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C-boutons are important cholinergic modulatory loci for state-dependent alterations in
motoneuron firing rate. m2 receptors are concentrated postsynaptic to C-boutons, and
m2 receptor activation increases motoneuron excitability by reducing the action potential
afterhyperpolarization. Here, using an intensive review of the current literature as well as
data from our laboratory, we illustrate that C-bouton postsynaptic sites comprise a unique
structural/functional domain containing appropriate cellular machinery (a “signaling ensem-
ble”) for cholinergic regulation of outward K+ currents. Moreover, synaptic reorganization
at these critical sites has been observed in a variety of pathologic states.Yet despite recent
advances, there are still great challenges for understanding the role of C-bouton regulation
and dysregulation in human health and disease. The development of new therapeutic
interventions for devastating neurological conditions will rely on a complete understanding
of the molecular mechanisms that underlie these complex synapses. Therefore, to close
this review, we propose a comprehensive hypothetical mechanism for the cholinergic
modification of α-MN excitability at C-bouton synapses, based on findings in several
well-characterized neuronal systems.
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INTRODUCTION
The neuromuscular system provides rapid and coordinated force
generation, whereby the number and firing rate of recruited
motor units are systematically adjusted to meet environmental
demands (Monster and Chan, 1977; Henneman and Mendell,
1981; Clamann, 1993; Cope and Sokoloff, 1999). Indeed, the ele-
gant simplicity with which animals navigate their environment
relies on neural circuitry that is inherently modifiable, and the abil-
ity to perform a variety of motor tasks while responding quickly
to unexpected perturbations and threats is essential for individ-
ual survival (Ladle et al., 2007; Miri et al., 2013). Control of α-MN
repetitive firing properties is a therefore highly conserved and crit-
ical adaption of mammalian and non-mammalian species alike,
and identifying the responsible spinal circuits has been of essential
importance in our understanding of neuromuscular function and
dysfunction (Miles and Sillar, 2011).

For more than 50 years, a particular class of synapse in the
spinal cord ventral horn – the C-bouton – has generated sustained
interest among α-MN anatomists and physiologists. Unambigu-
ous identification of these conspicuously large cholinergic synaptic
contacts and the characteristic postsynaptic SSC for which they are
named has prompted numerous investigations into their distribu-
tion, source, function, and pathology. Yet despite the detailed
morphologic and physiologic information generated by many

Abbreviations: AHP, afterhyperpolarization; ChAT, choline acetyltransferase; IaIN,
Ia inhibitory interneuron; IR, immunoreactivity; m2 receptor, type 2 muscarinic
acetylcholine receptor; MN, motoneuron; RyR, ryanodine receptors; S1R, sigma-
1 receptors; SK, small conductance calcium-activated potassium channel; SSC,
subsurface cistern; VAChT, vesicular acetylcholine transporter; VGluT, vesicular
glutamate transporter.

neuroscientists, it is humbling to consider (a) the incrementally
slow trajectory by which our understanding of this enigmatic
synapse has grown and (b) that as yet there is no definitive and fully
functional hypothesis regarding their distribution, their postsy-
naptic subcellular machinery, their contribution to motor control
and behavior, and their regulation/dysregulation in health and
disease.

Recently, we have learned the most elementary effect of
C-boutons on α-MN f-I gain during static intracellular current
injection occurs via dramatic reductions in the strength of the
action potential AHP (Miles et al., 2007), which is mediated by
postsynaptic small conductance Ca2+-activated K+ (SK) channels
(Deardorff et al., 2013). However, the mystery of the C-bouton
and its cholinergic effects on MN biophysical properties and inte-
grative capabilities is by no means solved, as has been suggested
(Frank, 2009). Using an isolated spinal cord preparation, Miles
et al. (2007) demonstrate a putative role for C-boutons in ensur-
ing appropriate levels of motor output during drug induced fictive
locomotion. But complexity arises upon behavioral assessment of
adult mice with selective genetic inactivation of C-bouton synaptic
inputs, which during locomotion exhibit normal flexor–extensor
alternation and normal EMG amplitude. Motor deficits in these
mice primarily manifest during high-output tasks such as swim-
ming (Zagoraiou et al., 2009). These data convincingly implicate
C-boutons in the task-dependent regulation of α-MN excitabil-
ity via reduction of outward K+ currents, but questions remain
regarding (a) the functional impact of C-bouton input during dif-
ferent behaviors, (b) the manner in which C-bouton activity is
modulated to match motor demands, (c) the expression of abnor-
mal force generation as well as spasticity, rigidity, or tremor as a

Frontiers in Neural Circuits www.frontiersin.org September 2014 | Volume 8 | Article 106 | 1

http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/about
http://www.frontiersin.org/Journal/10.3389/fncir.2014.00106/abstract
http://community.frontiersin.org/people/u/157322
http://community.frontiersin.org/people/u/161851
http://community.frontiersin.org/people/u/169033
http://community.frontiersin.org/people/u/116544
mailto:robert.fyffe@wright.edu
http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


Deardorff et al. Form and function at the C-bouton

consequence of C-bouton dysfunction, and (d) the mechanism of
interaction between underlying acetylcholine receptors (AChRs)
and K+ channels.

To aid in the development of new in vivo and in vitro experi-
mental strategies to answer these and related questions, this review
details our current understanding of the cellular, synaptic, and
genetic properties that underlie C-bouton function and proposes
a hitherto unexplored mechanism for the cholinergic modifica-
tion of α-MN excitability. It should be noted that the title of this
review is intended to reflect and pay homage to the many dedicated
and careful neuroscientists who have undertaken MN synaptolog-
ical investigations over the years. This review will therefore also
provide historical perspective on the foundational advances in
our understanding of this complex and elusive, yet important,
synapse. Neuroscientists have spent 50+ years at the C-bouton
swimming against the tide. Significant progress has been slow
and hard fought. And though we are a long way from shore, we
must remember – as our murine colleagues have demonstrated –
without C-boutons we cannot swim at all.

THE C-BOUTON SIGNALING ENSEMBLE: A CONTEMPORARY
VIEW OF A CLASSIC SYNAPSE
We are riding the crest of a wave. With the turn of the cen-
tury and the application of advanced morphologic analyses,
cellular neurophysiology, and selective genetic perturbations, we
have built a decidedly robust picture of C-bouton form and
function. C-boutons are an essential piece of an integrated con-
trol system set to regulate α-MN activity through a complex
anatomical substrate: a signaling ensemble (Figures 1 and 2) pre-
cisely organized for highly nuanced orchestration of somatic K+
currents.

PRECISE ANATOMICAL LOCALIZATION AND ORGANIZATION OF
SIGNALING COMPONENTS: AN ENSEMBLE OF APPOSED PROTEINS
AND MOSAIC MEMBRANE DOMAINS
C-type synaptic sites comprise three closely apposed membranous
domains (Figure 2), spanning a breadth of <25 nm, and across
which the distribution of synaptic and signaling proteins are pre-
cisely regulated. Clear and consistent immunohistochemical data
demonstrate membrane clusters of α-MN Kv2.1 channels, SK2/3
channels, and m2 receptors directly apposing C-bouton presynap-
tic terminals (Skinner et al., 1999; Hellstrom et al., 2003; Muennich
and Fyffe, 2004; Wilson et al., 2004; Deardorff et al., 2013). When
visualized under high resolution, these SK2/3 channel and m2
receptor clusters are composed of an intricate, non-uniform aggre-
gation of smaller “threadlike” structures that are woven together
and closely approximate/appose C-bouton pre-synaptic vesicle
release sites, which are enriched with bassoon (A. S. Deardorff,
S. H. Romer, R. E. W. Fyffe, unpublished; see Figure 1). Beneath
the postsynaptic membrane, in α-MN SSCs, the gap junction pro-
tein connexin32 shows a similar threadlike distribution pattern
(Yamamoto et al., 1990,1991; Zampieri et al., 2014), indicating that
connexin32, SK channels/m2 receptors, and transmitter release
machinery are precisely aligned across the three membranous
domains. Kv2.1 channels appear to “fill in” the remaining post-
synaptic α-MN membrane surface not occupied by SK channels
or m2 receptors. The demarcated postsynaptic area, therefore, is

a highly structured and mosaic domain of interdigitating clusters
of Kv2.1 channels and co-localized SK2/3 channels and m2 recep-
tors. The orderly, stacked apposition of proteins on the cisternal,
postsynaptic, and presynaptic membranes as well as the spatial
interdigitation of distinct channel and receptor clusters demon-
strates a coordinated and specific signaling organization across all
membranous domains at C-bouton synaptic sites.

ADDITIONAL SIGNALING COMPONENTS
Additional studies have revealed, to varying levels of speci-
ficity, other signaling components that characterize the C-
bouton ensemble. Certain elements, although identified within
one or another membranous or cytoplasmic domain, are not
well defined in regard to specific subdomain organization nor
anatomic relation to other molecular components. In this cate-
gory, C-bouton synaptic terminals express a range of exocytotic
proteins consistent with those necessary for fast transmitter release
(Hellstrom et al., 1999), are highly associated with presynaptic
P2X7 purinergic receptor immunoreactivity (∼90% of C-boutons;
Deng and Fyffe, 2004), and may also express presynaptic nicotinic
acetylcholine receptors (nAChRs; Khan et al., 2003). In addition,
the α-MN SSC is highly enriched with S1Rs (Mavlyutov et al.,
2010), and with closely associated neuregulin-1 (NG1) immunore-
activity (Gallart-Palau et al., 2014). Indole-N-methyl transferase
(INMT), an enzyme that converts tryptamine into the S1R lig-
and dimethytryptamine (DMT), is also present in close proximity
to S1Rs at C-bouton postsynaptic sites (Mavlyutov et al., 2012),
but the extent to which S1Rs, themselves, are diffusely distributed
within the entire cisternal membrane or co-localize/interdigitate
with the well-characterized connexin32 immunoreactivity is not
described.

The subcellular organization of Ca2+ sources necessary for SK
channel activation also remains poorly characterized. However, α-
MN SK2/3 channels require high voltage activated (HVA) N- and
P/Q-type Ca2+ currents to generate the AHP (Viana et al., 1993;
Umemiya and Berger, 1994; Bayliss et al., 1995; Li and Bennett,
2007), and SK channels typically couple to their Ca2+ source(s)
by <200 nm (Fakler and Adelman, 2008; Jones and Stuart, 2013).
Internally, SSCs may amplify or shape these Ca2+ signals via RyRs
or connexin32, as they do in other cell types (see discussion Section
“Subsurface Cisternae and the Generation of an Isolated Ca2+
Signal”). We, therefore, expect some proportion of HVA Ca2+
channels and RyRs to localize to the C-bouton postsynaptic mem-
brane and/or to the associated SSC (Figure 2). In support, Wilson
et al. (2004) provide evidence that P/Q-type Ca2+ channels are
diffusely spread throughout the α-MN somatic membrane. By
inference, some proportion must then appose C-boutons. The
presence of N-type Ca2+ channels on α-MNs, however, has only
been demonstrated physiologically (Carlin et al., 2000; Wilson
et al., 2004).

THE CREST OF A WAVE
The unique aggregation of cytoplasmic and membrane bound pre-
and postsynaptic proteins that constitute the C-bouton signaling
ensemble provides mechanistic insight into the cholinergic mod-
ulation of α-MN firing rate and has advanced new research at a
comparatively faster pace than that of many other α-MN synaptic

Frontiers in Neural Circuits www.frontiersin.org September 2014 | Volume 8 | Article 106 | 2

http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


Deardorff et al. Form and function at the C-bouton

inputs. While uncertainties still confound our arrival at a “sim-
ple”molecular mechanism governing C-bouton synaptic function,
experiments in other cell systems can help push us forward against
the tide. Further exploration of this complex synapse is clearly
necessitated. However, we must first review other salient features
of the C-bouton system.

MOMENTS AND MILESTONES: ULTRASTRUCTURE
Pioneering EM investigations (Wyckoff and Young, 1956) pro-
vided accurate anatomical description and categorization of the
structurally diverse presynaptic terminals contacting spinal α-
MNs, and in general, most authors still conform to the descriptive
abbreviations (S-, F-, C-, T-, and M-Boutons) introduced by

Bodian (1966a,b) and Conradi (1969a). (An additional bouton
type, the P bouton, makes presynaptic connections with spe-
cific excitatory boutons in contact with the MN surface and
may form triadic arrangements; Conradi, 1969a; Fyffe and Light,
1984). Those boutons Conradi classified as “C-type” are defined
by and named for a signature 10–15 nm thick postsynaptic SSC
(“C-type” for cistern): a broad, flat disc of smooth endoplas-
mic reticulum juxtaposed a mere 5–8 nm below the postsynaptic
membrane and spanning the length of the apposing presynap-
tic terminal (Figure 3; Conradi, 1969a). The SSC is continuous
with several lamellae of rough endoplasmic reticulum oriented
in parallel with the cell membrane and frequently observed
alongside free ribosomal rosettes in the subcisternal cytoplasm

FIGURE 1 | C-bouton synaptic sites contain a complex signaling

ensemble. Presynaptic bassoon-IR and postsynaptic SK3-IR and m2-IR
share a striking subsynaptic fenestrated appearance within the C-bouton.
All images are small confocal stacks (3 × 1 μm Z-stacks) of en face
C-boutons, indicated with VAChT-IR (blue), on rat lumbar α-motoneurons.

(A) Presynaptic active zone protein bassoon (green) is aligned with
postsynaptic ion channels SK3 (Ai, red) and m2 receptors (Aii, red).
(B) Kv2.1-IR (green) intercalates with SK3-IR (Bi, red) and m2-IR (Bii),
“filling in” the C-bouton postsynaptic membrane. Scale bars are
2.0 μm.
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FIGURE 2 | Synaptic distribution of specific ion channels and

receptors on soma and proximal dendrites of motoneurons. The
schematic illustrates three types of motoneuron presynaptic boutons
including the glycinergic/GABAergic F-type, glutamatergic S-type and
cholinergic C-type with its associated postsynaptic subsurface cistern.
Note the specific localization of m2 muscarinic receptors (blue) with
SK channels (red) and Kv2.1 channels (green) postsynaptic to the

C-bouton. Small Kv2.1 clusters are also found postsynaptic to some
S-type synapses (see Muennich and Fyffe, 2004). The P/Q- and
N-type Ca2+ channels Cav2.1/2.2 (light gray) are illustrated
throughout the membrane, although the precise subcellular localization
of this channel is currently unknown. Both connexin 32 (pink) and
the sigma-1 receptor (dark gray) are specifically associated with the
C-bouton subsurface cistern.

(Figure 3). Across a particularly narrow synaptic cleft (3–8 nm; see
discussion Davidoff and Irintchev, 1986), the C-boutons them-
selves contain a dense cytoplasmic matrix of glycogen particles
and neurofilaments tightly packed with 25–55 nm (diameter)
clear spherical/pleomorphic vesicles, abundant mitochondria, and
occasionally a small number of large dense core vesicles inter-
mingled therein (Figure 3; Bodian, 1966a,b; Conradi, 1969a;
McLaughlin, 1972b; Hamos and King, 1980). Notably, several
authors (Rosenbluth, 1962; Bodian, 1966a,b; Charlton and Gray,
1966; Van Harreveld and Khattab, 1967) identified these unique
and prominent boutons prior to Conradi’s (1969a) classic and
thorough description of their synaptic ultrastructure – which
remains the gold standard for their identification.

C-boutons are among the largest of α-MN somatic and proxi-
mal dendritic synaptic inputs, ranging in size from 3 to 8 μm in the
cat (Conradi, 1969a; McLaughlin, 1972b; Conradi et al., 1979a), 3–
6 μm in the primate (Bodian, 1966a,b), 3–5 μm in the opossum
(Hamos and King,1980), 3–6 μm in the human (Pullen,1992), and
1–8 μm in the rodent (Alvarez et al., 1999). But despite their con-
spicuous size, they lack quintessential active zone ultrastructure,
i.e., pronounced paramembraneous densities and associated pools
of readily releasable vesicles (Bodian, 1966a,b; Conradi, 1969a;
McLaughlin, 1972b; Bernstein and Bernstein, 1976), prompting
early speculation that vesicle release occurs across the entire synap-
tic interface (McLaughlin, 1972b). However, small presynaptic
dense projections and local vesicle aggregations have been sub-
sequently described (Hamos and King, 1980; Connaughton et al.,
1986; Davidoff and Irintchev, 1986), and are particularly pro-
nounced in non-osmicated tissue stained with E-PTA (Pullen,
1988a) or uranyl acetate and lead citrate (Schroder, 1979). These
observations are commonly accepted evidence for specific synap-
tic vesicle release sites. Supporting this notion, C-boutons express
discrete punctae of the active zone specific protein bassoon rather
than diffuse expression throughout the presynaptic membrane

(A. S. Deardorff, S. H. Romer, R. E. W. Fyffe, unpublished; see
Figure 1). Moreover, bassoon immunoreactivity precisely overlies
postsynaptic SK channels and m2 receptors even though tradi-
tional postsynaptic densities are not typically observed under EM.
The physiologic advantage of this characteristically atypical and
peculiarly subtle active zone architecture, however, is not yet
fully understood, and may be further complicated by interspecies
variability (see Pullen, 1988a).

C-boutons are ubiquitous and highly specific to somatic α-
MNs and have been identified on α-MN somata and proximal
dendrites in all mammalian species studied thus far (seeYamamoto
et al., 1991 for references). Detailed analyses of γ-MNs (Lagerback,
1985; Lagerback et al., 1986; Destombes et al., 1992), autonomic
MNs (Mawe et al., 1986; Leedy et al., 1988), spinal interneurons
(Johnson and Sears, 1988), and Renshaw cells (Lagerback and Ron-
nevi, 1982; Alvarez and Fyffe, 2007) confirm these cells lack C-type
synaptic inputs. C-boutons, when properly identified (see discus-
sion Section “Moments and Milestones: Transmitter Content”),
are thus a useful anatomical criterion to distinguish somatic α-
MNs in the brain and spinal cord (Conradi, 1969a; Pullen, 1988b;
Deng and Fyffe, 2004; Muennich and Fyffe, 2004; Deardorff et al.,
2013). Although there have been no extensive three-dimensional
analyses of the total number of C-boutons per α-MN, our, and
other, observations suggest on the order of 30–70 such contacts
per cell (McLaughlin, 1972b; Hamos and King, 1980; Brannstrom,
1993; Brannstrom and Kellerth, 1998), and in general, there are a
greater number of C-bouton synaptic contacts on large α-MNs
innervating fast twitch muscle fibers, with this difference not
simply due to the larger available somatic/dendritic surface area
(Conradi et al., 1979a,b; Kellerth et al., 1979, 1983; Hellstrom et al.,
2003). It should be noted, the features of C-boutons present on
somatic α-MNs in ocular motor nuclei vary from those in the
spinal cord and other brainstem motor nuclei. Specifically, C-
boutons have been ultrastructurally identified (Tredici et al., 1976)
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and α-MN SSCs express connexin32 (Yamamoto et al., 1991),
but no large VAChT-IR synaptic contacts (Hellstrom et al., 2003)
nor m2 receptors are present (Vilaro et al., 1992; Hellstrom et al.,
2003).

MOMENTS AND MILESTONES: TRANSMITTER CONTENT
Correlative light-electron microscopic analysis of ChAT-IR con-
firmed C-boutons are cholinergic (Houser et al., 1983; Con-
naughton et al., 1986; Li et al., 1995), a suggestion first made
decades prior with ultrastructural acetylcholinesterase (AChE)
histochemistry (Lewis and Shute, 1966), which alone is not suffi-
cient for cholinergic classification (Fibiger, 1982; Satoh et al., 1983;
Sakamoto et al., 1985; Davidoff and Irintchev, 1986; Nagy et al.,
1993). In support, VAChT is highly associated with small clear
synaptic vesicles in the C-bouton presynaptic terminal (Gilmor
et al., 1996) and there is a strong association throughout the brain-
stem and spinal cord between large ChAT-IR synaptic boutons

on α-MNs and SSCs immunolabeled for connexin32 (Nagy et al.,
1993). Immunoreactivity for the cholinergic markers ChAT or
VAChT, combined with anatomical criteria such as bouton size
and location, therefore makes C-boutons easily identifiable in
adult/neonatal histologic sections (Figure 3; Barber et al., 1984;
Phelps et al., 1984; Nagy et al., 1993; Hellstrom et al., 2003; Wilson
et al., 2004; Zagoraiou et al., 2009; Alvarez et al., 2011; Dear-
dorff et al., 2013). However, this approach should be applied
with caution, as a small subset of cholinergic S-type terminals
arising from recurrent α-MN axon collaterals and contacting
α-MN somata may approximate C-boutons in size (Cullheim
et al., 1977; Lagerback et al., 1981). Definitive confirmation of
C-bouton phenotype requires ultrastructural verification of the
C-bouton specific “cisternal signature” or alternatively – when sys-
tematically surveying an adequate sample of α-MNs under EM is
unrealistic – light level co-localization of cholinergic makers with
C-bouton specific pre- and/or postsynaptic proteins (see Section

FIGURE 3 |The C-bouton synapse on mammalian α-motoneurons. (A)

C-bouton synapses on intracellularly labeled and reconstructed adult rat
lumbar α-MN are revealed by VAChT-IR (white). Large C-boutons densely
innervate the soma and proximal dendrites of α-MNs but are absent from
more distal locations. Also note that C-boutons are not located on
motoneuron axons (indicated by “a”). (B) C-boutons, indicated by VAChT-IR
(Bi,iv, white), are presynaptic to the muscarinic m2 receptor (Bii,iv, red)
and large Kv2.1 clusters (Biii,iv, green). Note that m2 receptor
immunoreactivity on the α-MN soma and proximal dendrites localize
exclusively to C-bouton postsynaptic sites. (Bii) Inset shows subsynaptic
fenestrated distribution of m2-IR. Images are confocal stacks of 12 × 1 μm

Z-stacks with nissl stain (blue) to label adult rat neuronal somata. Scale bar
is 20 μm. (C) Diagrammatic representation and electron micrograph of
C-bouton ultrastructure in an adult rat. (Ci) Diagram illustrates densely
packed, clear spherical or pleomorphic vesicles and abundant mitochondria.
Closely apposed to the postsynaptic membrane is a 10–15 nm wide
subsurface cistern (SSC) that is continuous with several lamellae of
underlying rough endoplasmic reticulum (rER). Free ribosomal rosettes are
typically visible in the subsynaptic region. (Cii) Electron micrograph of
C-bouton synapse on an α-MN soma. Arrowheads indicate a SSC extending
the entire appositional length of the bouton. Note key features present in
electron micrograph illustrated in diagram (Ci).
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“The C-bouton Signaling Ensemble: A Contemporary View of a
Classic Synapse”).

MOMENTS AND MILESTONES: DISSECTING THE C-BOUTON
CIRCUITRY
Unlike so many α-MN synaptic inputs, for which the neu-
rons of origin are identifiable anatomically and physiologi-
cally (Jankowska and Lindstrom, 1972; Jankowska and Roberts,
1972a,b; Brown et al., 1981; Brown, 1983; Fyffe, 1991a,b; Burke and
Glenn, 1996; Bui et al., 2003), the neuronal source of C-boutons
has been elusive. Early in vivo lesion studies demonstrated that C-
boutons do not degenerate following dorsal root section (Conradi,
1969b; McLaughlin, 1972a; Bodian, 1975); spinal cord hemisec-
tion/transection (McLaughlin, 1972c; Bodian, 1975; Pullen and
Sears, 1978, 1983), or cortical ablation (Bodian, 1975). Neither
are they labeled by injection of retrograde tracers into dorsal
roots (Ralston and Ralston, 1979), nor intracellular staining of
Ia afferents (Brown and Fyffe, 1978; Conradi et al., 1983; Fyffe
and Light, 1984), Ib afferents (Brown and Fyffe, 1979), group II
afferents (Fyffe, 1979), hair follicle afferents (Maxwell et al., 1982),
or axons innervating cutaneous mechanoreceptors (Brown et al.,
1978, 1980, 1981; Bannatyne et al., 1984; Maxwell et al., 1984).
Similarly, intracellular labeling of α-MNs showed C-boutons do
not arise from α-MN axon collaterals (Lagerback et al., 1981),
which is corroborated by differential protein expression in C-
type synapses versus cholinergic terminals in the Renshaw cell area
(see Section“The C-bouton Signaling Ensemble: A Contemporary
View of a Classic Synapse;” Hellstrom et al., 1999; Deng and Fyffe,
2004).

Though these data collectively indicate the intraspinal deriva-
tion of C-boutons, no investigator to date has intracellularly
labeled a cholinergic spinal interneuron and traced its axon to
an α-MN C-type synaptic contact in vivo or in vitro; the defini-
tive test for synaptic connectivity. Advanced molecular labeling
techniques, however, have very convincingly demonstrated that
C-boutons arise from cholinergic V0-embryonic (V0C) interneu-
rons identifiable transcriptionally and phenotypically by the
expression of the V0-specific homeobox protein Dbx1, the paired-
like homeodomain transcription factor Pitx2, and the cholinergic
proteins ChAT or VAChT (Miles et al., 2007; Zagoraiou et al.,
2009). (For complete information on V0 cell ontogeny, we refer
the reader to studies by Moran-Rivard et al. (2001), Pierani et al.
(2001), and Lanuza et al. (2004) as well as the review by Arber
(2012)). V0C interneurons correspond to a known population of
cholinergic partition cells (Barber et al., 1984; Phelps et al., 1984;
Arvidsson et al., 1997) located lateral to the central canal in Rexed’s
lamina X and medial lamina VII (Miles et al., 2007; Zagoraiou
et al., 2009). They can be subdivided into ipsilateral and bilat-
eral projecting subpopulations and span several segments rostral
and caudal to their innervated motor pools (Stepien et al., 2010).
Cholinergic partition cells, C-type synaptic boutons, and the “sig-
naling ensemble” appear early in postnatal development, and are
well established by approximately 1 month of age (Phelps et al.,
1984; Wetts and Vaughn, 2001; Wilson et al., 2004).

The specific placement of V0C interneurons within segmental
spinal circuitry is not fully characterized [see preliminary cir-
cuit diagrams in Zagoraiou et al. (2009) and Witts et al. (2014)].

Preliminary analysis of V0C connectivity demonstrates V0C

interneurons receive synaptic input from several sources, includ-
ing descending serotonergic pathways, local and/or descending
VGluT2 projections, inhibitory interneurons (e.g., V2b cells),
lamina II/III nociceptive interneurons, and non-proprioceptive
primary mechanosensors (Zagoraiou et al., 2009; Witts et al., 2014;
Zampieri et al., 2014; Zhang et al., 2014). Each V0C cell sends
divergent axonal projections to several α-MNs of the same or
functionally equivalent motor pools and avoids α-MNs innervat-
ing antagonist muscles (Stepien et al., 2010). Numerous en passant
synaptic varicosities arising from a single V0C axon contact the
soma and proximal dendrites of a one or more α-MNs, which in
turn receive convergent input from several V0C cells (Stepien et al.,
2010). Although the precise levels of convergence/divergence are
unknown, this pattern of connectivity establishes a large number
of release sites from each presynaptic axon onto the α-MN, likely
reflecting a high probability of transmitter release and contribut-
ing to a high safety factor for strong cholinergic neuromodulation
(e.g., Walmsley et al., 1998).

Recent work shows V0C interneurons also project numer-
ous small synaptic contacts onto V1-derived IaINs (Siembab
et al., 2010). These synapses are morphologically dissimilar to
C-boutons (Siembab et al., 2010), and their postsynaptic effects
are currently unknown. Still, it is intriguing to consider that
V0C interneurons project to the only two neuronal types (α-
MNS and IaINs) in the ventral horn known to receive both
recurrent inhibition and group Ia excitatory drive. Whether V0C

interneurons, like Renshaw cells, send parallel projections to α-
MNs and the “corresponding” IaINs (i.e., those with the same
Ia connections; Hultborn et al., 1971a,b,c) has yet to be elu-
cidated. Nevertheless, these data provide further insight into
segmental motor circuitry and prompt new questions into both
circuit function and synaptic specificity of the V0C neuronal
class.

MOMENTS AND MILESTONES: AHP, SK, AND MOTOR UNIT
TYPE
Early in vivo use of the SK channel blocker, apamin, established
that SK channels are uniquely responsible for generating α-MN
AHP currents (Zhang and Krnjevic, 1987). In vitro investigation
subsequently confirmed these findings (Viana et al., 1993; Lape
and Nistri, 2000), and showed that α-MN SK currents are reduced
following m2 receptor activation at C-bouton synaptic sites (Lape
and Nistri, 2000; Miles et al., 2007). Consistent with these elec-
trophysiological data, our lab has recently shown that not only
are SK channels highly enriched in the C-bouton postsynaptic
membrane (Deardorff et al., 2013), but individual α-MNs express
a variable complement of SK2 and SK3 channel isoforms consis-
tent with observed co-variability in α-MN size and AHP duration
(Deardorff et al., 2013). In the rodent, all α-MNs express SK2, but
SK3 expression is markedly heterogeneous and cell-type-specific
(Figure 4) varying in intensity from negligible (<2× background)
to modest (2 to 3× background) to strong (>3× background)
between individual α-MNs in a single tissue section. SK3 chan-
nels, which have a longer deactivation time constant than SK2
(Xia et al., 1998), are only expressed (with SK2) at C-bouton
postsynaptic sites in smaller α-MNs with longer duration/larger
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FIGURE 4 | Continued

FIGURE 4 | Continued

The potassium ion channel SK3 is part of the C-bouton signaling

ensemble in a subset of α-motoneurons. Images are confocal stacks of
26 × 1 μm Z-stacks with nissl stain (blue) to label rat lumbar neuronal
somata. Scale bar is 20 μm. (A) VAChT-IR (white) C-boutons form synapses
onto all rat lumbar α-MNs on the soma and proximal dendrites. (B) SK3-IR
(red) located within surface membrane of a subset of α-MNs in large distinct
clusters. In rodents, SK3 channels, having slower intrinsic activation and
deactivation kinetics than SK2 channels (Xia et al., 1998), are preferentially
expressed in small, presumably S-type, α-MNs with long duration and large
amplitude mAHP currents (Deardorff et al., 2013). (C) Large and small
Kv2.1-IR (green) clusters are located within the surface membrane of all
α-MNs. (D,E) The large SK3-IR and Kv2.1-IR clusters colocalize within the
surface membrane of α-MNs and are apposed to VAChT-IR C-boutons.

amplitude AHPs (Figure 5). Conversely, larger α-MNs with sig-
nificantly shorter duration/smaller amplitude AHPs express only
SK2 (with little or no SK3-IR; Figure 5).

SK3-expressing α-MNs share other physiological properties
predictive of S-type MNs (i.e., slower conduction velocity, lower
rheobase, and higher input resistance; Deardorff et al., 2013). SK3-
IR within the signaling ensemble can therefore provide “brush
stroke” differentiation of rodent α-MNs along their physiologi-
cal spectrum, and is a useful tool for histologic analysis of α-MN
subtypes in development and disease (Brownstone and Magown,
2013). Altogether these data strongly indicate that the relative pro-
portion of SK2/SK3 isoforms and the channel cluster size and
density regulates AHP duration and amplitude, and the variabil-
ity of these proportions accounts, in part, for the fact that AHP
properties are continuous variables across a population of α-MNs
(Deardorff et al., 2013). SK channel expression may, therefore,
explain the“speed match”between AHP duration of a given α-MN
and the contractile speed of its innervated muscle fibers (Bakels
and Kernell, 1993; Gardiner, 1993). However, critical additional
factors include the source and amplitude of the necessary Ca2+
signal, the coupling of these signals to the SK channels and,
potentially, the presence/absence of Ih currents (Gustafsson and
Pinter, 1985). Nevertheless, differential SK channel expression at
the C-bouton undoubtedly contributes to α-MN input–output
gain across the spectrum of α-MN subtypes by regulating AHP
properties.

SWIMMING FORWARD: A MECHANISM FOR CHOLINERGIC
MODULATION
We return now to the crest of our wave. The constancy of
form and the intricacy of protein expression imply a funda-
mental logic to C-bouton organization and engagement during
motor activity. Here, we assert the signaling ensemble is built
around an organizing principle (i.e., the SSC) that allows for
the generation of isolated Ca2+ signals at multiple sites on the
soma. From this starting point, our intent here is to swim
forward toward the synthesis of a comprehensive mechanis-
tic hypothesis for the cholinergic modulation of α-MN firing
rate. We base our rationale in the now recognized functional
requirement for C-boutons in “swimming” (Zagoraiou et al.,
2009), in the observation that cholinergic C-bouton function
is not required for regular locomotion (Zagoraiou et al., 2009),
and in the probable interactions of the key components of the
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FIGURE 5 | Subset of rat lumbar α-motoneurons with SK3-IR have

significantly longer AHP 1/2 decay time and increased amplitude. Data

shown is review of previous study reported by Deardorff et al. (2013).

(A) Diagrammatic representation of experimental paradigms. In an adult in
vivo rat preparation, tibial α-MNs, identified by antidromic activation of the
tibial nerve, were penetrated with a sharp recording electrode. Neuronal
electrical properties were recorded and neurons were filled with neurobiotin
(green) for post hoc identification. Spinal cord tissue was harvested and
processed for SK3-IR. (B–D) Neuronal electrical properties are of α-MNs
depicted in micrographs below. Asterisk (*) denotes stimulus artifact.

Micrographs are single optical confocal sections through the soma of
intracellularly labeled α-MNs (green) processed for SK3-IR (red) and the
general neuronal stain nissl (Blue). Scale bars are 20 μm. (B) SK3-IR (+) (Bii

and Biii arrowheads) α-MNs have long duration and large amplitude AHP,
low rheobase, and high input resistance. Micrograph insets show VAChT-IR
(White) C-bouton in apposition to an SK3-IR (+) cluster. Inset scale bar is
5 μm. (C,D) SK3-IR (−) α-MNs have short duration and small amplitude
AHPs. However, even among these SK3-IR (−) cells, rheobase and input
resistance show high variance along the continuum of α-MN properties.
Please note the nearby SK3-IR (+) cells (C,Dii,iii arrowheads).
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C-bouton signaling ensemble (Figures 1 and 2), most of which are
known to generate, regulate, or be regulated by local intracellular
Ca2+.

Although C-boutons may boost recruitment gain, as pro-
posed elsewhere (Zagoraiou et al., 2009; Brownstone and Magown,
2013), we propose that the cholinergic modulation produced by
C-boutons is highly task-dependent and will be maximal only
during the moderate to strong physiological drive necessary for
high-output motor tasks like swimming (Zagoraiou et al., 2009;
Figure 6). The mechanism we suggest accounts for the minimal
appreciable requirements and effects observed during conditions
of low and/or transient drive, which are appropriate for spinal
reflexes and/or low-output tasks such as walking (Zagoraiou et al.,
2009; Figures 6Ai,Bi). We extend this notion further to condi-
tions of extremely powerful physiological (or pathological) drive,
during which time any effects of C-bouton activity on firing rate
are negated by the molecular dynamics and kinetics of the respec-
tive m2 receptors and SK/Kv channels (Figures 6Aiv,Biv). That is,
while the cumulative, combined effects of these isolated Ca2+ sig-
nals on specific AHP and delayed rectifier K+ currents are likely to
be quite significant throughout the α-MN activity spectrum, the
functional impact of the C-bouton circuitry is only observed when
imposed upon a restricted window of moderate to strong excita-
tory drive. We believe our synthesis, which is primarily based on
interpretation of disparate datasets, will promote testable hypothe-
ses. Elements of this synthetic approach are considered in the
following sections.

SUBSURFACE CISTERNAE AND THE GENERATION OF AN ISOLATED
Ca2+ SIGNAL
It is widely accepted that neuronal SSCs function as an intra-
cellular Ca2+ store with multiple roles in Ca2+ homeostasis and
mobilization (see Yamamoto et al., 1991 and Fuchs et al., 2014 for
references). Indeed, Henkart et al. (1976) proposed that SSCs “are
designed to release Ca2+ into the cytoplasm with whatever further
effects this might produce.” SSCs serve also as a physical diffusion
barrier that spatially and functionally restricts this Ca2+ signal
from those originating in other cellular compartments and, dur-
ing increased cellular activity, act as a Ca2+ sink to rapidly absorb
and shuttle free Ca2+ from the cisternal microdomain (Yamamoto
et al., 1990, 1991; Fuchs et al., 2014). Ca2+ release by RyR-rich
SSCs serve, in part, to activate nearby SK channels in cochlear
hair cells, which share some synaptic similarities with C-boutons
(Evans et al., 2000; Lioudyno et al., 2004; Grant et al., 2006), and in
sympathetic ganglion cells (Akita and Kuba, 2000). RyR release of
Ca2+ may also result in an increase in nearby Kv2.1 channel con-
ductances, via Ca2+-dependent dephosphorylation pathways, as it
does in hippocampal and cortical pyramidal cells (Du et al., 1998;
Antonucci et al., 2001; Misonou et al., 2005). Moreover, vesicles
observed budding from the cytoplasmic surface of SSCs in cochlear
hair cells and α-MNs are thought to be involved in removal of
excess free Ca2+ from the subsynaptic cytoplasm (Yamamoto et al.,
1991; Fuchs et al., 2014). In light of these factors, the SSC itself is
highly indicative that the functional regulation of the C-bouton
signaling ensemble (which includes SK and Kv2.1 channels) occurs
through precise control of an isolated Ca2+ microdomain, the
mechanistic underpinnings of which are considered below.

INVOLVEMENT OF THE SIGNALING ENSEMBLE WITH THE ISOLATED
Ca2+ SIGNAL
The unique aggregation of cellular elements at C-bouton synaptic
sites and their coordinated regulation by and/or of the isolated
Ca2+ signal enables exquisite control over α-MN K+ currents.
Consider first the generation of the α-MN AHP. Membrane bound
N- and P/Q-type Ca2+ currents necessary for α-MN SK channel
activation (see “Additional Signaling Components”) generate this
Ca2+ signal, which is isolated and shaped by the SSC. The AHP
currents influence repetitive discharge properties of α-MNs, in
part, via reductions in the variability in the interspike interval, the
slope of the f-I relation, and the maximal rate of primary-range
firing (Kernell, 2006; Brownstone and Magown, 2013).

A primary effect of m2 receptor activation by C-bouton
synapses is a reduction of the AHP (Lape and Nistri, 2000; Miles
et al., 2007). Though their signaling pathway(s) in α-MNs are
undefined, m2 receptors typically exert their effects by inhibiting
N-type Ca2+ channels, as observed in sympathetic ganglion (Hille,
1994; Herlitze et al., 1996; Shapiro et al., 1999), cortical pyrami-
dal (Stewart et al., 1999), neostriatal (Howe and Surmeier, 1995),
and basal forebrain neurons (Allen and Brown, 1993). Ca2+ influx
through these channels is required for activation of SK channels
and dictates the number of SK channels that open. N-type chan-
nel blockade by m2 receptors is usually mediated by Gi/o protein
coupled βγ subunits, which cause a depolarizing shift in the volt-
age dependence of channel activation (Hille, 1994; Herlitze et al.,
1996; Ikeda, 1996; Jeong and Ikeda, 1999; Shapiro et al., 1999) and
is negated by strong or repeated membrane depolarization (Hille,
1994).

The m2/cholinergic effect exerted by active C-boutons is quite
simple and intuitive at this level: preventing N-type Ca2+ influx
(which is largely triggered by synaptically evoked action potentials)
from activating SK channels during moderate to strong physio-
logic drive of the MNs (Figures 6Aii,iii,Bii,iii). This would be
consistent with observed reduction of the AHP and enhanced α-
MN excitability when m2 receptors are, presumably, activated
during swimming or other tasks requiring high motor output
(e.g., Figures 6Aii,Aiii; Miles et al., 2007; Zagoraiou et al., 2009).
This “upstream” mechanism of AHP modulation will have a
minimal appreciable effect on individual AHPs and α-MN fir-
ing rate during low levels of physiologic drive causing transient
or “subprimary” range firing (Manuel et al., 2009; Turkin et al.,
2010), due to the physiological triggering of SK channel activa-
tion by a short duration, suprathreshold stimulus (i.e., an action
potential) occurring at intervals that may be longer than the dura-
tion of the AHP itself (Figures 6Ai,Bi). This may account for
observations that C-bouton function is not required for regular
locomotion (Zagoraiou et al., 2009). Moreover during powerful
and/or pathologic excitatory drive the m2-mediated diminution
of N-type channel activity is negated (Hille, 1994), resulting in
a break of the m2 generated effect and an increase in AHP size
(Figures 6Aiv,Biv).

At high levels of excitatory drive we must also consider the
results of modulation of other components of the signaling ensem-
ble. Although the m2 mediated effect on AHP is significant in
a particular physiological range, the whole microdomain has an
important role in setting α-MN firing rate. With this in mind,
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FIGURE 6 | Continued
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FIGURE 6 | Continued

Hypothesis for state dependent regulation of motoneuron activity

through the C-Bouton signaling ensemble. (A) C-boutons increase
motoneuron firing frequency along a widow of the α-MN activity spectrum.
(Ai) With low or transient physiological drive, m2 activation is not likely to
mediate an effect on AHP duration or firing rate. (Aii,iii) As excitatory drive
increases, persistent m2 receptor activation inhibits local CaV channels
through a Gi/Go coupled pathway, preventing both the SK channel activation
and Kv2.1 dephosphorylation. Thus, outward K+ current is reduced and
neuronal firing rate is increased (relative to Bii and Biii) as illustrated with
spike train below. (Aiv) m2-mediated effects on CaV channels are negated
by prolonged or repeated membrane depolarization (Hille, 1994) as may
occur during extremely strong or pathologic excitatory drive. Here, Ca2+
influx through N-type calcium channels activates SK channels to generate
AHP and to dephosphorylate Kv2.1 to increase outward K+ current and
reduce firing frequency, as illustrated with spike train below. (Bi–iii) As
excitatory drive increases without C-bouton activity, the N-type Ca2+ influx
activates SK channels to generate AHP. Thus, the outward K+ current
maintains a lower firing frequency than in corresponding images in A. Spike
trains illustrated below. (Biv) As in (Aiv), during prolonged or pathologic
excitatory drive, N-type Ca2+ influx results in both SK channel activation
and Kv2.1 dephosphorylation, thereby increasing outward K+ current and
homeostatically decreasing firing rate, illustrated with spike train below. All
spike trains depicted in this figure are added for illustrative purposes only
and do not represent electrophysiological recordings or computer
simulations.

the Ca2+ dependent generation of the AHP and its regulation
by m2 receptor activation is one part of a coordinated series of
molecular events that occur at the C-bouton, but is reliant on the
complex interplay of other components in the signaling ensemble.
For example, as excitatory drive increases how does the combina-
torial contribution of SK and/or Kv2.1 change in the presence or
absence of cholinergic input?

In the highly clustered configuration (typically) observed in
hippocampal and cortical pyramidal cells, and α-MNs, Kv2.1
channels are phosphorylated and have a high activation and
deactivation threshold and slow kinetics (Murakoshi et al., 1997;
Misonou et al., 2004, 2005; Surmeier and Foehring, 2004; Moha-
patra and Trimmer, 2006; Misonou, 2010). Interestingly, some
investigators have postulated that clustered Kv2.1 channels serve
primarily non-conducting functions (O’Connell et al., 2010; Fox
et al., 2013); for the purposes of this discussion we will consider a
more traditional role for the channels in αMNs. Importantly, upon
prolonged/pathologic excitatory drive, Ca2+/calcineurin depen-
dent dephosphorylation pathways (Figures 6Aiv,Biv) rapidly
decluster Kv2.1 while simultaneously lowering its activation and
deactivation threshold and accelerating its kinetics (Surmeier and
Foehring, 2004; Park et al., 2006; Mohapatra et al., 2009). In
α-MNs, prolonged excitatory drive causes rapid Kv2.1 channel
declustering (Romer et al., 2014) by a Ca2+/calcineurin dependent
mechanism (S. H. Romer, A. S. Deardorff, R. E. W. Fyffe, unpub-
lished), though corresponding alterations in channel kinetics are
uncharacterized.

Data from other cell types shows clustered Kv2 channels main-
tain steady state firing by regulating membrane potential during
the interspike interval (Johnston et al., 2008; Guan et al., 2013;
Liu and Bean, 2014), while declustered/dephosphorylated Kv2
channels serve to homeostatically lower firing rate (Surmeier and
Foehring, 2004; Park et al., 2006; Mohapatra et al., 2009). In
this way, Kv2 channels may increase or decrease cell excitability

depending on the kinetics of channel activation (Liu and Bean,
2014). Brownstone et al. (2011) propose C-bouton activity during
fictive locomotion (Miles et al., 2007; Zagoraiou et al., 2009)
may contribute to steady state firing rates via the regulation
of Kv2.1 phosphorylation and clustering. This is consistent
with our hypothesis that m2-mediated inhibition of HVA-Ca2+
current prevents the activation of Ca2+/calcineurin dependent
dephosphorylation pathways and thus maintains Kv2.1 cluster-
ing. However, if prolonged/pathologic excitatory drive causes
large changes in intracellular Ca2+ sufficient to allow diffu-
sion of Ca2+ from neighboring compartments, there would
be rapid Kv2.1 channel declustering (Romer et al., 2014) by a
Ca2+/calcineurin dependent mechanism (S. H. Romer, A. S. Dear-
dorff, R. E. W. Fyffe, unpublished), negating the influence of
C-boutons.

Several other components of this complex signaling ensemble
likely serve to fine tune the efficacy of neuromodulation. Presy-
naptic nAChRs and P2X7 receptors may provide an additional
regulatory mechanism for synaptic transmission, particularly if
ATP is co-released with ACh as it is at other central and periph-
eral cholinergic synapses (Burnstock et al., 1997), and cisternal
S1Rs are known to reduce the sensitivity of m2 receptors to
ACh (Walker and Bourguignon, 1990; Kim et al., 2010). Alto-
gether, we suggest the C-bouton signaling ensemble is a highly
integrated system, organized around an anatomically segregated
Ca2+ microdomain, for precise and nuanced regulation of cell
firing. Moreover, it has a built-in fail-safe mechanism against
excitotoxicity, in that this strategically organized ensemble can
both be driven by, or override, the synaptic circuitry of the
C-bouton.

AN ALTERNATIVE MECHANISM
Others have suggested, based on muscarine’s minimal effect on
global α-MN Ca2+ currents, that m2 receptor activation results in
the direct blockade of α-MN SK channels (Miles et al., 2007; Witts
et al., 2014). In support of their view, the direct phosphorylation of
SK channels by protein kinase A (PKA) and casein kinase 2 (CK2)
can, respectively, cause channel internalization (Kohler et al., 1996;
Ren et al., 2006; Fakler and Adelman, 2008; Faber, 2009) and
reduced Ca2+ sensitivity (Bildl et al., 2004; Allen et al., 2007).
Moreover, neurotransmitter-initiated signaling cascades have been
shown to modulate SK channel gating through CK2- or protein
kinase C (PKC)-mediated phosphorylation (Maingret et al., 2008;
Buchanan et al., 2010; Giessel and Sabatini, 2010). Although m2
receptors typically inhibit protein kinase activity, they can activate
phosphorylation pathways in smooth muscle (Zhou et al., 2003).
Therefore it is possible the direct phosphorylation of SK channels
by protein kinases could provide an alternate mechanism through
which m2 receptors reduce the AHP in α-MNs.

However, evidence that N- and P/Q-type Ca2+ channels are
diffusely distributed throughout the α-MN somatic membrane
(Wilson et al., 2004), and that α-MN SSCs function as Ca2+ dif-
fusion barriers indicates that m2 receptor activation need only
inhibit those α-MN CaV channels located within or very near to
the C-bouton postsynaptic membrane to exert an effect on the
AHP. In this case, m2 influence over the signaling ensemble would
be masked in studies of global Ca2+ currents. The activation of
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CK2- or PKC-mediated phosphorylation would also be a novel
finding for neuronal m2 receptors, necessitating future studies
characterizing this undescribed signaling pathway. Moreover, such
a mechanism would act as a binary switch, turning on and off AHP
when necessary and not requiring an elaborate signaling ensemble
nor the SSC. Our hypothesis, however, of a signaling ensemble
organized around fine control of a Ca2+ micro-signaling domain
is capable of highly nuanced and graded modulation of outward
K+ current.

C-BOUTONS IN HUMAN HEALTH AND DISEASE
Dynamic reorganization of C-boutons and components of the
postsynaptic signaling ensemble has been noted in a variety of
pathologic conditions and in conditions of altered excitability
(Saxena et al., 2013; Romer et al., 2014; Witts et al., 2014). The bulk
of the data has thus far been obtained in animal models, and there
is no consensus on whether C-bouton plasticity in these conditions
is compensatory or pathologic. In part, the uncertainty results
from the diversity of disease/injury models that affect C-boutons
and the complexity of the signaling ensemble.

Analysis of effects on C-bouton structure in models of amy-
otrophic lateral sclerosis (ALS), spinal cord injury, and peripheral
nerve injury demonstrate diverse and sometimes conflicting
reports. In ALS, there has been interest in potential neuropro-
tective roles for C-boutons and this view is bolstered by studies
that show an early increase in C-bouton size (Pullen and Athana-
siou, 2009; Herron and Miles, 2012; Saxena et al., 2013); however,
diminished C-bouton and V0c interneuronal ChAT/VAChT con-
tent (Nagao et al., 1998; Casas et al., 2013) and S1R expression
(Casas et al., 2013; see Witts et al., 2014) have also been observed
in similar murine models of the disease. The structural changes
in animal models may also reflect a propensity for C-bouton
reorganization to occur first in larger, less excitable, and more
vulnerable α-MNs (Saxena et al., 2013), and the changes may
be more pronounced in males (Herron and Miles, 2012). There
is minimal data from autopsied human spinal cord from ALS
patients, mostly from late stages of the disease, showing contin-
ued presence of C-boutons on degeneration-resistant sphinteric
α-MNs (Pullen, 1992). Additionally, the duration of the AHP
in human MNs is possibly related to disease progression (i.e.,
an initial shortening followed by prolongation; Piotrkiewicz and
Hausmanowa-Petrusewicz, 2011).

C-bouton organization is affected by both spinal cord and
peripheral nerve injury, which generally appear to cause transient
or persistent loss of and/or disconnection of C-boutons from α-
MNs and changes in expression and localization of SK, HCN, and
Kv2.1 channels (Kerns and Hinsman, 1973; Sumner, 1975; Alvarez
et al., 2011; Romer et al., 2012, 2014). These specific changes may
account for some, but not all, of the physiological changes that
have been observed (Kuno et al., 1974a,b; Cope et al., 1986; Bichler
et al., 2007a,b; Bullinger et al., 2011; Prather et al., 2011), including
altered post-spike AHP duration and repetitive firing properties
(Kuno et al., 1974a; Gustafsson and Pinter, 1984).

The significance of C-bouton plasticity remains uncertain.
After injury, the specific loss or disconnection could lead to post-
synaptic receptors (m2) becoming constitutively active, analogous
to observations made of the serotoninergic system (Fouad et al.,

2010; Kong et al., 2010, 2011; Murray et al., 2010, 2011; Hultborn
et al., 2013), but this has not been explored. Given the high vul-
nerability of large, F-type α-MNS in ALS, it would be interesting
to determine if the graded expression of SK channel isoforms will
promote new testable hypotheses regarding disease pathogenesis
and C-bouton mediated compensatory adjustments (Brownstone
and Magown, 2013; Deardorff et al., 2013).

CONCLUSION
Multiple neuromodulatory systems and a myriad of ion channels
are available for the task dependent regulation of MN excitability.
The serotonergic system, for example, originates in the brain-
stem raphe nucleus, provides extensive synaptic input onto α-MN
dendrites (Alvarez et al.,1998) and is strongly linked to both behav-
ioral and pathologic alterations of persistent inward Ca2+ currents
(Li and Bennett, 2003, 2007; Heckmann et al., 2005; Brownstone,
2006; Heckman et al., 2008; Norton et al., 2008; Powers et al.,
2008). While numerous studies have focused on inward current
modulation, the state dependent regulation of α-MN outward cur-
rent has only recently been investigated (see Manuel et al., 2012).
New evidence has shown that a cholinergic modulatory system
originating from spinal interneurons (V0C interneurons), and
contributing dense synaptic coverage to α-MN somata, modulates
the strength of motor output via reductions in α-MN outward K+
current (Miles et al., 2007; Zagoraiou et al., 2009). It is interest-
ing to consider that while serotonin increases MN excitability by
amplifying inward current, acetylcholine does so by reducing out-
ward current. The dynamic interplay of these two different, but
rather synergistic, systems endows the CNS with remarkable con-
trol over MN output, and the interaction between the AHP and
L-type Ca2+ currents responsible for PIC may be a critical factor
in regulating α-MN firing properties (Manuel et al., 2014).

Here, we illustrate large, cholinergic presynaptic terminals,
termed C-boutons (Conradi, 1969a), are important modulatory
loci for state-dependent alterations in MN repetitive firing, largely
mediating their effects through a unique and highly specialized
signaling ensemble organized for the state-dependent regulation
of outward K+ currents. To effectively manipulate signal transduc-
tion at C-bouton synaptic sites may be critical in the development
of new therapeutic interventions for a variety of devastating
neurological conditions. However, advances in patient care will
first require a complete understanding of both the transduction
mechanisms, as well as which cases (if any) C-bouton synap-
tic reorganization and/or alterations in α-MN AHP (and other
intrinsic α-MN properties) contribute to disease pathology or,
alternatively, maintain α-MN viability.
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