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Research has shown that spinal circuits have the capacity to adapt in response to
training, nociceptive stimulation and peripheral inflammation. These changes in neural
function are mediated by physiological and neurochemical systems analogous to those
that support plasticity within the hippocampus (e.g., long-term potentiation and the NMDA
receptor). As observed in the hippocampus, engaging spinal circuits can have a lasting
impact on plastic potential, enabling or inhibiting the capacity to learn. These effects are
related to the concept of metaplasticity. Behavioral paradigms are described that induce
metaplastic effects within the spinal cord. Uncontrollable/unpredictable stimulation, and
peripheral inflammation, induce a form of maladaptive plasticity that inhibits spinal learning.
Conversely, exposure to controllable or predictable stimulation engages a form of adaptive
plasticity that counters these maladaptive effects and enables learning. Adaptive plasticity
is tied to an up-regulation of brain derived neurotrophic factor (BDNF). Maladaptive plasticity
is linked to processes that involve kappa opioids, the metabotropic glutamate (mGlu)
receptor, glia, and the cytokine tumor necrosis factor (TNF). Uncontrollable nociceptive
stimulation also impairs recovery after a spinal contusion injury and fosters the development
of pain (allodynia). These adverse effects are related to an up-regulation of TNF and a
down-regulation of BDNF and its receptor (TrkB). In the absence of injury, brain systems
quell the sensitization of spinal circuits through descending serotonergic fibers and the
serotonin 1A (5HT 1A) receptor. This protective effect is blocked by surgical anesthesia.
Disconnected from the brain, intracellular Cl− concentrations increase (due to a down-
regulation of the cotransporter KCC2), which causes GABA to have an excitatory effect.
It is suggested that BDNF has a restorative effect because it up-regulates KCC2 and
re-establishes GABA-mediated inhibition.
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INTRODUCTION
Research has shown that brain systems modulate the opera-
tion of spinal circuits. For example, afferent pain (nociceptive)
signals can be inhibited, yielding an anti-nociception that atten-
uates both spinally mediated withdrawal and brain-mediated
indices of pain (Fields, 2000). This provides a form of top-down
processing that allows the organism to dynamically modulate
incoming pain signals on the basis of expectation (Grau, 1987;
McNally et al., 2011). This type of regulatory effect is char-
acterized as a form of neuromodulation because it does not
initiate a sensory/motor response, but instead regulates signal
amplitude within a spinal circuit to facilitate or inhibit neu-
ral transmission. Evidence suggests that how and when these
descending systems are engaged is tuned by experience, providing

a mechanism whereby brain-mediated learning can influence
spinal function (also see: Wolpaw, 2010; Thompson and Wolpaw,
2014).

Here we focus on a different question: can spinal systems learn
without input from the brain and is this learning affected by past
experience? We will show that how spinal circuits operate depends
upon both environmental relations (e.g., the temporal regular-
ity of sensory stimuli) and behavioral control (e.g., a consistent
relation between limb position and an environmental stimulus).
More importantly, we provide evidence that spinal cord learning
affects the propensity to learn in future situations and suggest that
this reflects a form of metaplasticity (Abraham and Bear, 1996).
We will link these metaplastic effects to particular neurochemi-
cal systems [e.g., the metabotropic glutamate receptor (mGluR),
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tumor necrosis factor (TNF), and brain-derived neurotrophic fac-
tor (BDNF)]. We will also explore how these processes influence
recovery after a spinal contusion injury and how a spinal injury
affects their function.

DRAWING ON PARALLELS TO BRAIN-MEDIATED PROCESSES
NEURAL PLASTICITY IN THE HIPPOCAMPUS AND SPINAL CORD
INVOLVE COMMON MECHANISMS
Our analysis is informed by studies of learning and memory within
the brain. Of particular interest are studies of neural plasticity
within the hippocampus. Behavioral evidence that this structure
is involved in learning and memory (Squire and Wixted, 2011),
combined with the physiological findings that this system supports
lasting changes in synaptic function [e.g., long-term potentia-
tion (LTP) and long-term depression (LTD); Bear, 2003], have
fueled interest in this structure. This work has linked alterations
in synaptic function to the NMDA receptor (NMDAR), which acts
as a coincidence detector (Collingridge and Bliss, 1987; Dudai,
1989). From this perspective, modifiable (plastic) changes in neu-
ral function are identified with synaptic events. While most would
acknowledge that neural connections can be altered in a variety
of ways, the preponderance of glutamatergic transmission has
focused attention on the role of NMDAR-mediated LTP and LTD
(Morris, 2013).

Other regions of the central nervous system, including the
spinal cord, support NMDAR-mediated plasticity. For exam-
ple, peripheral injury and inflammation can produce a lasting
increase in neural excitability within the spinal cord, a phe-
nomena called central sensitization (Woolf, 1983; Willis, 2001;
Ji et al., 2003; Latremoliere and Woolf, 2009). Central sensitiza-
tion lowers the threshold at which stimulation engages a defensive
withdrawal response. Indeed, after the system is sensitized, even
non-noxious tactile stimulation may elicit a response. Evidence
suggests that central sensitization fosters pain transmission to the
brain, and for this reason it is thought to contribute to the devel-
opment of chronic pain. Interestingly, the induction of central
sensitization depends upon a form of NMDAR-mediated plastic-
ity that lays down a memory-like alteration that maintains the
sensitized state through neurobiological processes analogous to
those involved in hippocampal-dependent learning and mem-
ory (Dickenson and Sullivan, 1987; Sandkühler, 2000; Ji et al.,
2003).

NEUROMODULATION AND METAPLASTICITY
There is now ample evidence that spinal systems can support some
simple forms of learning and memory (reviewed in Grau, 2014).
For example, if a rat is spinally transected in the thoracic region
and then given a noxious shock to one hindlimb whenever the
leg is extended, it learns to maintain the leg in a flexed position
(thereby reducing net shock exposure; Grau et al., 1998). Here,
learning brings about a modification within a particular stimulus-
response (S-R) pathway. What is of greater interest for the present
review is that this process of spinal learning can have an effect that
impacts the capacity to learn when stimulation is later applied at
other sites on the body. For example, experience with controllable
stimulation on one leg can foster learning on the contralateral
leg whereas exposure to uncontrollable stimulation to either one

leg or tail has a lasting inhibitory effect on learning for both legs
(Crown et al., 2002a; Joynes et al., 2003).

Correlates to these behavioral observations can be found at the
cellular level. For example, electrophysiological stimulation of a
neuron can produce a downstream modification (e.g., LTP) that
only affects how that particular neural pathway operates. Neural
activity can also engage cellular systems that have a remote effect
on other neural circuits, providing a form of extrinsic modulation
that alters how another neural pathway functions. Our assump-
tion is that environmental stimulation and behavioral training
can engage a form of extrinsic modulation that can affect learning
(neural plasticity) when stimuli are applied to other regions of the
body (and which engage a distinct neural circuit).

How extrinsic processes affect neural function can vary over
time. In some cases, a modulatory process may be reflexively
elicited in an unconditioned (unlearned) manner and have an
acute effect that passively decays over the course of minutes to
hours. In other cases, the impact of the modulatory process
may continue beyond the events that induced it, to have a long-
term effect on how a neural circuit operates. In this case, the
initiating event must engage a process that maintains the mod-
ulatory process over time, and in this way it involves a kind of
memory.

A long-term modulatory effect can impact how a neural cir-
cuit operates (performs) or its capacity to change (plasticity).
Our focus is on the latter, a phenomenon known as metaplas-
ticity (Abraham and Bear, 1996). Metaplasticity is a concept that
emerged from work with the hippocampal slice preparation and
describes a class of phenomena that have a lasting effect on neural
plasticity (Figure 1A). Here, neural plasticity is typically assessed
using electrophysiological processes (e.g., the development of LTP
or LTD). What researchers discovered is that a variety of treatments
(environmental enrichment, dark rearing, conditioning) can have
a lasting effect on the rate at which LTP or LTD develops and may
do so without impacting baseline measures of neural excitabil-
ity (Abraham, 2008). The criteria for metaplasticity include: (1)
it extends beyond the treatments used to induce [i.e., it has a
lasting effect that spans minutes to days (Abraham, 2008)]; and
(2) it impacts the capacity to change (plasticity), not just the
responsiveness of the system (performance). To this, we could
add another criterion: (3) the phenomenon is reversible (and not

FIGURE 1 | Acute and long-term effects of neurobiological and

behavioral processes. (A) Metaplasticity arises when an initial event (at
Time 1) brings about a lasting change in neural function that affects plastic
potential (at Time 2). (B) Learning can affect the future capacity to learn,
enhancing learning about new events and relations (positive transfer) or
inhibiting this process (negative transfer).
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due to dysfunction or injury). From this view, an experimental
manipulation that permanently alters plastic potential because it
kills cells would not be considered an example of metaplasticity.

EXPERIENCE-DEPENDENT CHANGES IN SPINAL FUNCTION
Our approach begins with a detailed description of the behavioral
phenomena and seeks to understand the underlying neurobiolog-
ical mechanisms. We see this as a complement to physiological
approaches that use cellular techniques (e.g., electrophysiology)
to detail how components of the system operate. An advantage of
the spinal cord preparation is that the link between sensory/motor
processes and the underlying neurobiology is (relative to the
brain) simpler. For this reason, it may be easier to draw paral-
lels between behavioral effects and neurobiological modifications.
In the sections that follow, we show how behavioral manipulations
can influence learning potential within the spinal cord and relate
these effects to the concept of metaplasticity.

DEFINING LEARNING
To demonstrate spinal learning requires an operational definition
of the process (Grau et al., 1998; Grau, 2010). Learning is impli-
cated when an experience at time 1 has a lasting effect at time 2
(Rescorla, 1988). We formalized this idea by proposing that learn-
ing: (1) involves a form of neural plasticity; (2) depends upon the
organism’s experiential history; and (3) outlasts (extends beyond)
the environmental contingencies used to induce.

While we recognize that non-neural processes (e.g., glia) play
an important role, our focus is on how these processes influence
neural function (criterion 1). Likewise, while it is recognized that
a wide range of events (including development and injury) can
engage forms of neural plasticity (Onifer et al., 2011), learning is
limited to those engaged by experience (criterion 2). The final
requirement (3) is that the process has a lasting effect (which
implies a form of memory). From this view, learning reflects
the process used to establish a lasting change in neural/behavioral
function (memory) and, like most, we assume that the latter gener-
ally involves a protein synthesis dependent structural modification
(Dudai, 2004).

Whether spinal systems can learn has both theoretical and clin-
ical implications (Grau et al., 2006, 2012; Hook and Grau, 2007;
Grau, 2014). Theoretically, it would imply that learning is not
the province of particular neural structures within the brain, but
instead, is more widely distributed throughout the CNS, includ-
ing the spinal cord. From this view, the question is not whether
a particular system can learn, the question is: how does learning
within this system compare to that shown by other structures?
Not surprisingly, spinal learning is (relative to the brain) less flex-
ible and more biologically constrained (Grau et al., 2012). Spinal
learning is also important because it has implications for phys-
ical therapy. Indeed, physical therapy can be seen as a form of
directed learning, the aim of which is to establish a lasting change
in neural/behavioral function.

Learning phenomena are typically classified based upon the
environmental manipulations used to establish the behavioral
change (Grau, 2014; Domjan, 2015). For example, Pavlovian
conditioning depends upon the relation between two stimu-
lus events whereas instrumental learning is tied to the relation

between a behavioral response (R) and an environmental event
[the outcome (O); aka reinforcer]. Recognizing that physical ther-
apy typically involves a kind of instrumental training, we asked
whether neurons within the lumbosacral spinal cord are sen-
sitive to response–outcome (R–O) relations (Grau et al., 1998,
2006).

SPINALLY MEDIATED INSTRUMENTAL LEARNING
The first clear evidence that instrumental learning can produce a
lasting modification in spinal function was provided by Wolpaw
and Carp (1990) and Wolpaw (2010). The response involved a
modification of the spinal stretch reflex [the Hoffman (H) reflex]
and change in reflex magnitude was reinforced with food. For
example, in some subjects the H-reflex was repeatedly elicited
and they were reinforced for exhibiting an increase in response
strength. This training brought about an increase in the H-reflex.
Remarkably, after extended training, this response modifica-
tion survived a spinal transection. This work demonstrates that
instrumental learning can modify spinal function. Here, brain
mechanisms mediate the abstraction of the instrumental relation
[between H reflex amplitude (the R) and the food reinforcer (the
O)]. With extended training, this R–O relation induces (through
descending fibers) a lasting change in how a spinal circuit operates.
In this case, learning is mediated by the brain and the conse-
quence of this process (the memory) is stored within the spinal
cord.

Our studies pushed spinal systems further, to explore whether
neurons within the lumbosacral cord can learn (i.e., abstract R–O
relations) when isolated from the brain. Rats underwent a thoracic
(T2) transection and were trained the following day while loosely
restrained (Figure 2A). Leg position is monitored by means of a
contact electrode that is taped to the base of the hindpaw. When the
leg is extended, the tip of the contact electrode touches the under-
lying salt solution and completes a computer-monitored circuit.
A R–O relation is then established by applying shock to the tibialis
anterior muscle whenever the leg is extended. Over the course of
30 min of training, subjects exhibit a progressive increase in flex-
ion duration that minimizes net shock exposure (Figure 2B; Grau
et al., 1998). This learning depends upon glutamatergic systems
within the spinal cord, and is blocked when an AMPAR (CNQX)
or NMDAR (APV; MK-801) antagonist is injected into the spinal
cord [an intrathecal (i.t.) injection] prior to training (Joynes et al.,
2004; Ferguson et al., 2006; Hoy et al., 2013).

To show that the R–O relation matters, other subjects received
shock independent of leg position. This was accomplished by
coupling (yoking) the experimental treatments across subjects,
so that a yoked rat received shock every time its master partner
was shocked. Notice that, for the yoked rat, there is no relation
between shock exposure and leg position – the shock is uncon-
trollable. Subjects in the yoked group do not exhibit an increase in
flexion duration (Figure 2B), which provides one indication that
the R–O relation matters.

To demonstrate learning, we must show that the experience has
a lasting effect, that impacts performance when subjects are tested
under common conditions. We accomplished this by testing rats
that had previously received controllable shock (Master), uncon-
trollable shock (Yoked), or nothing (Unshocked) with response
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FIGURE 2 | Instrumental learning in spinally transected rats. (A) The
apparatus used to study instrumental learning. A spinally transected rat lies
in an opaque tube with its hindquarters gently secured with a belt. An
insulated contact electrode is taped to the rat’s paw and the exposed tip is
submerged in a salt solution. Electrical stimulation is applied to the tibialis
anterior muscle through a pair of electrodes and tape is used to stabilize
the leg. When shock is applied, a flexion response is elicited that raises the
contact electrode, breaking a circuit that is monitored by a computer. A
response–outcome (R–O) relation is instituted by applying shock whenever
the contact electrode touches the underlying salt solution. The task can be
made more difficult by increasing the initial depth of the contact electrode
(from 4 to 8 mm). (B) A system capable of learning the R–O relation
should exhibit an increase in flexion (response) duration that minimizes
solution contact (and net shock exposure). Response duration (y-axis) is
calculated in 1-min time bins using the following formula: Response
duration = [60-time (s) in solution]/(flexion number + 1). Over the course of

30 min of testing (x-axis), spinally transected rats that received shock
whenever the leg was extended (Master) exhibited a progressive increase
in response duration. Other rats are experimentally coupled (Yoked) to the
master subjects and receive shock at the same time, but independent of
leg position (uncontrollable stimulation). Yoked rats do not exhibit an
increase in response duration. The error bars indicate the standard error of
the mean. (C) Master, Yoked, and previously unshocked rats are then
tested under common conditions with controllable shock. Master rats learn
more rapidly (positive transfer) than the previously untreated (Unshocked)
controls. Rats that had previously received shock independent of leg
position (Yoked) fail to learn. Similar results are observed independent of
whether subjects are tested on the previously trained (ipsilateral) leg or the
contralateral leg. (D) As Master rats learn to maintain their leg in a flexed
position, response number declines. In Yoked rats, shock elicits a high
response rate, but does not produce an increase in flexion duration.
Adapted from Grau et al. (1998).

contingent legshock. We were concerned that yoked rats might do
poorly during testing simply because they were less responsive to
shock or the contact electrode was submerged at a greater depth. To
discount these factors, we adjusted shock intensity across subjects
so that it elicited an equally strong flexion response and equated
contact electrode depth (to 4 mm). We verified the success of these
procedures by measuring by measuring the duration of the first
shock-elicited flexion response. As expected, there were no differ-
ences in performance at the start of testing. Nonetheless, subjects
that had previously experienced controllable stimulation learned
faster than previously unshocked controls (Figure 2C; Grau et al.,
1998). This savings effect (positive transfer; Figure 1B) provides

one indication that training with response-contingent stimulation
has a lasting effect. What was more surprising is that rats that had
previously received uncontrollable stimulation (Yoked) failed to
learn when later tested with controllable shock (negative transfer).
Moreover, they failed to learn even though they exhibited a high
rate of responding and repeatedly experienced the R–O relation
(Figure 2D).

UNCONTROLLABLE STIMULATION AND INFLAMMATION INDUCE A
LASTING LEARNING IMPAIRMENT
Does the learning impairment observed after uncontrollable stim-
ulation to one hind limb reflect a local (limb-specific) effect or a
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general inhibition of learning? We addressed this issue by testing
yoked subjects on the same (ipsilateral) or opposite (contralateral)
leg. The learning impairment was just as robust when subjects
were tested on the contralateral leg (Joynes et al., 2003). Next, we
developed a computer program that emulated the variable shock
schedule produced by a typical master rat. This program applies
80 ms shocks with a variable inter-stimulus interval (ISI) between
0.2 and 3.8 s (mean ISI = 2 s). We found that just 6 min of vari-
able intermittent shock (VIS) to the leg or tail induced a learning
impairment and that this effect lasts up to 48 h (Crown et al.,
2002b). Thus, exposure to uncontrollable stimulation induces a
lasting effect that generally inhibits instrumental learning. We have
suggested that this learning deficit reflects a form of metaplasticity
(Ferguson et al., 2008, 2012a).

We reasoned that uncontrollable stimulation could inhibit
learning because it induces a form of antinociception that attenu-
ates the effectiveness of the shock reinforcer. However, we found
no evidence that VIS inhibits reactivity to noxious stimulation
(Crown et al., 2002b). If fact, a test of mechanical reactivity (von
Frey stimuli applied to the plantar surface of the hind paws)
showed that VIS treated subjects were more responsive (Ferguson
et al., 2006). Enhanced mechanical reactivity (EMR) is of inter-
est because it is observed after a variety of treatments known
to sensitize nociceptive systems within the spinal cord (central
sensitization).

As noted above, central sensitization involves neurochemical
mechanisms implicated in hippocampal-dependent learning and
memory and its induction depends upon glutamate transmission
and the NMDAR (Ji et al., 2003). We hypothesized that this state
could interfere with instrumental learning by saturating NMDAR-
dependent plasticity (Ferguson et al., 2006). Alternatively, the
induction of central sensitization could engage a secondary pro-
cess that inhibits NMDAR-mediated learning, effectively “locking”
the system in its current state. In either case, blocking the NMDAR
should interfere with the induction of the learning impairment.
Supporting this, we found that rats given MK-801 prior to VIS
showed no learning impairment when tested with controllable
stimulation 24 h later (Ferguson et al., 2006). Pretreatment with
the AMPAR antagonist CNQX had a similar effect (Hoy et al.,
2013).

The proposed link to central sensitization suggests that treat-
ments that induce this state should impair instrumental learning.
To test this, we applied the irritant capsaicin to one hind paw,
which induces peripheral inflammation and central sensitization
(Willis, 2001). Capsaicin also induced a learning impairment and
this effect, like the VIS-induced deficit, was evident 24 h later when
subjects were tested on the contralateral leg (Hook et al., 2008; for
evidence other inflammatory agents inhibit learning see Ferguson
et al., 2006, 2012b; Huie et al., 2012a).

CONTROLLABLE STIMULATION FOSTERS LEARNING AND HAS A
LASTING PROTECTIVE EFFECT
Whereas uncontrollable stimulation and peripheral inflammation
disable learning, controllable stimulation enables instrumental
learning (Crown et al., 2002a). Evidence for this comes from
studies using a higher response criterion, achieved by increas-
ing contact electrode depth (from 4 to 8 mm). Under these

conditions, previously untrained rats fail to learn whereas those
that had received controllable stimulation can learn and this is
true independent of whether they are tested on the same or
opposite leg.

Controllable stimulation also exerts a protective effect that
counters the consequences of uncontrollable shock. If control-
lable stimulation is given prior to VIS (to the same leg or the
tail), it blocks the induction of the learning impairment (Crown
and Grau, 2001). Conversely, after the learning impairment is
induced, training with controllable shock [in conjunction with a
drug treatment (naltrexone) that temporarily reverses the impair-
ment (see below)] restores the capacity to learn (when subjects are
subsequently tested in a drug-free state). Exposure to controllable
shock also prevents, and reverses, the learning impairment and
EMR induced by peripheral capsaicin (Hook et al., 2008).

The fact controllable stimulation enables learning when sub-
jects are tested on the opposite leg, and prevents the learning
impairment when VIS is applied to the tail, implies that con-
trollable stimulation generally modulates the capacity to learn.
Further, we have shown that instrumental training has a lasting
effect that can block the induction of the learning deficit when
VIS is given 24 h later. Taken together, these findings suggest that
exposure to controllable stimulation also induces a metaplastic
effect, one that promotes instrumental learning.

We, of course, are not the first to show that behavioral con-
trol can profoundly affect how an aversive stimulus is processed.
Indeed, the overall pattern of results is remarkably similar to what
is observed in intact subjects in studies of learned helplessness
(Maier and Seligman, 1976). These observations suggest that that
the underlying principles have considerable generality and may
apply to any neural system capable of encoding R–O relations. At
the same time, it is also recognized that higher neural systems allow
for a much wider range of behavioral effects (Maier and Watkins,
2005) and that spinal learning is more biologically constrained
(Grau et al., 2012).

TEMPORAL REGULARITY (PREDICTABILITY) HAS AN EFFECT
ANALOGOUS TO BEHAVIORAL CONTROL
We recently discovered that uncontrollable intermittent shock
does not always induce a learning impairment. If stimulation is
given at a regular (predictable) interval, an extended exposure to
intermittent shock has no adverse effect (Baumbauer et al., 2008).
Interestingly, the emergence of this effect requires extended train-
ing (720–900 shocks); if subjects receive less training (180 shocks),
intermittent shock induces a learning impairment independent of
whether it occurs in a variable or regular (fixed-spaced) man-
ner. The fact extended training is required has led us to suggest
that abstracting stimulus regularity involves a form of learning
(Baumbauer et al., 2009).

At a behavioral level, we have shown that an initial bout of
fixed spaced shock (360) lays down a kind of temporal memory
that lasts at least 24 h and transforms how subjects respond to
a subsequent bout of 360 shocks (processing the latter as fixed
spaced; Lee et al., 2013). At a physiological level, we have shown
that learning about temporal regularity depends upon a form of
NMDAR-mediated plasticity and protein synthesis (Baumbauer
et al., 2009). Further, training with fixed spaced stimulation has a
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restorative effect analogous to that produced by experience with
controllable stimulation. For example, fixed spaced stimulation
can both prevent, and reverse, the learning impairment induced
by VIS (Baumbauer et al., 2009). An extended exposure to fixed
spaced shock also blocks, and reverses, the learning impairment
and EMR induced by peripheral inflammation (Baumbauer and
Grau, 2011; Baumbauer et al., 2012). And like the other effects
described above, fixed spaced stimulation has a general effect that
blocks the induction of the learning impairment independent of
whether subjects are challenged by stimulation at the same, or a
remote, dermatome (Baumbauer et al., 2009).

SPINAL LEARNING: SUMMARY AND IMPLICATIONS
Taken together, we have discovered that environmental events
can engage two alternative processes that have a diffuse effect
on spinal cord plasticity (Figure 3; for reviews see: Grau
et al., 2006, 2012; Ferguson et al., 2012a). Exposure to VIS,
that is both uncontrollable and unpredictable, inhibits instru-
mental learning and produces EMR (Grau et al., 1998; Baum-
bauer et al., 2008), and peripheral inflammation has the same
effect (Hook et al., 2008). An equivalent exposure to intermit-
tent stimulation given in a controllable manner has no adverse
effect and engages a process that enables learning and coun-
ters the adverse effects of both VIS and inflammation (Crown
and Grau, 2001; Crown et al., 2002a). Likewise, an extended
exposure to fixed spaced shock engages a protective mecha-
nism that counters the adverse effects of VIS (Baumbauer et al.,
2009, 2012; Baumbauer and Grau, 2011). These effects are last-
ing (24 h or longer), involve a form of NMDAR-mediated
plasticity, and require protein synthesis (Joynes et al., 2004;
Patton et al., 2004; Baumbauer et al., 2006, 2009; Ferguson et al.,

FIGURE 3 | A summary of how training experience affects learning

potential. (A) Learning that an environmental event is controllable or
predictable depends upon a form of NMDAR-mediated plasticity and is
disrupted if glia function is inhibited. Processes initiated during learning
(induction) engage a protein synthesis dependent mechanism that
maintains the effect over time (memory). Prior experience with
controllable/predictable stimulation has a long-term protective/restorative
effect that enables instrumental learning and blocks both the learning
impairment and EMR induced by VIS. These effects depend upon BDNF
and CaMKII. (B) Exposure to uncontrollable/unpredictable shock initiates a
process that depends upon the NMDAR, group 1 mGluR, GABA, glia
activation, and TNF. These processes induce a protein synthesis dependent
mechanism that maintains the effect over time. Prior experience with
uncontrollable/unpredictable stimulation inhibits instrumental learning
through a process that involves a kappa opioid, TNF, GABA, and the
trafficking of GluR2-lacking AMPA receptors. Superscripts indicate whether
a neurobiological mechanism is necessary (1) or necessary and
sufficient (2).

2006). Moreover, in all cases the phenomena have a general
effect that impacts how stimuli applied at other dermatomes are
processed.

We have seen that learning can both alter a particular response
and impact the capacity to learn when faced with new environ-
mental challenges (Grau et al., 1998; Crown et al., 2002a). Our
focus here is on the latter phenomena – on how learning can foster
(positive transfer), or inhibit (negative transfer), the capacity for
future learning (Figure 1B). In assuming that learning involves
a form of neural plasticity, the question we ask focuses on the
plasticity of plasticity: How does a training experience impact the
future capacity to learn? We suggest that this reflects a form of
metaplasticity.

In the sections that follow, we outline what we have discov-
ered about the neurobiological mechanisms that mediate these
metaplastic effects. While we will reference electrophysiological
observations, our discussion will lean towards an analysis of behav-
ioral indices of spinal function. We will also remain agnostic
regarding the relation of our effects to the phenomena of LTP
and LTD. We take this position because we have yet to elucidate
the relative role of these phenomena and because we assume that
neural plasticity may be mediated by a host of mechanisms.

THE BIOLOGY OF SPINALLY MEDIATED METAPLASTICITY
LINKING METAPLASTICITY TO MECHANISM
Our central concern is with processes that have a lasting effect and,
in this way, involve a form of memory. It is assumed here that acute
changes in neural function are mediated by pre-existing com-
ponents and that long-term modifications depend upon protein
synthesis (Dudai, 2004; Abraham and Williams, 2008). This holds
for our examples of spinally mediated metaplasticity. Support-
ing this, administration of a protein synthesis inhibitor soon after
exposure to VIS blocks the induction of the learning impairment
(Patton et al., 2004; Baumbauer et al., 2006). Likewise, admin-
istration of a protein synthesis inhibitor after a fixed spaced
shock blocks its long-term protective effect (Baumbauer et al.,
2009).

Because these metaplastic effects involve a form of memory, we
can address the process from a number of perspectives (Figure 1).
Specifically, we can ask: (1) What processes underlie the induc-
tion of the phenomenon; (2) What mediates the maintenance of
the alteration (the memory) over time; and (3) What mediates
the expression of these phenomena (i.e., how do they affect the
capacity to learn)? We address question 3 by blocking a particular
process (necessity) and then showing that administration of an
agent that should engage the process has a similar effect on learn-
ing (sufficiency). The interpretation of sufficiency must, though,
be treated with some caution because engaging other (unrelated)
processes could yield a similar outcome. For the second issue,
the question typically concerns the identification of the neurobi-
ological system that preserves the effect over time. To study the
induction of the process (question 1), we can again assay the
effect of blocking a particular process, seeking evidence that it
plays an essential (necessary) role. For evidence of sufficiency,
we can test whether artificially engaging the system effectively
substitutes for our experimental treatment. Again, some cau-
tion is needed because a similar outcome may be produced in
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a variety of ways. Further, the induction of most phenomena
is tied to multiple processes. In this case, to discover a sub-
stitute for a behavioral training regime, we need to know all
of the essential components and how they are sequenced over
time.

The link between the learning impairment and central sen-
sitization has provided a rich source of concepts regarding the
neurobiological mechanisms that may be involved, implicating
opioid peptides, glutamatergic transmission (AMPAR, NMDAR,
and mGluR), non-neuronal cells and TNF. Identifying the fac-
tors that promote adaptive plasticity has proven more difficult.
We have, however, discovered that BDNF, and downstream signal
pathways (e.g., CaMKII), play an important role.

ROLE OF THE NMDAR AND mGluR IN THE INDUCTION OF THE
LEARNING IMPAIRMENT
We noted above that both instrumental learning and the metaplas-
tic effects of training depend upon the NMDAR. Supporting this,
pretreatment with a NMDAR antagonist disrupts instrumental
learning, the long-term protective effect of fixed spaced stimula-
tion, and the induction of the learning impairment (Joynes et al.,
2004; Ferguson et al., 2006; Baumbauer et al., 2009). We have
also examined whether pretreatment with NMDA has a long-
term effect on learning. While a high dose of NMDA (6 mM,
15 μL i.t.) induced a lasting learning impairment (Ferguson et al.,
2012b), moderate doses (e.g., 0.06–0.6 mM) that are within the
range that foster locomotor behavior have no long-term effect
(Strain et al., 2013). Because NMDA was only effective at a high
concentration, it possible that it impaired plasticity because it
induced a non-reversible state. Before we conclude that NMDA
is sufficient to induce a VIS-like learning impairment, we need
to address this issue. For now, we can conclude only that the
NMDAR plays a necessary role. This is true for a wide range
of spinal learning phenomena, including sensitization, Pavlo-
vian conditioning, instrumental learning, and the metaplastic
effects of training discussed here (Durkovic and Prokowich, 1998;
Willis, 2001; Ji et al., 2003; Joynes et al., 2004; Ferguson et al.,
2006).

Evidence suggests that glutamate within the hippocampus can
induce a metaplastic effect by engaging the mGluR (Cohen et al.,
1999). Of particular interest, activation of group I mGluRs has
been shown to facilitate both the induction and persistence of
LTP within area CA1 (Abraham, 2008). This effect appears to
be mediated by a number of mechanisms, including the traffick-
ing of AMPARs to the synaptic membrane and the amplification
of NMDAR-mediated currents (Figure 4; O’Connor et al., 1994;
MacDonald et al., 2007). It has also been suggested that activating
mGluRs can engage a “molecular switch” that enhances the persis-
tence of LTP through a process that depends on group 1 mGluRs
and PKC (Bortolotto et al., 1994). Within the spinal cord, group 1
mGluR antagonists have been shown to attenuate inflammation-
induced EMR (Stanfa and Dickenson, 1998; Neugebauer et al.,
1999; Karim et al., 2001; Zhang et al., 2002) and group 1 mGluR
activity has been implicated in the development of neuropathic
pain and tissue loss after spinal cord injury (SCI; Mukhin et al.,
1996; Agrawal et al., 1998; Mills and Hulsebosch, 2002; Mills
et al., 2002). Given these observations, we hypothesized that group

1 mGluR activity contributes to the induction of the learning
impairment (Ferguson et al., 2008). Recognizing that two group
1 mGluR subtypes (mGluR1 and mGluR5) have been shown to
impact hippocampal plasticity, we evaluated the effects of both
CPCCOEt (a mGluR1 antagonist) and MPEP (a mGluR5 antag-
onist). After intrathecal application of the drug, subjects received
6 min of VIS and instrumental learning was tested 24 h later.
We found that both drugs blocked the induction of the learn-
ing impairment in a dose-dependent manner (Figure 5A). We
also examined whether either drug disrupted learning. Neither
did and, if anything, CPCCOEt facilitated learning. These find-
ings suggest that activation of group 1 mGluRs is necessary to the
induction of the learning impairment. Finally, we asked whether
mGluR activation in the absence of VIS is sufficient to induce a
learning impairment. Subjects received the group 1 mGluR ago-
nist DHPG and were tested 24 h later. We found that pretreatment
with DHPG induced a lasting learning impairment.

Other work suggests that group 1 mGluRs can impact synap-
tic function through a PKC-mediated signal cascade (Aniksztejn
et al., 1992; Skeberdis et al., 2001). We assessed PKC activation and
observed enhanced activity one hour after treatment (Ferguson
et al., 2008). Further, pretreatment with two structurally distinct
PKC inhibitors (BIM; chelerythrine) blocked the learning impair-
ment induced by VIS and DHPG (Figure 5B). Importantly, BIM
had no effect on instrumental learning. Taken together, the find-
ings suggest that the long-term metaplastic effect of VIS on spinal
plasticity involves mGluR activation and PKC.

KAPPA OPIOIDS MEDIATE THE EXPRESSION OF THE LEARNING
IMPAIRMENT
Prior work has shown that intact subjects exposed to uncon-
trollable stimulation exhibit a learning/performance deficit in
instrumental learning tasks, a phenomenon known as learned
helplessness (Maier and Seligman, 1976). Evidence suggests that
the performance deficit is mediated, in part, by the release of
an endogenous opioid (Maier, 1986). Supporting this, admin-
istration of an opioid antagonist (naltrexone) prior to testing
attenuates the behavioral impairment observed in a shuttle avoid-
ance task (Blustein et al., 1992). Likewise, we found that intrathecal
administration of naltrexone attenuates the learning impairment
observed in spinally transected rats that had received VIS (Joynes
and Grau, 2004). We further showed that naltrexone is effective
when given prior to testing, but has no effect when given the day
before uncontrollable stimulation. This implies that a ligand that
acts on a naltrexone-sensitive receptor plays an essential role in the
expression of the learning impairment, but is not involved in its
induction.

Because naltrexone is a relatively non-selective opioid antag-
onist, we also assessed the impact of drugs that bind to the mu
(CTOP), delta (naltrindole), and kappa (nor-BNI) opioid recep-
tors (Washburn et al., 2008). Using intrathecal administration of
equal molar concentrations we showed that the expression of
the learning impairment is blocked by a kappa receptor antag-
onist, but not a mu or delta antagonist. Conversely, intrathecal
administration of a kappa-2 agonist (GR89696) impairs learning,
whereas a mu (DAMGO) or a delta (DPDPE) agonist has no effect.
Interestingly, a kappa-1 agonist (U69593) also had no effect on
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FIGURE 4 | Neurochemical mechanisms involved in spinally mediated

learning and metaplasticity. The figure depicts a tripartite synapse
involving an afferent neuron, a postsynaptic neuron, and the surrounding
astrocytes. The afferent neuron is glutamatergic. Released glutamate (Glu)
can engage the NMDAR, AMPAR, or mGluR receptors on the postsynaptic
neuron. Activating the NMDAR in conjunction with a strong depolarization
allows Ca++ to enter the postsynaptic cell, which engages intracellular
signals such as Ca++/calmodulin-dependent protein kinase (CaMKII) and
protein kinase C (PKC). CaMKII activates the AMPAR and thereby promotes
the entry of Na+. Engaging the mGluR activates phospholipase C (PLC),
which engages inositol triphosphate (IP3) and PKC. IP3 initiates the release
of intracellular Ca++. PKC promotes the trafficking of AMPARs to the
active region of the synaptic membrane. To illustrate the relevant pathways,
cells that exert a modulatory effect are also indicated. These include a
descending serotonergic (5HT) neuron, an kappa opioid neuron, and a
microglia. Both the 5HT neuron and opioid neuron would exert an inhibitory
effect that could act on either the presynaptic or postsynaptic neuron.
Dynorphin released from the opioid neuron would engage the kappa opioid

receptor (KOR), which would inhibit neural excitation by facilitating the flow
of K+ out of the cell and inhibiting the inward flow of Ca++. Dynorphin
can also bind to the NMDAR in its closed state and thereby inhibit NMDAR
function. Engaging the 5HT 1A receptor would inhibit adynylate cyclase.
This reduces the conversion of adenosine triphosphate (ATP) to cyclic
adenosine monophosphate (cAMP) and down-regulates cAMP-dependent
processes [e.g., protein kinase A (PKA)]. Promoting the outward flow of K+
would reduce neural excitability. Lipopolysaccharide (LPS) can engage the
toll-like receptor 4 (TLR4) and activate microglia. Microglia have been
shown to release TNF, IL-1β, and BDNF. BDNF may also be released from
neurons. BDNF can foster NMDAR function through Src kinase. It also
promote plasticity by engaging extracellular signal regulated kinase (ERK),
serine-threonine-specific protein kinase (Akt) and PLC. By engaging the
TNFR1, TNF fosters the trafficking of GluR2-lacking AMPARs to the synaptic
membrane. The simplified drawing omits details (e.g., glutamatergic
channels on microglia) that could contribute to spinally mediated
metaplasticity. Adapted from Ji et al. (2003, 2013), Grau et al. (2006), and
Cunha et al. (2010).

learning. Finally, we tested whether pretreatment with a kappa-2
agonist could substitute for VIS and induce a long-term learning
impairment. It did not.

These observations suggest that the expression of the learning
impairment is mediated by a ligand that acts at the kappa opioid

receptor (Figure 4), possibly due to a kappa-2 mediated inhibi-
tion of NMDAR-mediated synaptic plasticity (Wagner et al., 1993;
Caudle et al., 1994, 1997; Ho et al., 1997). Alternatively, kappa-2
opioid activity may “lock” the system in its current state, reducing
plastic potential (Washburn et al., 2008). We noted above that the
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FIGURE 5 | Role of group 1 mGluR, glia, andTNF in the learning deficit.

(A) Spinally transected rats received the group 1 mGluR1 antagonist
CPCCOEt (i.t.; 100 nmol), or its vehicle, prior to VIS (Shock). Instrumental
learning was tested 24 h later. Prior exposure to shock inhibited learning
(Vehicle-Shock). Pretreatment with CPCCOEt blocked the induction of this
learning impairment (CPCCOEt-Shock). (B) Rats were pretreated with the
PKC inhibitor BIM (i.t.; 0.023 nmol), or its vehicle, and then received an
injection of the group 1 mGluR agonist DHPG (100 nmol) or saline.
Administration of DHPG alone (Vehicle-DHPG) impaired learning and this
effect was blocked by pretreatment with BIM (BIM-DHPG). (C) Subjects

received an intrathecal injection of LPS (100 μg), or its vehicle. The next day, a
TNF inhibitor (sTNFR1; 700 ng) or vehicle was given intrathecal and subjects
were tested in the instrumental learning paradigm. Prior treatment with LPS
impaired learning (LPS-Vehicle). Administration of sTNFR1 prior to testing
eliminated the learning deficit (LPS-sTNFR1). (D) Rats received an intrathcal
injection of TNF (6000 pg) or its vehicle. The next day, they were given the
GluR2 antagonist Naspm (i.e., 10 mM) or vehicle and tested in the
instrumental learning paradigm. Rats that had previously received just TNF
(TNF-Vehicle) failed to learn. This learning impairment was blocked by Naspm
(TNF-Naspm). Adapted from Ferguson et al. (2008) and Huie et al. (2012a).

induction of the learning impairment is blocked by pretreatment
with an NMDAR antagonist. If kappa opioids inhibit NMDAR-
mediated plasticity, administration of a kappa agonist prior to VIS
should interfere with the induction of the learning impairment.
Washburn et al. (2008) found that GR89696 had this effect.

We suggested above that exposure to uncontrollable stimu-
lation, or peripheral inflammation, may inhibit instrumental
learning because these manipulations diffusely saturate NMDAR-
mediated plasticity (Ferguson et al., 2006). If that alone was the
cause of the learning impairment, there would be little reason to
expect an opioid antagonist to block the expression of the learning
impairment. Opioid reversibility implies that NMDAR-mediated
plasticity remains functional, because as soon as the opioid brake
is removed, learning can proceed. At a minimum, the observation
requires a more sophisticated view of the factors that limit neural
plasticity, that goes beyond the trafficking of AMPAR’s, because
it seems unlikely that an opioid antagonist could undo this effect
within minutes of administration. These observations are also
important for our claim that the learning impairment reflects

a form of metaplasticity because the best examples of this phe-
nomena involves cases wherein the underlying plasticity remains
functional (Abraham, 2008).

GLIA AND TNF CONTRIBUTE TO SPINAL LEARNING IMPAIRMENTS
Throughout the nervous system, glia regulate synaptic efficacy,
leading some to suggest the concept of a tripartite synapse
(Figure 4; Araque et al., 1999; Haydon, 2001). In the spinal
cord, glial activation plays an essential role in the development
of inflammation-induced EMR (Meller et al., 1994; Watkins et al.,
1997). Glia can be activated by administration of lipopolysac-
charide (LPS) and, when applied intrathecally, this induces EMR
(Reeve et al., 2000).

To examine whether glial activation is essential to spinal learn-
ing, we tested the effect of fluorocitrate. Fluorocitrate inhibits
aconitase, an essential component of the tricarboxylic acid cycle
within glia, and thereby disrupts energy-dependent transmitter
up-take and release (Paulsen et al., 1987). If glia are essen-
tial to spinal plasticity, intrathecal fluorocitrate should inhibit
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instrumental learning. We found that fluorocitrate does so in a
dose-dependent manner (Vichaya et al., 2009). Next, we adminis-
tered fluorocitrate prior to VIS and tested subjects 24 h later. We
found that drug treatment blocked the induction of the learning
impairment. Further, intrathecal application of LPS substituted
for VIS and interfered with instrumental learning when subjects
were tested 24 h later. This long-term effect of LPS was blocked
by pretreatment with fluorocitrate. These findings provide further
evidence that glia regulate spinal plasticity. More importantly, the
results show that glia activation contributes to the long-term con-
sequences of shock treatment; that glial activation is necessary,
and sufficient, to the induction of a lasting inhibition of neural
plasticity.

Glia can regulate synaptic plasticity through the release of
cytokines, such as TNF and interleukin-1. TNF is of particu-
lar interest because it is known to modulate synaptic plasticity
in hippocampal sections (Stellwagen and Malenka, 2006) and
plays an essential role in the development of central sensitiza-
tion (Czeschik et al., 2008; Park et al., 2011). TNF could interfere
with learning by increasing the trafficking of AMPARs to the post-
synaptic membrane (Beattie et al., 2002), an effect that has been
linked to an up-regulation of Ca++ permeable GluR2-lacking
AMPARs that increase postsynaptic excitability. If driven too far,
this could potentially lead to excitotoxicity enhanced cell death
after spinal injury (Ferguson et al., 2008). To explore whether
TNF contributes to the learning impairment, we administered
the soluble TNF receptor (sTNFR1), which inhibits TNF func-
tion by binding free TNF (Huie et al., 2012a). sTNFR1 was given
intrathecal prior to VIS (induction phase) or 24 h later prior to
testing (expression). sTNFR1 blocked both the induction and the
expression of the learning impairment. Next, we asked whether
administration of TNF would substitute for VIS treatment. We
found that intrathecal TNF impaired learning when subjects were
tested 24 h later. Mirroring the long-term effect of VIS treat-
ment, the expression of the TNF-induced learning deficit was
blocked by sTNFR1. sTNFR1 also blocked the expression of the
learning deficit induced by LPS (Figure 5C). Likewise, inhibit-
ing glial activation (with fluorocitrate) prior to TNF treatment
blocked the induction of the learning impairment. These obser-
vations suggest that TNF has a long-term effect by activating glia
and that this in turn enhances subsequent TNF release (Kuno
et al., 2005). Cellular assays verified that TNF protein expres-
sion was increased 24 h after treatment with VIS (Huie et al.,
2012a).

TNF could over-drive neural excitability by increasing the pro-
portion of GluR2-lacking AMPARs. If this is how TNF interferes
with learning, administering an antagonist (Naspm) that blocks
these AMPARs should reinstate the capacity to learn. To test this,
we induced a learning impairment with VIS or intrathecal TNF.
The next day, subjects were given Naspm, or its vehicle, and tested
in our instrumental learning paradigm. As expected, both TNF
and VIS impaired learning. In both cases, treatment with Naspm
reinstated the capacity to learn (Figure 5D). On-going studies
are examining whether VIS reduces the proportion of synaptic
AMPARs that contain the GluA2 subunit (Stuck et al., 2012).

In summary, our finding suggests that spinal plasticity depends
on glia. Further, VIS appears to induce a lasting learning

impairment by engaging glia and up-regulating the release of TNF.
We suggest that TNF impairs learning, perhaps by increasing the
proportion of Ca++ permeable (GluR2-lacking) AMPARs. This
could induce a state of over-excitation that interferes with learning,
contributes to EMR, and promotes cell death after injury.

BDNF MEDIATES THE BENEFICIAL EFFECT OF TRAINING
We now understand a great deal about how VIS has a lasting effect
on spinal plasticity, with evidence implicating the mGluR, glia,
and TNF (Ferguson et al., 2008; Vichaya et al., 2009; Huie et al.,
2012b). As discussed below, these observations have clinical impli-
cations. But of potentially greater long-term value is the discovery
of how controllable and/or regular stimulation induces a lasting
beneficial effect that can prevent, and restore, adaptive plasticity
and attenuate the development of EMR. We began to study this
issue in collaboration with Gómez-Pinilla et al. (2007). Others had
shown that LTP induces the expression of BDNF (Patterson et al.,
1992), that mice with a BDNF deletion fail to exhibit LTP and that
exogenous BDNF restores LTP (Patterson et al., 1996; Linnarsson
et al., 1997). Other evidence indicated that BDNF can promote
synaptic plasticity within the spinal cord. For example, intermit-
tent hypoxia induces an adaptive modification within the cervical
spinal cord known as phrenic long-term facilitation (Dale-Nagle
et al., 2010). Local application of BDNF has a similar effect and the
effect of intermittent hypoxia on neural function is blocked by a
BDNF inhibitor (Baker-Herman et al., 2004). BDNF has also been
shown to promote locomotor behavior after spinal injury (Boyce
et al., 2007, 2012) and the beneficial effect of treadmill training
on locomotor performance has been linked to an up-regulation of
endogenous BDNF (Gómez-Pinilla et al., 2001). Finally, evidence
suggests that TNF and BDNF impact synaptic scaling in opposite
ways (Turrigiano, 2008).

Given these observations, we explored whether instrumen-
tal training affects BDNF expression in spinally transected rats.
Subjects underwent training with controllable (Master) or uncon-
trollable (Yoked) shock and tissue was collected at the end of
training. Relative to both unshocked and yoked groups, train-
ing with controllable stimulation up-regulated BDNF expression
(Figure 6A; Gómez-Pinilla et al., 2007). In contrast, uncontrol-
lable stimulation down-regulated expression. mRNA expression
in master rats was well-correlated with an index of instrumen-
tal learning (Figure 6B). An identical pattern was observed for
CaMKII and CREB mRNA expression. These genes were of inter-
est because they are regulated by BDNF, have been implicated in
other models of neural plasticity, and have been characterized as
molecular memory switches (Yin et al., 1995; Yin and Tully, 1996;
Blanquet and Lamour, 1997; Tully, 1997; Finkbeiner, 2000; Lisman
et al., 2002). Using in situ hybridization, we showed that train-
ing with controllable shock induces an increase in BDNF mRNA
expression within both the dorsal and ventral horn (Huie et al.,
2012b). Western blotting showed BDNF protein was increased
within the L3–L5 segments. Training also increased protein expres-
sion of the BDNF receptor TrkB [both truncated (TrkB 95) and
full length (TrkB 145)]. Immunohistochemical analyses revealed
increased TrkB protein expression within the dorsal horn and dou-
ble labeling showed that most TrkB expression was localized to
neurons.
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FIGURE 6 | BDNF mediates the beneficial effect of instrumental

training. (A) Training with controllable shock (Master) produces an
increase in BDNF mRNA expression whereas exposure to uncontrollable
shock (Yoked) down-regulates expression. (B) In trained subjects (Master),
BDNF mRNA expression is highly correlated with a measure of learning
(mean response duration during the first 10 min of training). (C) Subjects
were given BDNF (i.t.; 0.4 μg) or its vehicle and then VIS (Shock) or
nothing (Unshock). The next day subjects were tested in the instrumental
learning paradigm. Prior exposure to shock impaired learning (Vehicle-

Shock). Pretreatment with BDNF (BDNF-Shock) blocked the induction of
this learning impairment. (D) Spinally transected rats received BDNF (i.t.;
0.4 μg), or its vehicle, followed by VIS (Shock) or nothing (Unshock).
Tactile reactivity was tested bilaterally using von Frey stimuli applied to
the plantar surface of each hind paw. Because similar results were
observed across legs, the data were collapsed across this variable.
Vehicle treated rats that received shock exhibited EMR. Pretreatment with
BDNF blocked this effect. Adapted from Gómez-Pinilla et al. (2007) and
Huie et al. (2012b).

Next, we assessed the impact of inhibiting BDNF function using
the sequestering antibody TrkB-IgG. TrkB-IgG did not have a
significant effect on instrumental learning (Gómez-Pinilla et al.,
2007; Huie et al., 2012b). It did, however, block the facilitation
of learning when subjects were tested at a higher response cri-
terion (Gómez-Pinilla et al., 2007). Inhibiting the downstream
signal CaMKII with AIP had the same effect. If training fosters
learning because it up-regulates BDNF release, exogenous applica-
tion of BDNF should promote learning. As predicted, intrathecal
BDNF facilitated learning in untrained rats tested with a high
response criterion (Gómez-Pinilla et al., 2007). This pattern of
results implies that training induces a lasting modification that
up-regulates BDNF expression, which promotes learning about
new environmental relations and alters the capacity for future
learning.

If controllable/predictable shock induces a protective effect
because it up-regulates BDNF expression and release, then BDNF
should substitute for training and block the induction of the
VIS induced learning impairment. To test this, subjects received
intrathecal BDNF followed by VIS. As usual, rats given VIS

exhibited a learning impairment when tested 24 h later with con-
trollable stimulation (Huie et al., 2012b). Pretreatment with BDNF
blocked the induction of this learning deficit (Figure 6C).

As discussed above, the learning impairment observed after
VIS can be eliminated by training rats with controllable stim-
ulation [in conjunction with a drug (naltrexone) that blocks
the expression of the learning deficit; Crown and Grau, 2001].
To examine whether this therapeutic effect of training depends
upon BDNF, subjects were given VIS followed by instrumental
training in the presence of naltrexone (Huie et al., 2012b). Prior
to instrumental training, rats received TrkB-IgG or its vehicle.
The next day, subjects were tested in our instrumental learn-
ing paradigm. As usual, training eliminated the VIS-induced
learning impairment. This restorative effect was not observed
in subjects given TrkB-IgG prior to instrumental training. Rec-
ognizing that TrkB-IgG could have blocked the beneficial effect
of training, in part, by interfering with instrumental learn-
ing, we examined whether TrkB-IgG would be effective if given
immediately after instrumental training. Again, rats received
variable shock followed by instrumental training in compound
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with naltrexone. At the end of training, half the subjects
received TrkB-IgG. We found that blocking BDNF after instru-
mental training attenuated its restorative effect. This suggests
that the effect of TrkB-IgG is not due to a disruption of instru-
mental learning and implies that training induces a prolonged
increase in BDNF release that contributes to the restoration of
learning.

Having shown that BDNF is essential to the restorative effect of
instrumental training, we asked whether exogenous BDNF could
substitute for training and restore the capacity to learn in rats
that had previously received VIS (Huie et al., 2012b). Subjects
received VIS or nothing followed by intrathecal BDNF or vehicle.
When tested in our instrumental paradigm 24 h later, subjects that
had received VIS exhibited a learning impairment. BDNF given
after VIS restored the capacity to learn. Further work revealed
that BDNF given 24 h after VIS, immediately before testing, also
eliminates the learning impairment.

VIS also induces EMR (Ferguson et al., 2006). Our results imply
that BDNF may mediate this effect too. We examined this possi-
bility by administering BDNF prior to 6 min of VIS applied to
one hindlimb in spinally transected rats. Tactile reactivity was
assessed using von Frey stimuli applied to the plantar surface of
each hind paw. Our usual dose of BDNF (0.4 μg) had no effect
on baseline tactile reactivity. Exposure to VIS induced EMR and
this effect was blocked by BDNF (Figure 6D). More recently, we
have shown that this same dose of BDNF counters inflammation-
induced EMR in spinally transected rats and down-regulates a
cellular marker of nociceptive sensitization (Erk phosphorylation;
Lee et al., 2014).

In summary, we found that BDNF generally counters maladap-
tive plasticity, reinstating the capacity for learning and attenuating
EMR in spinally transected rats. Our results further show that
instrumental training and exposure to fixed spaced stimulation
have a beneficial effect because they up-regulate BDNF expres-
sion (Gómez-Pinilla et al., 2007; Huie et al., 2012b). These finding
complement other data demonstrating that locomotor training,
exercise, and intermittent hypoxia, can promote adaptive plas-
ticity through a BDNF-dependent process (Gómez-Pinilla et al.,
2001; Baker-Herman et al., 2004).

How BDNF affects spinal function appears to be modulated by
spinal injury. Specifically, in spinally injured rats BDNF attenuates
EMR (Cejas et al., 2000; Huie et al., 2012b; Lee et al., 2014) whereas
it often enhances pain in uninjured subjects (Merighi et al., 2008).
As we discuss below, these differences may be related to the regu-
lation of intracellular Cl− concentrations, which can alter GABA
function. Other important factors may include the BDNF source
(neural or glial) and BDNF concentration (cf Miki et al., 2000;
Cunha et al., 2010).

We found that training induced a rapid increase in BDNF
protein, which was evident when tissue was collected immedi-
ately after 30 min of training. Likewise, intermittent hypoxia has
been shown to increase BDNF protein within 60 min (Baker-
Herman et al., 2004). These findings may reflect the local dendritic
cleavage of the pro-form of BDNF into the mature form. This
mechanism, which is mediated by tissue plasminogen activator
(tPA), can be rapidly engaged in an activity-dependent man-
ner (Waterhouse and Xu, 2009). Interestingly, in the absence of

cleavage, pro-BDNF can have an opponent-like effect through
its action at the P75 neurotrophin receptor (P75NTR; Bothwell,
1996; Lu et al., 2005; Cunha et al., 2010). For example, while
BDNF fosters the development of LTP, proBDNF favors the induc-
tion of LTD. This suggests the intriguing possibility that training
may influence BDNF function, in part, by regulating cleavage of
proBDNF.

Our work suggests that BDNF plays a major role in mediating
the restorative effect of behavioral training; that it is both nec-
essary and sufficient to its expression. However, we have found
no evidence that BDNF is required for the induction, or mainte-
nance, of these training effects. Further, while BDNF can substitute
for training to enable learning, and counter the adverse effect
of uncontrollable/unpredictable stimulation, its effect appears to
wane within a few hours (Zhang et al., 2014).

METAPLASTICITY AND SPINAL CORD INJURY
UNCONTROLLABLE STIMULATION IMPAIRS RECOVERY AND
ENHANCES PAIN IN CONTUSED RATS
We have begun to explore the implications of our results for recov-
ery after a contusion injury. Our work was motivated by both our
studies in spinally transected rats and the clinical observation that
spinal injuries are often accompanied by other tissue damage that
provide a source of nociceptive input and peripheral inflamma-
tion. Our hypothesis was that afferent nociceptive signals could
induce a state of over-excitation that enhances secondary damage
and undermines recovery. Because we have a good understand-
ing of how VIS induced nociceptive activity affects spinal function
after a transection, and because this type of stimulation is read-
ily controlled and produces (at the intensities used) no secondary
peripheral effects that extend beyond the period of stimulation,
we began by exploring the impact of VIS.

To assess the impact of stimulation on recovery, we used a
moderate (12.5 mm) contusion injury at T12 produced with the
MASCIS device (Grau et al., 2004). A day after injury, we assessed
locomotor performance and then exposed rats to VIS. We found
that VIS produced a profound disruption in recovery (Figure 7A).
This effect was evident within 3 days and was maintained over the
next 6 weeks. Further work showed that shock treatment was most
effective when given within 4 days of injury. Most importantly,
nociceptive stimulation only had an adverse effect on recovery
when shock was given in an uncontrollable manner; subjects that
received the same amount of shock, but could control its occur-
rence (by exhibiting a flexion response) exhibited normal recovery.
Shock treatment also enhanced mortality, led to greater weight
loss, slowed the recovery of bladder function, and led to a higher
incidence of spasticity. Histological analyses revealed that uncon-
trollable intermittent shock enhanced tissue loss (white and gray
matter) at the site of injury and increased damage caudal to injury
(Grau et al., 2004; Hook et al., 2007).

More recently, we have examined whether VIS affects the devel-
opment of EMR in contused subjects (Garraway et al., 2012). As
others have reported, contused rats exhibited EMR relative to
sham-operated subjects from 7 to 28 days after injury. Contused
rats that received 6 min of VIS exhibited an EMR that emerged
more rapidly (within 24 h of shock treatment) and remained more
robust (7–28 days after injury).
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FIGURE 7 | Impact of shock and morphine treatment on recovery after

a contusion injury. (A) Rats received a moderate contusion injury and
24 h later VIS (180 or 900 shocks) or nothing (Unshocked). Locomotor
recovery was scored over the next six weeks by experimenters that were
blind to the subjects experimental treatment using the BBB scale (Basso
et al., 1995). Scores were adjusted using the transformation derived by
Ferguson et al. (2004), which improves the metric properties of the scale.
Shock treatment impaired the recovery of locomotor function. (B) Contused
rats were given morphine [0, 10, or 20 mg, intraperitoneal (i.p.)] followed by
VIS (Shocked) or nothing (Unshocked). Behavioral observations confirmed

that the highest dose of morphine blocked shock-elicited movement and
vocalization. Morphine treatment did not block the adverse effect of shock
treatment on locomotor recovery. (C) Intrathecal (i.t.) administration of
morphine 24 h after a contusion injury produces a dose-dependent
impairment in locomotor recovery. (D) A day after a contusion injury, rats
were pretreated with the IL-1 receptor antagonist (IL1ra; 1 or 3 μg, i.t.) or
its vehicle and then given morphine (90 μg, i.t.) or vehicle. Morphine alone
impaired locomotor recovery and this effect was attenuated by
pretreatment with IL1ra. Adapted from Grau et al. (2004) and Hook et al.
(2008, 2007, 2009).

OPIOIDS DO NOT BLOCK THE EFFECT OF NOCICEPTIVE STIMULATION
AND IMPAIR RECOVERY
Having shown that nociceptive stimulation impairs recovery after
a contusion injury, we reasoned that inhibiting nociceptive trans-
mission could have a protective effect. We first verified that an
injection of morphine (20 mg/kg, i.p.) induced a robust antinoci-
ception on the tail-flick test in contused rats (Hook et al., 2007).
Importantly, morphine also inhibited shock-elicit movements and
brain-dependent responses to pain (e.g., vocalization). In mor-
phine treated contused rats, VIS induced little movement or pain,
but nonetheless impaired recovery (Figure 7B). Morphine not
only failed to have a protective effect, it interacted with noci-
ceptive stimulation and enhanced mortality. Indeed, half the
subjects (8 out of 16) given both VIS and 20 mg/Kg of morphine
died. Oddly, subjects typically died days after morphine treatment
(mean = 4.6).

Systemic morphine could affect recovery by directly impact-
ing a spinal process or by engaging a brain system that indirectly
affects spinal function. We hypothesized that the drug effect was
due to a direct mode of action. To show this, we tested the impact
of intrathecal morphine given 24 h after a contusion injury (Hook
et al., 2009). Again, we confirmed that drug treatment induced a
robust antinociception. Intrathecal morphine (90 μg) impaired
the recovery of locomotor function (Figure 7C), led to greater
weight loss, increased tissue loss at the site of injury, and enhanced
rear paw-directed grooming/chewing (autophagia), a potential
index of neuropathic pain.

Morphine has been shown to up-regulate proinflammatory
cytokines [e.g., interleukin-1β (IL-1β), interleukin-6 (IL-6), TNF;
Song and Zhao, 2001; Johnston et al., 2004]. Consistent with
this work, systemic morphine (20 mg/kg) a day after a contu-
sion injury increased expression of IL-1β and IL-6 24 h after

Frontiers in Neural Circuits www.frontiersin.org September 2014 | Volume 8 | Article 100 | 13

http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


Grau et al. Metaplasticity and spinal cord function

drug treatment (Hook et al., 2011). Intrathecal morphine had a
similar effect and increased IL-1β within 30 min of drug treat-
ment. To explore whether the release of IL-1β was causally related
to the adverse effect of morphine treatment, we administered a
IL-1 receptor antagonist (IL-1ra) prior to intrathecal morphine
(90 μg). Morphine impaired locomotor recovery and this effect
was blocked by IL-1ra (Figure 7D). Three weeks after injury, mor-
phine treated rats also showed increased vocalization to tactile
stimulation applied to the girdle region, an indication of increased
at-level pain. This effect too was blocked by IL-1ra. While these
results are promising, we also found that IL-1ra treatment led to
greater issue loss at the site of injury, presumably because it blocked
a beneficial effect of injury-induced IL-1β expression.

Current research is exploring the site of opioid action. As
described above, the kappa-2 agonist GR89696 inhibits adaptive
plasticity in transected rats. This same drug also impairs recovery
after a contusion injury (Aceves and Hook,2013). This is consistent
with early studies that linked contusion-induced damage to kappa
opioid activity (Faden, 1990). Other work suggests that opioids
can also engage glia, and promote cytokine release, by engag-
ing non-classic receptors [e.g., the toll-like receptor 4 (TLR4);
Hutchinson et al., 2007, 2010; Watkins et al., 2007]. It seems likely
that the adverse effects of morphine on spinal function are due to
its action at multiple sites, including TLR4.

While morphine did not block the adverse effect of nocicep-
tive stimulation, the data yielded an important discovery—opioid
treatment after a contusion injury impairs the recovery of loco-
motor function, enhances pain, and leads to greater tissue loss
(Hook et al., 2007, 2009). Further, when combined with nocicep-
tive stimulation, morphine enhanced mortality. These results are
especially troubling given the widespread use of opioids to treat
pain after SCI (Warms et al., 2002; Widerstrom-Noga and Turk,
2003).

The results also have implications regarding the mechanisms
that underlie the adverse effect of VIS on recovery. For example, it
could be argued that this effect is secondary to brain-mediated
pain or VIS-induced movement. Morphine treatment blocked
both behavioral signs of pain and VIS-induced movement, but
did not attenuate the effect of VIS on recovery. Further, if brain
systems exert a protective effect by inhibiting spinal nociceptive
transmission, our results imply that this antinociception is medi-
ated by a nonopioid process (Meagher et al., 1993). Finally, the data
indicate that a kappa-2 opioid dependent process, that we have
shown inhibits adaptive plasticity in transected rats (Washburn
et al., 2008), can substitute for VIS treatment (i.e., is sufficient)
and impair recovery after a contusion injury (Aceves and Hook,
2013).

UNCONTROLLABLE STIMULATION INCREASES TNF AND REDUCES
BDNF IN CONTUSED RATS
Earlier we described how the learning impairment induced by VIS
in transected rats depends upon TNF (Huie et al., 2012a). Given
this, we examined whether VIS induces TNF expression in con-
tused subjects (Garraway et al., 2012). We found that nociceptive
stimulation a day after a contusion injury increased TNF mRNA
and protein expression from 1 to 7 days after VIS treatment. Inter-
estingly, stimulation also increased protein levels of caspase 3 and

8, two indices of programmed cell death (apoptosis; Beattie et al.,
2000; Duprez et al., 2009). Immunofluorescent labeling revealed
that caspase 3 was co-labeled with OX-42 (microglia) and NeuN
(neurons), but not GFAP (astrocytes). These observations parallel
the results found with the transection paradigm and suggest that
TNF release may foster secondary damage by promoting apoptotic
cell death.

We have also examined the impact of nociceptive stimulation
on BDNF/TrkB expression after a contusion injury (Garraway
et al., 2011). Our hypothesis was that uncontrollable nociceptive
stimulation impairs recovery, in part, by down-regulating BDNF
expression. To test this, subjects were given a moderate contusion
injury and were exposed to VIS or nothing the next day. A con-
tusion injury, per se, down-regulated BDNF mRNA and protein
expression (Figure 8A). Exposure to VIS a day after injury fur-
ther down-regulated BDNF mRNA and protein expression and
this effect was most evident a day after shock treatment (48 h
after injury). In the dorsal horn, VIS induced a lasting reduction

FIGURE 8 | Impact of VIS on BDNF andTrkB expression in contused

rats. (A) Rats received a moderate contusion injury or a sham surgery. The
next day, contused rats received VIS (Contused-Shock) or nothing
(Contused-Unshock). BDNF protein was assayed 1 h, 24 h, and 7 days after
treatment. A contusion injury produced a significant decrease (*) in BDNF
expression at 1 and 24 h (25 and 48 h after surgery). Shock treatment
further down-regulated BDNF expression (#) at 24 h and 7 days. (B) TrkB
protein expression was also down regulated by a contusion injury at 1 and
24 h (*). Shock treatment produced a further decrease at 24 h (#).
(C) Locomotor performance on days 2–7 was highly correlated with mTRKB
expression in untreated (Unshock) contused rats (left panel), but not in rats
that received shock (right panel). Adapted from Garraway et al. (2011).
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in BDNF protein that was evident a week after shock treatment.
A contusion injury and VIS treatment had a similar effect on
TrkB mRNA and protein expression (Figure 8B), reducing expres-
sion during the first 48 h of recovery. TrkB immunolabeling
showed that it was co-expressed with NeuN, but not GFAP or
OX-42. Correlational analyses revealed that locomotor recovery
was highly related with TrkB mRNA expression in unshocked,
but not shocked, subjects (Figure 8C). A similar pattern was
observed for BDNF. This suggests that improved recovery is nor-
mally associated with enhanced TrkB expression and that shock
treatment may adversely affect recovery by dysregulating this
process.

In summary, the results obtained to date generally parallel the
findings obtained in our transection paradigm. In both cases,
exposure to VIS has a maladaptive effect that induces EMR and
disrupts adaptive plasticity, impairing both instrumental learn-
ing and recovery after a contusion injury (Grau et al., 1998, 2004;
Joynes et al., 2003; Ferguson et al., 2008; Garraway et al., 2011,
2012). As observed in transected rats, VIS induces an increase
in TNF expression and down-regulates BDNF in contused sub-
jects (Gómez-Pinilla et al., 2007; Garraway et al., 2011, 2012; Huie
et al., 2012a). The contusion paradigm also showed that nocicep-
tive stimulation engages markers of apoptotic cell death and leads
to enhanced tissue loss. These adverse effects may explain, in part,
why other types of nociceptive stimulation (e.g., from stretching;
Caudle et al., 2011) impair the recovery process.

SPINAL PROCESSES ARE REGULATED BY THE BRAIN
ANESTHESIA BLOCKS THE BRAIN-DEPENDENT INHIBITION OF
MALADAPTIVE PLASTICITY
We have shown that VIS inhibits spinal plasticity in transected
animals and impairs recovery after a contusion injury (Grau et al.,
1998, 2004). Does this effect impact spinal function in the absence
of injury? The answer appears to be a qualified no. We explored this
issue by applying VIS before or after a spinal transection (Crown
and Grau, 2005). The next day we tested subjects in our instru-
mental paradigm. As usual, VIS given after a spinal transection
induced a learning impairment (Figure 9A). When given before, it
had no effect, which suggests that brain-dependent processes exert
a modulatory effect that counters the development of the learning
impairment. This is consistent with other studies showing that
the induction of spinal LTP is inhibited by descending pathways
(Sandkühler and Liu, 1998; Sandkühler, 2000). The results sug-
gest that the brain normally acts to quell over-excitation within
the spinal cord and thereby helps to maintain neural homeosta-
sis. We would also expect this process to counter the development
of central sensitization. Supporting this, we recently found that
capsaicin-induced EMR is weaker in intact subjects (relative to
spinally transected; Huang et al., 2014).

A caveat to our description of brain-dependent regulation is
that the protective role of brain processes can be disrupted by
surgical anesthesia. This issue was explored by Washburn et al.
(2007), who tested whether VIS induced a learning impairment in
pentobarbital anesthetized rats. Others have suggested that pento-
barbital anesthesia induces a physiological state within the spinal
cord that resembles the consequences of a spinal transection (Mori
et al., 1981). Given this, she predicted that VIS applied to the tail

would have its usual effect in intact anesthetized rats. To test
this, intact subjects received anesthetic dose of pentobarbital or
its vehicle followed by VIS. The subjects were then transected
and a day later, tested for instrumental learning. As expected,
VIS did not induce a learning impairment in unanesthetized sub-
jects (Figure 9B). Rats that received pentobarbital prior to VIS
failed to learn, implying that pentobarbital anesthesia eliminates
the brain-dependent protection of spinal circuitry. This finding
is important because it suggests that nociceptive input during
general anesthesia could have an unanticipated effect that sen-
sitizes spinal nociceptive systems and promotes the development
of neuropathic pain.

As noted earlier, VIS does not induce antinociception in
spinally transected rats. However, in intact rats, VIS induces a
robust antinociception (Figure 9C). This effect too was blocked
by pentobarbital anesthesia (Washburn et al., 2007). The find-
ing implies that brain-dependent processes may protect spinal
systems by inhibiting nociceptive transmission. Because pretreat-
ment with an opioid does not have a protective effect (Hook
and Grau, 2007), we posit that brain systems inhibit the develop-
ment of central sensitization through a non-opioid process (e.g.,
serotonin).

DESCENDING SEROTONERGIC FIBERS MEDIATE THE INHIBITION OF
MALADAPTIVE PLASTICITY
Prior work suggested that the inhibition of the VIS-induced learn-
ing impairment could be mediated by serotonergic fibers that
descend through the dorsal lateral funiculus (DLF; Davies et al.,
1983; Watkins et al., 1984). If this is true, we should be able to elim-
inate the brain-dependent protection of spinal circuits by lesioning
the DLF. Crown and Grau (2005) examined this issue by bilaterally
lesioning the DLF at T2. Relative to the sham operated controls,
DLF lesions had little effect on sensory/motor function. Subjects
then received VIS and 2 h later the spinal cord was transected at
T8. The capacity for instrumental learning was assessed the next
day. As expected, in the absence of DLF lesions, VIS had no effect
on spinal function. However, in DLF lesioned rats VIS induced a
learning impairment (Figure 10A).

Because a large proportion of the fibers within the DLF
are serotonergic (Davies et al., 1983), we hypothesized that the
brain-mediated protective effect depends upon serotonin (5HT).
This is consistent with other work that has linked the develop-
ment of EMR after spinal injury to the loss of 5HT. Further,
5HT has been shown to attenuate EMR in injured rats and
this effect has been linked to an action at the 5HT 1A recep-
tor (e.g., Eaton et al., 1997; Bardin et al., 2000; Gjerstad et al.,
2001; Hains et al., 2001a,b, 2003). If this same system medi-
ates the brain-dependent inhibition of the learning impairment,
engaging the 5HT-1A receptor should have a protective effect
in spinally transected rats. To test this, rats were spinally tran-
sected and administered the agonist 5HT or 8-OH DPAT (5HT
1A/7) intrathecal prior to VIS. Instrumental learning was tested
the next day. Crown and Grau (2005) found that both drugs
block the VIS-induced learning impairment (Figure 10B). Drugs
that acted at other 5HT receptors [DOI (5HT 2) and quipazine
(5HT 2/3)] had no effect. Recognizing that some fibers within
the DLF are noradrenergic (Davies et al., 1983), Crown and Grau
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FIGURE 9 | Brain systems transform how shock affects spinal function.

(A) Rats received VIS (Shock) or nothing (Unshock) before or after a spinal
transection (Cut) and were tested for instrumental learning the next day.
When the spinal cord was cut prior to treatment, shock induced a learning
impairment (Cut Before-Shock). When the spinal cord was cut after shock
treatment (Cut After-Shock), no impairment was observed. (B) Intact rats
were anesthetized with pentobarbital (50 mg/kg, i.p.) or given saline. Subjects
then received VIS (Shock) or nothing (Unshock), followed by a spinal

transection and instrumental testing. Shock induced a learning impairment in
anesthetized (Pento-Shock) but not awake (Saline-Shock) rats. (C) Intact rats
received saline or pentobarbital (50 mg/kg, i.p.) followed by VIS (Shock) or
nothing (Unshock). Nociceptive reactivity was tested by applying a noxious
thermal stimulus to the tail and measuring the latency to exhibit a
tail-withdrawal (tail-flick). In awake rats (Saline), shock treatment induced
antinociception. Shock had no effect on tail-flick latencies in anesthetized
(Pento) rats. Adapted from Crown and Grau (2005) and Washburn et al. (2007).

FIGURE 10 | Descending serotonergic systems modulate the induction

of the shock-induced learning impairment. (A) Subjects underwent
bilateral lesions of the DLF at T2 or a sham surgery. Two hours later the
spinal cord was transected at T8 and instrumental learning was assessed
the next day. Shock treatment induced a learning impairment in DLF
lesioned rats (Lesioned-Shock) but not in intact sham operated rats
(Sham-Shock). (B) Spinally transected rats received serotonin (i.t.; 0, 10, 50,
or 100 nmol) followed by VIS (Shock) or nothing (Unshock). Instrumental
learning was tested the next day. Shock treatment impaired learning in

vehicle treated rats (0 nmol 5HT-Shock). This learning impairment was
blocked by pretreatment with 5HT in a dose-dependent manner. (C) Intact
rats received the 5HT 1A antagonist WAY 100635 (i.t.; 0, 25, 50, or
100 nmol) prior to VIS. The spinal cord was then transected and
instrumental learning was assessed the next day. As expected, intact rats
that received shock and the vehicle (0 nmol WAY 100635) did not exhibit a
learning impairment. Shock induced a learning impairment in subjects given
the 5HT 1A antagonist and this effect was dose-dependent. Adapted from
Crown and Grau (2005).

(2005) also assessed the impact of the α-2 noradrenergic ago-
nist clonidine. While clonidine had a protective effect, its action
was blocked by a 5HT 1A antagonist (WAY 100635), implying
that the positive effect was due to cross-reactivity with the 5HT
1A receptor (Newman-Tancredi et al., 1998; Shannon and Lutz,
2000).

These results suggest that activation of the 5HT 1A receptor
can substitute for the brain-dependent process in transected rats
to inhibit the development of maladaptive plasticity. To test the
necessity of this process, Crown blocked the 5HT 1A receptor
in intact rats (using i.t. WAY 100635) and administered VIS. The
spinal cord was then transected and subjects were tested for instru-
mental learning. When the 5HT 1A receptor was blocked, VIS
induced a learning impairment in intact rats (Figure 10C). We
conclude that descending serotonergic fibers counter the develop-
ment of maladaptive plasticity by engaging the 5HT 1A receptor.
The corollary to this is that damage to this tract will remove
this protective effect and set the stage for maladaptive plasticity

in response to uncontrollable nociceptive input and peripheral
inflammation.

SPINAL INJURY ALTERS GABAERGIC FUNCTION WITHIN THE SPINAL
CORD
Our results imply that the loss of brain input can fundamen-
tally alter how spinal systems operate. We suggest that this may
explain why some treatments affect spinal systems in opposite ways
depending whether brain input is intact or absent. An especially
revealing example of this emerged from our work examining the
role of GABAergic systems (Ferguson et al., 2003). We had shown
that administration of the GABA-A antagonist bicuculline blocks
the expression of the VIS-induced learning impairment. VIS also
induces EMR (Ferguson et al., 2006). If the learning impairment
and the EMR are mediated by a common mechanism, the EMR
should also be blocked by bicuculline. This seemed paradoxical
because GABA is typically viewed as having an inhibitory effect
that should counter neural excitation and EMR. Indeed, in intact

Frontiers in Neural Circuits www.frontiersin.org September 2014 | Volume 8 | Article 100 | 16

http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


Grau et al. Metaplasticity and spinal cord function

rats, blocking GABA with bicuculline generally enhances reactiv-
ity to nociceptive and mechanical stimuli (Roberts et al., 1986;
Millan, 2002). However, in spinally transected rats, we found that
intrathecal bicuculline blocks VIS-induced EMR (Huang et al.,
2011). More surprising, treatment with bicuculline also blocked
capsaicin-induced EMR, and cellular indices of central sensiti-
zation (e.g., ERK phosphorylation), in transected rats (Huang
et al., 2014). Thus, when communication with the brain was dis-
rupted, blocking GABAergic activity seemingly quelled, rather
than enhanced, nociceptive sensitization.

The fault in our reasoning likely lies with the assumption that
GABA uniformly has an inhibitory effect. The impact of GABA
on neural excitation is regulated by the concentration of intracel-
lular Cl−, which is controlled by K+-Cl− cotransporter 2 (KCC2)
and Na+-K+-Cl− cotransporter 1 (NKCC1; Figure 11A). As the
nervous system develops, there is an increase in KCC2 expres-
sion, which lowers the concentration of intracellular Cl− (Ben-Ari,
2002). As a result, engaging the GABA-A receptor causes Cl− to
flow into the cell, which produces neural inhibition. Spinal injury,
however, can cause a reduction in KCC2 expression, which leads
to an increase in intracellular Cl− (Ben-Ari et al., 2012). Conse-
quently, engaging the GABA-A receptor will allow Cl− to flow
out of the cell, which has a depolarizing (excitatory) effect that
may contribute to the development of EMR (Cramer et al., 2008;

Hasbargen et al., 2010). Recently, we confirmed that a spinal tran-
section reduces the ratio of membrane bound KCC2 (relative to
the cytosolic fraction) in the lumbosacral spinal cord within 24 h
(Huang et al., 2014).

In the uninjured system, GABAergic transmission would have
a homeostatic effect that would act to counter nociception-
induced over-excitation. But if KCC2 levels are low, engaging
this process would promote over-excitation and the development
of central sensitization. Under these conditions, pretreatment
with a GABA-A antagonist should counter the development of
central sensitization and EMR, and our data suggest that this
is true (Huang et al., 2013). We would further predict that in
intact animals, intrathecal bicuculline should have the opposite
effect. In the intact system, plasmalemmal KCC2 levels should
be high. Now, engaging the GABA-A receptor would promote
the inward flow of Cl−, producing neural inhibition. Support-
ing this, we found that in intact animals, bicuculline enhanced
capsaicin-induced EMR and ERK phosphorylation (Huang et al.,
2014).

Changes in GABAergic function may also help to explain
another paradoxical effect. Earlier, we described how intrathecal
administration of BDNF has a beneficial effect in spinally tran-
sected rats, countering both the learning impairment and EMR
induced by VIS (Huie et al., 2012b). More recently, we showed that

FIGURE 11 | Injury increases intracellular Cl− in GABA-responsive cells,

causing GABA to have an excitatory effect and transforming how

experimental manipulations impact spinal function. (A) Schematic of the
processes that regulate intracellular Cl−. NKCC1 regulates the inward flow of
Cl− whereas KCC2 controls its outward flow. Early in development,
membrane-bound (plasmalemmal) KCC2 levels are low, and as result, the
intracellular concentration of Cl− remains high. Under these conditions,
engaging the GABA-A receptor allows Cl− to exit the cell, causing it
depolarize, which promotes neural excitation. With development, there is an
up-regulation of KCC2, which drives down the intracellular concentration of
Cl−. This causes a shift in polarity because engaging the GABA-A receptor

now causes Cl− to flow into the cell, inducing hyperpolization and neural
inhibition. Recent work has revealed that spinal injury can cause a regression
to the immature state, by down-regulating KCC2 expression (Ben-Ari et al.,
2012). This would reduce the hyperpolarizing effect of GABA and enhance the
degree to which it induces neural excitation. There is also a complimentary
change in NKCC1 function, which is regulated through phosphorylation
(Flemmer et al., 2002). (B) Capsaicin produces a stronger EMR, and greater
ERK activation, in spinally transected rats. After a spinal injury, pretreatment
with BDNF or bicuculline attenuates capsaicin-induced EMR and ERK
activation. In uninjured rats, BDNF and bicuculline enhance capsaicin-induced
EMR and ERK activation. Adapted from Kahle et al. (2014).
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BDNF also attenuates capsaicin-induced EMR in transected sub-
jects (Lee et al., 2012). These effects on EMR run counter to other
studies demonstrating that BDNF in intact subjects can foster the
development of central sensitization and enhance pain (Merighi
et al., 2008). In intact subjects, BDNF reduces plasmalemmal
KCC2 within the lumbosacral spinal cord, which would reduce
GABAergic inhibition and explain, in part, why BDNF pro-
motes the development of central sensitization (Coull et al., 2005;
Valencia-de Ita et al., 2006; Lu et al., 2009; Biggs et al., 2010). Inter-
estingly, after spinal injury, BDNF appears to have the opposite
effect on KCC2 expression (Boulenguez et al., 2010), which would
re-establish the inhibitory action of GABA. This suggests that
BDNF should attenuate inflammation-induced EMR in transected
rats, which is what we observed (Lee et al., 2012). It further suggests
that BDNF should have the opposite effect on capsaicin-induced
EMR in intact rats. Lee et al. (2014) recently confirmed that this
too is true using both behavioral and cellular indices of central
sensitization.

In summary, our results suggest that spinal injury removes a
brain-dependent protective effect that is mediated by descend-
ing serotonergic fibers and the 5HT-1A receptor. A loss of brain
communication also leads to a shift in KCC2 that transforms
how GABA affects spinal circuits, causing it to have an exci-
tatory effect that we suggest contributes to the development of
central sensitization. BDNF may have a protective effect, in part,
by promoting KCC2 plasmalemmal expression. This would re-
establish GABA-mediated inhibition (Boulenguez et al., 2010),
which could counter the development of neural excitation. In
the absence of injury, GABAergic inhibition would be blocked by
bicuculline and reduced by BDNF (through a down-regulation
of KCC2), and in both cases, this would promote nociceptive
activity and the development of EMR (Figure 11B). These con-
clusions are consistent with electrophysiological data indicating
that BDNF facilitates AMPA and NMDA mediated currents in
intact, but not spinally transected, subjects (Garraway et al., 2003,
2005; Garraway and Mendell, 2007). These data suggest that
BDNF is pronociceptive in intact subjects, but not after spinal
injury.

CONCLUSION
Studies of brain plasticity have uncovered processes that have a
lasting impact on plastic potential, and we have suggested that
this concept of metaplasticity has relevance to spinal function.
We have shown that uncontrollable/unpredictable stimulation,
and peripheral inflammation, induce a process that has a lasting
inhibitory effect (Grau et al., 1998; Hook et al., 2008; Baumbauer
et al., 2009). We related this process to the development of central
sensitization and EMR, and characterized these effects as examples
of maladaptive plasticity. We showed that predictable/controllable
stimulation engages an opponent process, that fosters a form of
adaptive plasticity (instrumental learning) and that counters the
adverse effects of VIS and peripheral inflammation (Crown and
Grau, 2001; Crown et al., 2002a). The beneficial effects of training
appear related to an up-regulation of BDNF (Huie et al., 2012b).
The adverse effects were tied to multiple processes: The expression
of the deficit depends on kappa opioid activity (Washburn et al.,
2008); its induction is coupled to the mGluR, non-neuronal cells,

and the cytokine TNF (Ferguson et al., 2008; Vichaya et al., 2009;
Huie et al., 2012a). We also showed that VIS disrupts recovery after
a contusion injury and that this adverse effect was related to an
up-regulation of TNF and a down-regulation of BDNF (Garraway
et al., 2011, 2012).

Spinal injury appears to set the stage for damage and EMR by
causing a loss of serotonergic fibers, which in the uninjured system,
counter the development of maladaptive plasticity by acting at the
5HT-1A receptor (Crown and Grau, 2005). Disconnected from
the brain, GABAergic systems revert to an immature state, due
to a down-regulation of plasmalemmal KCC2 (Hasbargen et al.,
2010; Ben-Ari et al., 2012). This causes GABA to have an excitatory
effect that we posit contributes to the development of maladaptive
plasticity.

We have linked the learning impairment to the release of TNF
from microglia. The beneficial effects of training were tied to the
release of BDNF. While we have not identified the relevant source
of BDNF, it too could be expressed by microglia. If so, activity
within microglia would determine whether an earlier experience
engages a metaplastic effect that promotes (BDNF) or interferes
(TNF) with adaptive plasticity. A potentially more intriguing ques-
tion is whether microglia support a kind of biological switch that
maintains enhanced expression. Such a process could be initiated
by the profile of extracellular signals secreted by neurons during
training. For example, the relative release of adenosine triphos-
phate (ATP), glutamate, and matrix metalloprotein-9 (MMP9),
may vary depending upon whether the afferent signals are pre-
dictable/controllable versus unpredictable/uncontrollable. This
could initiate alternative processes in microglia and astrocytes that
are preserved over time and relayed to remote sites (Hansen et al.,
2013).

It has long been recognized that the core (primary) injury
affects the surrounding tissue to promote tissue loss (secondary
injury; Beattie and Bresnahan, 2000). Our work shows that how
this process unfolds is affected by peripheral stimulation. This is
clinically important because SCI is often accompanied by other
tissue damage (polytrauma; Chu et al., 2009; Putz et al., 2011),
which provides a source of nociceptive input that can fuel nocicep-
tive sensitization and promote cell death. Such a view anticipates
that inhibiting neural excitation (e.g., by local cooling or adminis-
tration of a Na++ channel blocker), or microglia activation (e.g.,
using minocycline), should reduce secondary damage and atten-
uate chronic pain (Baptiste and Fehlings, 2006; Batchelor et al.,
2013; Hansebout and Hansebout, 2014).

In considering alternative treatments, the focus is on spinally
mediated nociception, not conscious pain. Surgical anesthesia
blocks the experience of pain, but does not protect spinal circuits.
Rather, it allows nociceptive stimulation to induce a maladaptive
effect in the absence of spinal injury (Washburn et al., 2007). Like-
wise, systemic morphine eliminates behavioral signs of pain, but
does not counter the adverse effect peripheral stimulation has on
spinal function and, worst yet, increases the extent of secondary
injury (Hook et al., 2007, 2009).

Peripheral stimulation can also have an adverse effect during
the chronic phase of injury, by inducing a form of maladap-
tive plasticity that inhibits learning and promotes nociceptive
sensitization. Potential sources of nociceptive input include

Frontiers in Neural Circuits www.frontiersin.org September 2014 | Volume 8 | Article 100 | 18

http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


Grau et al. Metaplasticity and spinal cord function

peripheral inflammation (e.g., from bed sores), stretching (Caudle
et al., 2011), and electrical stimulation to induce muscle activ-
ity (Creasey et al., 2004). While pharmacological treatments that
attenuate neural excitation can lessen the development of mal-
adaptive plasticity, they will also inhibit adaptive plasticity and
undermine the effectiveness of physical therapy. A better approach
may involve training with predictable/controllable forms of stimu-
lation, because these should both inhibit nociceptive sensitization
and promote adaptive plasticity. Further, the link to metaplastic-
ity implies that effective training can have a long-term benefit.
Behavioral control is also relevant to the design of robotic systems
(e.g., Del-Ama et al., 2014; McGie et al., 2014). These obser-
vations fit well with studies demonstrating long-term benefits
of locomotor training (Edgerton et al., 2004). The work also
implies that encouraging active behavioral control can enhance
the beneficial effects of treatments that enable spinal function
[e.g., epidural stimulation (Harkema et al., 2011; Angeli et al.,
2014)].
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