivariate generalization of Student’s T-test, to ask
whether the 2-dimensional mean of orientation vectors is signif-
icantly different from [0,0] (Figure 7C). Figure 8 shows that this
test reliably detects orientation selectivity. In this figure, a model
cell is simulated at different levels of underlying OI and differ-
ent numbers of trials. The figure shows the number of trials that
would be needed to detect different OI levels vs. OI = 0 at three
levels of sensitivity (95, 99, and 99.9%). The test is specific for
orientation selectivity, with p-values distributed uniformly when
OI = 0.

For detecting direction selectivity, it is possible in principle
to apply Hotelling’s T2-test to direction vectors. However, we
have found that this method of testing for direction selectivity is
quite insensitive because direction space is generally sampled too
crudely to provide a reliable distribution of direction vectors. To
address this problem, we developed a new test which we call the
“direction dot product test.” This test uses both orientation vec-
tors and direction vectors to assess the direction selectivity of a
cell (Figure 7F).

In the direction dot product test, the first step is to obtain the
orientation axis of the cell by calculating the angle of the average
orientation vector. Next, we calculate the magnitude of the projec-
tion of each direction vector onto the orientation axis (this is what
we call the “direction dot product” for each direction vector). This
gives us a 1-dimensional distribution of direction dot product val-
ues, one value for each direction vector. Finally, Student’s T-test is
performed on the distribution of direction dot products with HO:
mean = 0. The test yields a p-value for whether the average mag-
nitude of a distribution of direction vectors is significantly greater
than zero.

The direction dot product reliably detects direction selectivity.
Figure 9 shows the direction dot product test applied to direction
vectors from a simulated cell’s response. The cell is simulated at
different levels of underlying DI and different numbers of trials.
The figure shows the number of trials that would be needed to
detect different DI levels vs. DI = 0 at three levels of sensitivity
(95, 99, and 99.9%). The test is specific for direction selectivity,
with p-values distributed uniformly when DI = 0.
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FIGURE 5 | Comparison of DI and direction circular variance measures
for simulated data. \We created 100 simulations of tuning curves for each of
21 underlying “true” tuning curves, ranging from D/ = 0 to D/ = 1, some
curves shown in (A). Each trial had 50% noise added. (B) Percentiles of the
empirically determined DI for the 100 simulations at each underlying “true”
DI value. Note that for cells with 0 true selectivity, the empirical D/ values
range from about 0 to about 0.5. (C) Percentiles of the empirically
determined 1-DirCirVar index for each of the underlying “true” DI values.
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narrower than the corresponding range of empirical D/ values in (B). (D) The
inverse of (B); given we observed an empirical D/ value of x, what is the
range of possible “true” DI values that produced x in our simulations? An
empirical D/ of 0 could have arisen from cells with “true” DI/ values ranging
from about 0 to 0.5, and an empirical D/ of 0.5 could have arisen from cells
with a “true” DI ranging from about 0.1 to 0.7. (E) The inverse of (C). A
1-DirCirVar of 0 could have arisen from a “true” D/ ranging from 0 to about
0.4, and 1-DirCirVar of 0.25 could have arisen from a “true” D/ ranging from
about 0.1 to 0.7 The range of possible underlying “true” DI values is
narrower when 1-DirCirVar is used as a readout as compared to DI.

QUANTIFYING UNCERTAINTY AND DIFFERENCES IN ORIENTATION
AND DIRECTION PREFERENCES

Another objective that arises when one has a cell with selec-
tivity for orientation/direction is to estimate the uncertainty of
the measured selectivity parameters. Above we described tools
for asking whether selectivity was significantly greater than zero.
However, one might also like to obtain a measure of dispersion

(e.g., standard deviation) or a confidence interval (e.g., stan-
dard error) for selectivity parameters. In principle, one could
simply obtain this from the distribution of OI/DI/1-OriCirVar/1-
DirCirVar values measured on repeated trials. However, these
measures behave inconsistently as response properties vary,
especially as selectivity approaches zero, so estimating the dis-
tribution of parameters or confidence intervals from them is
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preferred direction. (B) Dependence of error on the number of trials. More
trials offer modest improvements in average accuracy. (C) Dependence of
error on number of angle steps. Additional angle steps offer a big improvement
in estimating the amount of orientation or direction selectivity present.

(D) Dependence of error for assorted numbers of trials and angle steps.

not very meaningful. Fortunately, selectivity measures can be
successfully employed to ask more specific statistical questions.
One common question, especially in the era of 2-photon
imaging where many cells are recorded simultaneously, is to ask
whether one population of cells has different average selectivity
than another population (or, equivalently, whether a population
recorded at one point in time has different average selectivity
than the same population recorded at another point in time). The
approach is simple: Measure selectivity coefficients from each cell
in the two populations, and perform a 2-sample T-test to measure

whether selectivity differs between them. The test can be per-
formed using OI/DI or 1-OriCirVar/1-DirCirVar values. Table 1
shows results from simulations asking how many cells would be
required to detect differences in underlying OI or DI at different
levels of confidence. The table shows that, as seen above, circular
variance performs better than OI/DI.

As an aside, one might wonder whether statistics on raw
vectors could be used to answer this question. Since vector
magnitudes correlate with selectivity, why not compare the vec-
tors between the populations to see if selectivity has changed?
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direction (D-F) responses. This figure uses data from a model cell with
strong tuning: Underlying O/ = 0.9, D/ = 0.5, noise = 20%. 16 directions
(22.5° steps) were tested. For the orientation analysis, opposite directions at
the same orientation were averaged together. (A) One trial from the model
cell plotted in orientation response. Note that a “trial” is defined here as one
measurement at each stimulus orientation. (B) The response from the trial
shown in (A), plotted in polar coordinates. Black: The response obtained at
individual orientations. Gray: The vector sum of the responses at individual
orientations. This is the “orientation vector” on this trial. (C) Orientation
vectors from seven trials from the model cell. Gray circles show the
orientation vectors from the seven trials. The p-value above the graph gives
the result of Hotelling’s T2-test, which tests for whether the 2-dimensional
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mean of this distribution of orientation vectors is different from [0, 0].

(D) One trial from the model cell plotted in direction space. Here a “trial” is
defined as one measurement at each stimulus direction. (E) The response
from the trial shown in (D), plotted in polar coordinates. Gray: The vector sum
of the responses at individual directions. This is the “direction vector” on this
trial. (F) Direction vectors from seven trials from the model cell. Gray circles
show the direction vectors from the seven trials. The dashed line is
orientation axis from this cell, obtained by measuring the angle of the
average orientation vector. Black lines show the projection of the direction
vectors onto the orientation axis (the “direction dot products”). Numbers
give the magnitude of the direction dot product for each direction vector. The
p-value above the graph gives the result of Student’s T-test applied to the
direction dot product values against HO: Mean = 0.

The answer is that vector magnitudes, while they do correlate
with selectivity, also correlate with tuning width and response
magnitude (see Figure 3). If two populations differ in any of
these response parameters, they will produce different vectors.
Hence a test that looks for differences in vectors can give a

positive result even if the populations are equally selective. Note
that this effect isn’t a problem when testing for the presence of
selectivity, as we do in Figure 7, because here the null hypoth-
esis is zero magnitude, which can only occur when selectivity
is zero. Thus, statistics on raw vectors are suitable for detecting
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FIGURE 9 | Sensitivity and specificity of the direction dot product
test for detecting direction selectivity. (A) Repeated simulations were
performed with a single cell at different levels of underlying D/ and
different numbers of trials; O/ =1 for all simulations. 16 angles (22.5°
steps) were used; noise = 4Hz at all conditions. Sensitivity of the
direction dot product test was measured at three levels of significance:
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95, 99, and 99.9%. (B) A cell was simulated with 7 trials at underlying
DI=0, Ol=1. The simulation was repeated 200,000 times and each
time a p-value was measured against HO: D/ =0. The frequency of
observed p-values was uniform between 0 and 1, which is what would
be expected for an unbiased test by repeated sampling of cells that
are indifferent to direction.

the presence of selectivity, but not for detecting differences in
selectivity.

Another common question is whether some specific response
parameter differs between two cell populations. For example,
one might wish to look for differences in preferred orientation
between two populations. In this case, a vector-based test can be
useful. Orientation vectors are affected by preferred orientation,
so differences in preferred orientation lead to different distribu-
tions of vectors from the cells. Hotelling’s T?-test (specifically the
2-sample version of the test, analogous to the 2-sample Student’s
T-test) can be used to detect such a difference. Figure 10 shows
the sensitivity of the 2-sample Hotelling’s T?-test in detecting
differences in preferred orientation between two populations of
cells.

However, this test must be used with caution. Vectors are
affected by all response parameters including preferred orien-
tation, tuning width, and response magnitude, so a positive
result simply means that one or more of these parameters differs

between the two populations; it cannot prove that the difference
is in preferred orientation or any other single parameter. The test
may be useful as a broad screen to detect generalized differences
in response parameters. But if a difference in a specific response
parameter is sought, the best method is to perform statistics with
iterative fitting, as described below.

EXTRACTING PARAMETERS OF ORIENTATION AND DIRECTION TUNING
CURVES WITH FITS

In order to address the question of how well a given population
of neurons encodes the orientation or direction of a stimulus, it is
often important to know the precise parameters of a cell’s tuning
function such as its tuning angle or tuning width. Previous work
using Monte Carlo simulations (Swindale, 1998) found that the
best method for estimating tuning parameters from orientation
or direction responses is to fit these responses with a Gaussian
curve. In orientation space, we can fit the responses using a single
Gaussian:
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Table 1 | Minimum number of cells per condition that are needed to distinguish underlying orientation or direction selectivity index
differences for two noise models.

Ol base + A If readout is O/ If readout is 1-CirVar

0.95 0.99 0.999 0.95 0.99 0.999
0.5+0.1 16/100 37/190 201/365 9/43 16/85 26/130
0.5+0.2 6/20 13/40 40/80 5/6 7/15 12/28
0.5+0.3 5/6 8/15 19/21 5/4 5/6 8/9
DI base + A If readout is DI If readout is 1-DirCirVar

0.95 0.99 0.999 0.95 0.99 0.999
0.154+ 0.1 103/1k 183/2k 313/3k 38/181 69/324 117/519
0.15+0.2 26/145 48/265 74/410 10/40 18/64 29/112
0.15+0.3 11/45 21/80 34/145 5/12 9/23 15/40
0.3+0.1 84/291 162/521 233/950 30/80 56/147 92/250
0.3+0.2 20/58 39/109 64/170 9/20 15/36 24/61
0.3+0.3 10/22 18/41 31/75 5/10 8/14 13/21
0.5+0.1 76/131 141/241 218/384 26/43 43/76 82/140
0.5+0.2 20/30 37/50 59/110 8/10 13/20 22/31
0.5+0.3 10/11 17/20 27/35 5/5 7/10 12/14

The top three rows assume that the control group has an underlying Ol that is 0.5, and the experimental group has the increment indicated in each row. The bottom
rows assume that the control group has an underlying DI that is 0.15, 0.3, or 0.5 as specified, and the experimental group has the increment indicated in each row.
The middle and right columns show the minimum cells that are needed to distinguish the control and experimental groups with a T-test at several confidence levels
(0.95, 0.99, 0.999) if the experimenter is calculating Ol (or DI) values as a readout (middle columns), or if the experimenter is calculating 1-CirVar (or 1-DirCirVar)
values (right columns). The number of cells indicated is the number of cells required per condition (control or experimental), so twice this number would be required
for a total experiment. Two noise models were used. In the data points to the left of the slash, 40% noise was added to the responses. In the data points to the
right of the slash, “2-photon OGB-1AM" noise was used; that is, noise = 20% + 10 * response. Angle step size was 22.5°. Note that many fewer cells are needed
to evaluate changes in orientation and direction selectivity if 1-CirVar or 1-DirCirVar is used as a readout as compared to Ol or DI.
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FIGURE 10 | Sensitivity of the 2-sample version of Hotelling’s We measured the sensitivity for detecting the difference at three
T-squared test for detecting differences preferred orientation levels of confidence: 95, 99, and 99.9%. (A) Simulations performed
between different cell populations. Cells were simulated with using single-trial noise of 40% in all conditions. (B) Simulations
seven trials each. We systematically varied the size of the cell performed using “2-photon OGB-1AM noise”: noise = 20 % +
populations and the size of the difference in preferred orientation. (10% x expected response).
angyri(0—0prep) above the offset, then the tuning width (half-width at half-height)
R(0) = C+ Rpe 202 ) is equal to /log4o (half-width at half height) (Carandini and
Ferster, 2000).
where C is a constant offset, 6, is the preferred orientation, In direction space, we can use a double Gaussian with the

R, is the above-offset response to the preferred orientation, following equation:

ang,yi(x) = min (x, x — 180, x + 180), wraps angular difference

values onto the interval 0° to 90°, and ¢ is a tuning width g 0Oy’ g (01806 2
parameter. If we wish to only analyze the portion of the response R(6) = C+Rpe 202 + Rye 202 ,
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where C and 0y are defined as before, R, is the
above-offset response to the preferred direction, R, is
the above-offset response to the null direction, and
anggir(x) = min (x, x — 360, x + 360), wraps angular differ-
ence values onto the interval 0° to 180°, and o is a tuning width
parameter. Again, if we wish to only analyze the portion of the
response above the offset, then the tuning width (half-width
at half-height) is equal to /log4o (half-width at half height)
(Carandini and Ferster, 2000; Moore et al., 2005).

Although Gaussian fits are the best method for determin-
ing response parameters (Swindale, 1998), in practice there are
several pitfalls to avoid. Several data analysis packages, such as
Matlab (MathWorks) offer the ability to fit functions to data, but
blindly applying a least squares fit to the data using the above
functions often leads to poor fits. Common errors are described
in Figure 11A. This problem is intractable in neural data because

one never knows the “true” underlying response function, so it’s
impossible to say for certain that one fit is better than another.
Hence, here we simulate responses with a known underlying
response function, allowing us to evaluate the quality of our fits
objectively.

To prevent poor fitting, we use 2 ad-hoc procedures. First, we
provide several constraints on the fit parameters. We constrain
the width parameter oto be at least as large as «/2, where o
is the angle step used for stimulation; we force C to lie in the
interval [-M,M], where M is the largest response to any stimulus;
and R, and R, are constrained to lie in the interval [0, 3 M].
Second, we start the search using initial conditions that we expect
will result in a good fit: 6pf = Oy where M = R(6y1), Ry =
R, =M, C= 0, and we explore several initial values for ¢ =
{a/2, a, 40°, 60°, 90°}. We take the fit with the lowest least square
error for all these initial values of o as the best fit of the data.
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FIGURE 11 | Gaussian fits for assessing orientation and direction
selectivity. (A) Common errors with unconstrained fits (gray lines). Left: the
unconstrained fit has gotten stuck in a local squared error minimum, using a
tiny tuning width to fit 2 points very accurately. Middle: The unconstrained fit
has used a peak response Ay that is much larger than any point actually
present in the data, and a physiologically implausible negative weight for the
null direction. Right: The unconstrained fit has found a reasonable fit, but the
parameters do not make physical sense. The unconstrained fit posits a
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constant offset that is highly negative, with large responses to the preferred
and null directions. All of these fitting error can be solved by constraining the
fit parameters to values that make physical sense (solid lines, see text).

(B) Mean errors in tuning width, preferred angle, and O/ for Monte Carlo
simulations of cells with the underlying Ols in Figure 4. Gray patch indicates
25-75% interval (C) Mean errors in tuning width, preferred angle, and O/ for
Monte Carlo simulations of cells with the underlying D/s in Figure 5. Gray
patch indicates 25-75% interval.
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Using this ad-hoc fitting method, we can explore how well we
can identify the tuning width and preferred angle for the same
model cells we explored in Figure 4. The performance of the fit
improves as the underlying OI increases (Figure 11B), although
the error in angle preference is relatively large when OI is small.
Because this error in angle preference is large when OI is small,
we use another ad-hoc rule: we never report tuning widths or
angle preferences from fits unless the data exhibits significant ori-
entation selectivity by the Hotelling T2-test. The simulations of
the model cells of varying direction selectivity in Figure 5 are fit
with double Gaussian functions in Figure 11C. All of the tuning

curves in Figures 5, 11B,C exhibit significant orientation selec-
tivity, so the fit of tuning width and DI is excellent. As expected,
when the underlying DI is smaller than about 0.25, the noise in
the empirical responses obscures which of the two opposite direc-
tions along the preferred orientation axis is the “true” preferred
direction.

The relationships between fit quality and noise and number
of stimulus trials and stimulus angles are plotted in Figure 12.
As with the circular variance index values, more angle steps are
always better, but 22.5° step sizes provide relatively high quality
fits when used with 6-8 trials.
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FIGURE 12 | The dependence of errors in identifying tuning width, as a percentage of the maximum response rate to the preferred direction.
preference angle, and OI/DI on neural noise and stimulus sampling. On (B,E) Dependence of error on number of angle steps. Additional angle steps
the Y axis of all plots is the median error between the “true” underlying offer a modest improvement in estimating the fit parameters.
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QUANTIFYING UNCERTAINTY IN FIT PARAMETERS USING ITERATIVE
FITS

Finally, one useful outcome of iterative fitting is that it can be
used to estimate uncertainty in fit parameters and to do statis-
tics on these parameters. The simplest method for doing this uses
the Hessian matrix, which measures the steepness of the error
function near the local minimum where the fit algorithm set-
tles. The matrix is obtained by sampling the error function near
the local minimum and measuring the partial second derivative
of this function for each parameter; standard Matlab optimiza-
tion tools produce the Hessian matrix as an output parameter.
Once obtained, the Hessian matrix can be transformed to obtain
standard errors of fit parameters, and these can then be used to
perform statistics (Press et al., 1992).

Unfortunately, the Hessian method does not work for fitting
orientation and direction curves. Since the Hessian matrix repre-
sents the second partial derivatives of the error function, it can
only be obtained when the error function is reasonably smooth.
As described above, achieving adequate fits of orientation and
direction data requires strict constraints on the fitting procedure.
Because of these constraints, the error function is not smooth and
thus a meaningful Hessian matrix generally cannot be obtained
when fitting orientation and direction curves.

Another method for using iterative fitting to quantify uncer-
tainty in parameters is the bootstrap method. In this method,
samples of data are repeatedly selected at random, with replace-
ment, and fits are performed to each sample. The distribution of
parameters obtained in these fits provides a reasonable estimate
of the parameter distribution in the underlying population (Press
et al., 1992), and hence this distribution can be used to calculate
standard errors and to do statistics.

In a previous study we employed the bootstrap method to esti-
mate the distribution of preferred direction in individual cells
from 2-photon recordings before and after extended exposure to a
motion stimulus (Figure 13, modified from Li et al.). To obtain a
distribution of preferred direction, we used the N trials obtained
from a cell and created a “simulated” cell by randomly resam-
pling these trials N times with replacement. The simulated data
was then fit with a double Gaussian as described above. This pro-
cedure was repeated 100 times and the preferred direction was
obtained for each simulation, yielding a distribution of preferred
direction values from this cell.

One way we used this distribution was to detect significant
direction selectivity. We quantified the “uncertainty” in direction
preference, which is the percentage of simulations whose pre-
ferred direction differed from the mean preferred direction by
more than 90°. This uncertainty can vary between 0 and 50%, so
we interpret (uncertainty x 2) as a p-value for significant direc-
tion selectivity. We found that the sensitivity and specificity of
this method for detecting direction selectivity is similar to what
we obtain with the dot product direction test described above.

There are several drawbacks to the bootstrap method. First,
the method is very computationally intensive, with a standard
test requiring several days of computer time. More importantly,
results obtained from the bootstrap method depend on a variety
of factors that are not related to the data. Specifically, the out-
come of the test depends on the fitting algorithm employed, the
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FIGURE 13 | Estimating the distribution of preferred direction using
bootstrap methods. (A) Data from a cell recorded with 2-photon calcium
imaging using OGB-1AM before and after extended exposure to a motion
stimulus (“motion training”). Bars show +1 standard error of the response.
Solid lines show best fits with double Gaussian functions. The dashed line
indicates mean response to a gray screen. (B) Distribution of preferred
directions in bootstrap simulations of the cell shown in (A). The data from
this cell was randomly resampled with replacement, creating a “simulated”
cell, and this simulated data set was fit with double Gaussian functions.
This procedure was repeated 100 times in each training condition, yielding
the observed distributions of preferred direction. “Unc.” lists the
preference uncertainty, meaning the percentage of simulations whose
preferred direction differed from the mean direction by more than 90°.

initial value used in the fit, and the constraints placed on the fit.
Researchers using the bootstrap method must take care to record
and publicize details about their technique so that others may
reproduce their findings.

An alternative approach that generates confidence intervals
is a Bayesian approach, such as that described in Cronin et al.
(2010). The authors develop methods for estimating the entire
probability distribution of each parameter value.

DISCUSSION

Orientation and direction tuning are probably the most inten-
sively studied response properties in the cortex. Historically,
these studies have focused on cells with strong selectivity as
determined by simple comparisons between preferred and non-
preferred responses; cells without such obvious selectivity were
often declared, simply, “unselective” However, the advent of
advanced techniques for recording and manipulating neurons
requires us to investigate subtle differences between cells and to
extend our analysis to cells with low selectivity. We need statistical
tools that are suitable for addressing these subtle questions.

Traditional measures for quantifying orientation and direction
selectivity rely on assigning the stimulus evoking the strongest
response as the “preferred” stimulus for the cell and assign the
opposite stimulus as “non-preferred.” The most commonly-used
measures, OI and DI, compare the strongest stimulus to orthog-
onal stimuli (for OI) or opposite-direction stimuli (for DI). Our
analysis shows that these measures are generally unreliable, espe-
cially for cells that have low selectivity or high noise (Figures 2, 4).
The key flaw with OI/DI and related measures is that preferred
and non-preferred stimuli are always taken from sampled val-
ues of orientation/direction; if the true preferred stimulus lies
between sampled values (which is likely to be the case), it will be
missed.
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Table 2 | Recommended methods for answering several common scientific questions involving orientation and direction selectivity.

Question

Recommended method

Quantifying the degree of orientation selectivity

Quantifying the degree of direction selectivity

Testing for significance of orientation selectivity

Testing for significance of direction selectivity

Comparing orientation selectivity between two populations
Comparing direction selectivity between two populations

Screening for any difference in response parameters (e.g., preferred
orientation, tuning width, peak height) between two populations
Extracting response parameters such as tuning angle or tuning width
Quantifying the confidence/uncertainty of response parameters such as
tuning angle or tuning width

1-OriCirVar

1-DirCirVar

Hotelling’s T2-test on orientation vectors

Direction dot product test on direction vectors
2-sample Student’s T-test on 1-OriCirVar values
2-sample Student's T-test on 1-DirCirVar values
2-sample Hotelling’s T2-test on orientation vectors

Fit data with Gaussian (for orientation data) or double Gaussian (for direction data)
Bootstrap method: Resample data with replacement, then fit resampled data with
Gaussian (for orientation data) or double Gaussian (for direction data)

To obtain an accurate estimate of preferred and non-preferred
stimuli, one must extrapolate between measured values. Vector-
based methods effectively extrapolate measured responses by cal-
culating the vector average of responses on each trial. Specifically,
for quantifying selectivity, we recommend 1-OriCirVar (for
orientation) and 1-DirCirVar (for direction). These measures
demonstrate greater reliability than OI/DI (Figures4, 5) and
they are more sensitive than OI/DI for detecting differences in
selectivity between two populations (Table 1).

Vectors can also be used to assess whether a cell’s selectivity
is statistically significant. In this approach, we ask whether the
2-dimensional mean of orientation or direction vectors is signif-
icantly from zero. Specifically, Hotelling’s T2-test on orientation
vectors is reliable for detecting orientation selectivity (Figure 8)
and the direction dot product test is reliable for detecting direc-
tion selectivity (Figure 9).

In some cases, we need to probe beyond selectivity to ask
about specific response parameters such as tuning angle or tuning
width. Vectors can be used to detect differences in these parame-
ters between two populations (Figure 10); however, vector-based
methods cannot identify which particular parameter or param-
eters are responsible for the difference. To answer such precise
questions, we recommend another method of extrapolation:
fitting data with Gaussian curves (for orientation) or double
Gaussian (for direction). Swindale (1998) showed that least
squared fitting with these functions provided the best method
for extracting response parameters from orientation and direc-
tion data. This method provides accurate estimates of response
parameters for cells with significant selectivity, provided that the
fitting routine is appropriately constrained to avoid erroneous
local minima (Figures 11, 12).

Fitting also offers a tool for estimating the uncertainty of
response parameters via the bootstrap method, where the data
is randomly resampled multiple times with replacement and fits
are performed to the resampled data. This method generates
a distribution of values for each parameter which serves as an
accurate estimate of the true distribution (Figure 12). Hence this
method allows precise statistical questions to be asked about each
response parameter underlying a cell’s response. Note that alter-
native methods for fitting data and estimating parameters have
been used (e.g., Cronin et al., 2010); we have not compared these
methods to those described here.

Table 2 summarizes our recommendations for which method
is best suited to a variety of quantitative questions regarding cells
with orientation and direction tuning. Our goal is to provide
tools for researchers to ask more refined statistical questions than
have been possible using traditional measures such as OI/DI. As
research advances into the precise mechanisms underlying ori-
entation and direction tuning, robust quantitative methods will
be required to distinguish competing theories. We hope the tools
presented here will help accomplish this goal.
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