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Multicellular organisms rely on intercellular communication to regulate important cellular
processes critical to life. To further our understanding of those processes there is a need
to scrutinize dynamical signaling events and their functions in both cells and organisms.
Here, we report a method and provide MATLAB code that analyzes time-lapse microscopy
recordings to identify and characterize network structures within large cell populations,
such as interconnected neurons. The approach is demonstrated using intracellular calcium
(Ca2+) recordings in neural progenitors and cardiac myocytes, but could be applied to a
wide variety of biosensors employed in diverse cell types and organisms. In this method,
network structures are analyzed by applying cross-correlation signal processing and graph
theory to single-cell recordings. The goal of the analysis is to determine if the single cell
activity constitutes a network of interconnected cells and to decipher the properties of
this network. The method can be applied in many fields of biology in which biosensors are
used to monitor signaling events in living cells. Analyzing intercellular communication in
cell ensembles can reveal essential network structures that provide important biological
insights.
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INTRODUCTION
Intercellular communication has been extensively investigated in
the adult brain, in which cells form neural network circuits whose
activities underlie the basic functions of the brain (Buzsaki, 2004).
During the postnatal period, developing networks exhibit spon-
taneous correlated neuronal activity that plays a central role in
their establishment (Katz and Shatz, 1996; Khazipov et al., 2004;
Cang et al., 2005; Kandler and Gillespie, 2005; Nicol et al., 2007).
In developing neocortical structures, synchronized activity has
been observed at scales ranging from correlated pairs of neural
progenitor cells (Owens and Kriegstein, 1998) to gap junction-
synchronized cortical columns (Yuste et al., 1992; Kandler and
Katz, 1998; Dupont et al., 2006). To understand the nature and
physiological roles of these networks, it is essential to identify
them and characterize their structures.

Graph theory is the study of graphs (mathematical term for
networks) consisting of nodes (also called vertices) and links con-
necting the nodes (also called edges) (Feldt et al., 2011). Many
relations and dynamic processes can be modeled by graphs, in
such diverse fields as biology, social sciences, information systems,
and transportation systems (Newman, 2010). When studying bio-
logical networks, a typical node can represent a cell (Malmersjö
et al., 2013a), specific brain area (Biswal et al., 2010), or pro-
tein (Jeong et al., 2001). A link between two nodes can represent
a functional interaction, e.g., via ion fluxes (Malmersjö et al.,
2013a), synapses (Bonifazi et al., 2009), physical connections by
axon bundles (Sporns et al., 2005), or protein–protein inter-
action (Jeong et al., 2001). The method presented here uses
cross-correlation analysis and graph theory to evaluate network

topologies among living cells (Figure 1A) exhibiting sponta-
neous Ca2+ signaling (Figure 1B). The analysis identifies cell
pairs with highly correlated Ca2+ signals (Figure 1C) or with
uncorrelated Ca2+ signals (Figure 1D). Furthermore, the method
can also reveal highly connected “hub cells” (scale-freeness)
and high clustering accompanied by short internodal distances
(small-worldness). Such functional network designs are effective
in many types of biological systems (Barkai and Leibler, 1997;
Barabasi and Oltvai, 2004). Furthermore, network analysis has
also been used in fMRI based studies of cognitive neuroscience
(Sporns, 2014). By comparing the activity of healthy and dis-
eased subjects, changes in network structure and activity can be
linked to physiology and pathophysiology (Honey and Sporns,
2008).

We developed a method to identify and characterize network
structures from time-lapse microscopy recordings, and imple-
mented it in MATLAB. The resultant software tool is easy to
extend and use. The method was originally designed to study
network formations among large populations of neural pro-
genitor cells exhibiting spontaneous intercellular Ca2+ activity
(Malmersjö et al., 2013a,b). However, this method could poten-
tially be used to analyze any kind of cellular activity that is
detectable in living single cells by time-lapse microscopy, e.g.,
contractile activity measured by bright-field microscopy (Kitambi
et al., 2012) or activity measured using various biosensors, such
as NF-κB, cAMP, or ERK (Nelson et al., 2004; Malmersjö et al.,
2010; Aoki et al., 2013; Everett and Cooper, 2013). Thus, this
method could be used to identify and investigate the details of
uncharacterized network structures.
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FIGURE 1 | Principle of cross-correlation analysis of a cell signaling

network. (A) Illustration of a group of ten cells, numbered with roman
numerals, with links connecting strongly correlated cells. The shortest path
length between cell i and cell x, as well as the clustering coefficient for cell v, is

stated in the figure. The shortest path between cell i and cell x is 2. Cell v has
three connected neighbors, and they are all neighbors of each other; thus, the
clustering coefficient is 3/3 = 1. (B) Pseudo Ca2+ concentration vs. time traces
for all ten cells. Two time series with high (C) or low (D) correlation coefficients.

MATERIALS AND METHODS
CALCIUM IMAGING
Cells were loaded with the Ca2+-sensitive fluorescence indicator
Fluo-3/AM (5 μM, Invitrogen) at 37◦C for 30 min in Krebs-
Ringer’s buffer containing 119.0 mM NaCl, 2.5 mM KCl, 2.5 mM
CaCl2, 1.3 mM MgCl2, 1.0 mM NaH2PO4, 20.0 mM HEPES (pH
7.4), and 11.0 mM dextrose. Measurements of cytosolic Ca2+
were carried out in Krebs-Ringer’s buffer at 37◦C using a heat-
controlled chamber (QE-1; Warner Instruments) and a cooled
electron-multiplying charged-coupled camera (QuantEM 512SC,
Photometrics) mounted on an upright fixed stage microscope
(Axio Examiner.A1, Carl Zeiss) equipped with a 20× 1.0 N.A. lens
(Carl Zeiss). Excitation at 480 nm was assessed with an illumina-
tion system (DG4, Sutter Instrument) at sampling frequency of
0.2–1 Hz (T = 1–5 s). MetaFluor (Molecular Devices) was used
to control all devices and to analyze acquired images. The cell-
free area was created by making a cut with a fine syringe (BD
Microlance™ 3, 0.4 × 19 mm) in confluent HL-1 cells. Dishes
were placed in an incubator for 5 h before imaging.

CELL CULTURE
Neural progenitors were derived from mouse embryonic stem
cells as described before (Malmersjö et al., 2013a). HL-1 cells were
cultured as previously described (Claycomb et al., 1998).

CROSS-CORRELATION ANALYSIS
Cross-correlation was used to determine whether two cells were
functionally interconnected. Cross-correlation analysis is a math-
ematical method for quantifying the linear similarity between
two waves as one of them is shifted in time (Brockwell and
Davis, 1998). When cross-correlation analysis is applied in sig-
nal processing, the waves are typically time series consisting of

discrete sets of data points [Xt , t ∈ T], e.g., images acquired
by time-lapse microscopy. The normalized version of the cross-
correlation function, i.e., the cross-covariance, is commonly used
for image-processing applications in which the brightness of
the image is the quantitative measure. In MATLAB, the cross-
covariance is implemented as xcov:

cxy (m) =

⎧⎪⎪⎨
⎪⎪⎩

∑N − |m| −1
n = 0 (x (n + m) − 1

N

∑N − 1
i = 0 xi)

(y∗
n − 1

N

∑N − 1
i = 0 y∗

n) if m ≥ 0

c∗
yx(−m) if m < 0

(1)
Here, m is the lag, N is the number of time points, n is the sum-
mation index, and x and y are the two time series. Because N
is a finite number, the above function (Equation 1) is just an
estimation of the real cross-covariance function:

ϕxy (μ) = E
[
(xn + m − μx)

(
yn − μy

)]
(2)

Here, μx and μy are the mean values of the stochastic processes
(the time series are modeled as stochastic) and E is the expec-
tation value operator (the average value from multiple samples).
If time is fixed in the cross-covariance function (Equation 2), it
will result in the well-known correlation coefficient, also known
as the Pearson correlation, a real number between -1 and 1. A cor-
relation coefficient equal to 0 indicates no linear relation between
the waves, whereas a coefficient equal to 1 or -1 demonstrates a
perfect linear relation.

Two time series might be highly correlated even if one of them
is shifted in time. Calculating the correlation as a function of lag
enables determination of the maximum correlation despite lag.
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FIGURE 2 | Correlation as a function of lag. (A) Two sine functions with
the same frequency but different amplitudes and phases, plotted in the
same graph. (B) The correlation as a function of lag of the two sine waves
in (A).

Figure 2A shows two sine waves with identical frequency, but dif-
ferent amplitudes and phases. Figure 2B shows correlation as a
function of lag for the two sine waves. The phase shift is 2.5 s.
Note that the correlation function is amplitude-independent
and only considers the relative amplitude. In some cases, for
example neurons interconnected with synapses, the identified
lag could be related to the pausing time between two neurons.
However, most often this effect is interpreted as an effective phase
shift.

Before calculating the correlation between two signals, they
can be filtered by subtracting underlying trends; this process is
called trend correction. For instance, bleaching or focus shifts
might lead to a gradual decay, superimposed on the actual sig-
nal. By fitting the signals to a polynomial function with a certain
degree (for example a linear function for linear trends), this effect
can be reduced.

It is important to decide a cut-off that filters out insignifi-
cant correlations. We have developed a method for determining
such cut-off values using a scrambled data set. A scrambled data
set fscrambled is created by shuffling the individual time series f to
random starting points t (Equation 3). Thus, each original time
series is divided into two parts at a random position and then
put together again in the opposite order. Figure 3 illustrates a
time series between t0 and tn (Figure 3A) that is shuffled to tx

(Figure 3B). This procedure is then repeated for all-time series in
the data set in a cyclic fashion:

fscrambled [1 : N] = (f [t : N] f [1 : t − 1] ) (3)

The total activity in the original data set and the scrambled data
set are thereby conserved. The mean or the 99th percentile of
the cross-covariance values of the scrambled data set can then be
applied as the cut-off value.

FIGURE 3 | Producing a scrambled signal. (A) A pseudo-signal with start
and end time points t0 and tn. (B) A scrambled signal was created by
shuffling the signal in (A) to a random time point tx .

GRAPH THEORY
Graph theory can be used to characterize the topology of a net-
work (Feldt et al., 2011). In graph theory, several network param-
eters are calculated for each network to determine the network’s
type (Newman, 2010), shown in Figures 4A,B. Connectivity is
here defined as the number of cells with a correlation coefficient
larger than the cut-off, divided by the total number of cells. This is
a measure of the degree of connections for the network, because
a high cut-off results in a low connectivity and vice versa. The
edge density, also referred to as connectance (Newman, 2010), is
defined as the number of edges divided by the maximum num-
ber of edges. The neighbors of a node are all the nodes connected
to it in one step. The degree of a node is its number of neighbors;
hence the degree distribution P(k) of a network is the distribution
of nodes with a degree equal to k. P(k) is obtained by counting
the number of nodes N(k) with k = 1, 2, 3, . . . connections and
dividing by the total number of nodes.

Classical models of networks occurring in nature are either
regular or random, as shown in Figure 4A. In a regular network,
each node is connected to k other nodes (Feldt et al., 2011).
Figure 4A shows a regular network with k = 4. In a random net-
work, nodes are connected with links stochastically, resulting in
a Poisson-shaped degree distribution around pN, where p is the
probability and N is the total number of nodes, plotted in panel
Figure 4C. In this example, 1000 nodes are randomly connected
to each other with 50% probability.

Small-world networks combine features of both regular and
random networks, with high clustering as in regular networks
but short internodal distances as in random networks (Watts
and Strogatz, 1998). According to the Watts-Strogatz model, a
small-world network can be generated by randomly rewiring
links in a regular network (Watts and Strogatz, 1998). The prop-
erties of small-world networks are assessed by calculating the
mean clustering coefficient C and the mean shortest path length
L of the network using the MatlabBGL library (http://www.math
works.se/matlabcentral/fileexchange/10922-matlabbgl). Hence, a
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FIGURE 4 | Characterizing network structures. (A) The topologies of
a small-world (red), regular (blue), and random (green) network
depicted with their internal relations to the network parameters σ

and λ. (B) The network parameters σ and λ for a small-world (red),

regular (blue), and random (green) network, plotted as a function of
rewiring. The degree distributions for a random (C) and scale-free
(D) network plotted in a log–log scale. (E) The topology for a
scale-free network.

small-world network is characterized by the following
relations:

σ = C

Crand
� 1 and λ = L

Lrand
≈ 1 (4)

The clustering coefficient is the number of neighbors of a node
that are also neighbors of each other divided by the total number
of possible links between the neighbors, as shown in Figure 1A.
Thus, it reflects the number of groups in a network. The shortest
path length is the minimum number of nodes that must be passed
to travel from one node to another, as depicted in Figure 1A. The
values of C and L are then compared with the corresponding
values of Crand and Lrand for a randomized version of the net-
work. Figure 4A shows a simplified scheme for classification of
small-world (red), regular (blue), and random (green) networks
according to their mean clustering coefficient σ and mean short-
est path length λ. The interrelationship between the clustering
coefficient (σ ), shortest path length (λ), and small-world parame-
ter (σ /λ) as a function of rewiring probability of a regular network
is shown in Figure 4B. In this simulation, 1000 nodes were con-
nected in a circle to their two closest neighbors, and random links
were rewired with increasing probability.

A network is defined as possessing small-world characteristics
if the mean path length is as short as in the corresponding ran-
dom network, whereas the mean clustering coefficient is higher.
At the level of the central nervous system, small-world networks
are thought to promote efficient information flow at a low wiring
cost (Achard and Bullmore, 2007).

The Barabási–Albert model of preferential attachment states
that a scale-free network can be generated by allowing a random
network to grow according to preferential attachment (Barabasi

and Albert, 1999). If the degree distribution approximately
follows a power law (a heavy-tailed function without a clear mean
value or scale), the network is defined as scale-free.

P (k) ∝ k−γ ↔ log (P (k)) ∝ −γ log(k) (5)

In Figure 4D the degree distribution is plotted in a log–log scale
that shows a linear function if possessing scale-free characteris-
tics. The scale factor γ is inferred using the least-squares method;
however, some authors have argued that the maximum likelihood
method is superior (Clauset et al., 2009). Scale-free networks
have some nodes with many neighbors that can act as hubs
(Barabasi and Albert, 1999). On theoretical grounds, these net-
works are thought to be robust (Albert et al., 2000): as depicted
in Figure 4E. In Figure 4D, a network with 100 start nodes with
random connections was grown by connecting 900 new nodes in
a “rich-get-richer” fashion.

SOFTWARE
MATLAB version 7.12.0 (http://www.mathworks.com), or later,
including the Signal Processing toolbox, is required to imple-
ment the analytical method we describe here. The current
versions of MATLAB run on multiple operating systems.
NetworkIdentification.m and NetworkAnalysis.m are the files
containing the main code, supported by the function files
mic2net.m, crosscorrelation.m and pickcells.m. The program
is initiated by mic2net.m. All files are included as supple-
mentary material for this article (Supplementary Materials).
The MatlabBGL library for MATLAB is required for the
topology analysis that calculates the shortest path length
and clustering coefficients, and is provided as supplementary
material online. The original source for the MatlabBGL can
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be found elsewhere: (http://www.mathworks.com/matlabcentral/
fileexchange/10922).

Fiji (http://www.fiji.sc/Fiji) or any other image-processing
software that can extract the mean intensities, x-coordinates, and
y-coordinates from multiple regions of interest (ROIs) in time-
lapse microscopy recordings is required to analyze time-lapse
microscopy recordings.

RESULTS
The first step of the analysis is to extract data from the time-lapse
microscopy recordings using a fluorescent biosensor to monitor
e.g., intracellular Ca2+ signaling (Figures 5A,B). This is carried
out by calculating the mean fluorescence value of each cell marked
with an ROI. Because network structures are spatial structures,
we also need the x- and y-coordinates of each cell. Each ROI
is therefore assigned its x- and y-coordinates. The values are
saved in a file to be loaded into MATLAB. Next, all possible
combinations of cell pairs are examined using cross-correlation
analysis (Figures 5C,D). A correlation value between 0 and 1 is
calculated for each cell pair that reflects the strength of interac-
tion. Note that only the absolute value of the cross-correlation
function is saved in the correlation matrix, thus neglecting the
difference between correlation and anti-correlation. To discrim-
inate between real and false correlations, a cut-off value should
be established (Figures 5E,F). Our method provides an unbi-
ased way to calculate such cut-off values using signals that have
been scrambled by randomly shuffling each cell signal in the
time domain (see Section Materials and Methods); thus the total
activity within the data set is preserved. Thereafter, the cut-off
value can be set as the 99th percentile of all correlation coeffi-
cients within the scrambled data set (Malmersjö et al., 2013a,b).
Thus, two cells are defined as interconnected if their correlation
coefficient exceeds the cut-off value.

We applied this method to the investigation of functional net-
works in neural progenitor cells exhibiting spontaneous Ca2+
activity. Before imaging, neural progenitor cells derived from
embryonic stem cells were loaded with the Ca2+ indicator Fluo-
3/AM for 30 min. Time-lapse recording was performed by flu-
orescence microscopy, using a sampling frequency of 0.2 Hz.
After approximately 30 min of recording, the time-lapse experi-
ment was terminated, and the network analysis could start. Using
the Fiji image-processing software, each cell was marked with
an ROI and the mean fluorescence value was calculated (see
Supplementary Movie 1 for a step-by-step guide). The values were
saved in a tab-delimited text file that can be loaded into MATLAB
(see Supplementary Movie 2 for a step-by-step guide). The sam-
pling frequency and the physical pixel size were stated explicitly
in MATLAB. Signal artifacts, caused, e.g., by focus change and/or
drug application, were filtered out by choosing a “clean” time
window for the analysis. Because a data set containing cells with
no activity will result in a correlation analysis with false positives,
only active cells were chosen for further analysis (Figures 6A,B).
Cells with very few peaks (Figure 6C) or dying cells that create
a sustained plateau increase in the signal (Figure 6D) can also
result in false positives. Active cells could be defined, for exam-
ple, as cells exhibiting three transient intensity increases or more
that exceed 15% over the baseline (Malmersjö et al., 2013a) or

FIGURE 5 | Cartoon illustrating the basic steps of the method. (A) A
time-lapse cell recording is imported into image-processing software that
calculates the mean intensity and x,y-coordinates for each ROI and saves all
the values in a tab-delimited text file. Time points are indicated by t1, t2,
. . . tn. (B) The file is loaded into MATLAB, which generates a matrix in
which the individual cells’ time series are divided into columns and the time
points are divided into rows. The ten cells are indicated by roman numerals.
The entire network structure is plotted (C) from the correlation matrix (D).

Colored lines and matrix elements indicate the strength of correlation
between cell pairs. Significant correlations were plotted (E) by applying a
cut-off to the correlation matrix (F).

more than two standard deviations over the noise. Here noise is
defined as the baseline fluctuations of a non-active cell. If the data
set has a low signal-to-noise ratio, digitization is required. The
process of digitization replaces numbers that do not exceed the
threshold with 0 and all others with 1. To further optimize the
data set before analysis, single-cell signals can be trend-corrected
and/or maximal lag can be selected (see Section Materials and
Methods). Thereafter, it is advisable to manually check cell pairs
with high correlation coefficients in order to filter out false pos-
itives. Another source of false positive correlations could arise
from defining two separate ROIs that inadvertently overlaps cov-
ering parts of the same cell. To avoid this, an alternative approach
would be to automatically segment cells with a nuclear marker
used as a mask.

The network analysis generates a network structure that can
be plotted on top of a microscope image. Figure 7A shows
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FIGURE 6 | Time series can produce false correlations. (A) Two separate
time series consisting of pseudorandom numbers normally distributed. (B)

The cross-correlation calculation for the time series in (A). The mean

correlation is −0.0011 and the Pearson correlation is 0.2863. Illustration of
false-positive cell pairs with high correlations due to small numbers of peaks
(C) or sustained plateau increases (D).

the network plot of correlation coefficients for neural progen-
itor cells exhibiting spontaneous Ca2+ activity. Only connec-
tions exceeding a cut-off (see below) were plotted. The net-
work plot suggests that neighboring cells are strongly correlated
(Figure 7A). By studying the distance distribution of the corre-
lation coefficients in detail, we indeed observed that cells close
to each other were strongly correlated (Figures 7B,C). We previ-
ously tested this observation experimentally by pharmacological
inhibition of gap junctions with Octanol (1 mM) and shRNA
knockdown of the Connexin 43 gene, both of which disrupt
the network activity (Malmersjö et al., 2013a). As described
above, the cut-off was determined by calculating the mean of
the 99th percentile of the scrambled data (see Section Materials
and Methods). Plotting the distance distribution of the scram-
bled data revealed no cell pairs with high correlations and
short internodal distances (Figures 7D,E). Thus, the cut-off was
set to 0.39 to filter out the bulk of cells with low correla-
tion values (Figures 7B,C,E; red lines). The degree distribu-
tion revealed a typical scale-free network structure (Figure 7F).
Calculation of the network parameters σ = 7.7 ± 0.92, λ =
0.97 ± 0.056, and γ = −1.2 ± 0.049 (N = 6) yielded a charac-
terization of this network as a small-world network with scale-free
topology.

Network analysis was also performed on cardiac HL-1 cells
interconnected by gap junctions (Claycomb et al., 1998). These
cells exhibited spontaneous Ca2+ activity with network prop-
erties (Figure 8A). The analysis revealed that these networks
did not have small-world characteristics (σ = 1.06 ± 0.020 and
λ = 1.0 ± 0.0083, N = 4). Instead, the HL-1 networks showed
similarities to a random network. To test the strength of the
method, the network was divided into two sub-networks by cre-
ating a cut with a syringe (Figure 8A). The distance distribution
of HL-1 cells revealed a majority of cell pairs with high cor-
relations and short internodal distances (Figure 8B), although
not as clearly as in the neural progenitor cells described above

(Figure 7B). Studying the maximal correlation as a function of lag
revealed a highly synchronized cell population (Figure 8C). Next,
we tested the dependency of correlations on distance by random-
izing the cell positions of the cells. After randomizing the cells’
coordinates, the cut was no longer visible (Figure 8D). Plotting
the distance distribution of the data with randomized positions
resulted in more evenly spread cell pairs (Figure 8E), revealing
that the randomization abolished the dependency of correlation
on distance (Figures 8D,E). In this analysis, the cut-off was set
to 0.23, using the same method as described above for neural
progenitor cells, to filter out the bulk of cells with low corre-
lation values. Overall, the HL-1 network exhibited similarities
with a random network, as indicated by the degree distribution
(Figure 8F).

Usage of our method will generate a number of different
parameter values describing the corresponding functional net-
work: mean value of all correlations, mean value of correlations
above cut-off, 99th percentile of all correlations, connectivity,
edge-density, λ, σ , small-world parameter σ /λ, and γ . How to
statistically compare and evaluate networks is non-trivial and still
being studied. As a first approximation, different networks of dif-
ferent type of cells or treatments can be statistically compared
using for instance the Student’s t-test, thus assuming normally
distributed values (Malmersjö et al., 2013a). If, for example,
one treatment is hypothesized to decrease the overall connectiv-
ity within a network, mean values of a number of samples of
edge-density and connectivity can be calculated and compared
between groups. However, it is more accurate to compare several
parameters simultaneously and perform a Bonferroni correction
to counteract the problem with multiple comparisons. Using a
Bonferroni correction sets a lower bound on the significance
threshold. Regarding degree distributions, for example the scale
factor for power-law distributions can be inferred using standard
least-square or the maximum likelihood method (Clauset et al.,
2009).
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FIGURE 7 | Network analyses performed on time-lapse Ca2+
recordings of neural progenitor cells. (A) Network with a cut-off of 0.39
for neural progenitor cells plotted on top of a microscopic image. (B)

Correlation as a function of distance for the experiment shown in (A). Red
line indicates the cut-off level. Arrows indicate cell pairs with high
correlations and short intermodal distances. (C) Distance distribution of
data in (B) with correlations above cut-off (>Cut-off), shown in red, and
below cut-off (<Cut-off), shown in black. Note the higher frequency of
shorter distances for correlations above the cut-off. (D) Network plot of
data from (A) scrambled in time domain, as described in Figure 3. (E)

Correlation as a function of distance for the data shown in (D). (F) Degree
distribution of the analysis on neural progenitor cells showed in (A). Scale
bars, 50 μm.

DISCUSSION
The method described here identifies network formations in data
sets acquired by live-cell imaging and enables objective analy-
ses of these networks by characterizing their network topology.
The information provided here, together with the accompanying
software tools, should enable the experimental biologists without
programming skills to identify and quantitatively analyze net-
works of time-lapse microscopy recordings. The crucial steps of
pre-processing the data and determining the cut-off are discussed
further below. Comparisons with other network methods and
similarities between cell networks and social networks are also
discussed.

DATA PRE-PROCESSING
The outcome of the analysis depends critically on the quality of
the input data. It is therefore essential to pre-process the data;
for example, by selecting a time window that includes no arti-
facts or performing trend correction to remove the influences
of fluorescence/dye bleaching or dye leakage. It is also crucial

FIGURE 8 | Network analyses performed on two separated cell

ensembles in cardiac HL-1 cells. (A) Network of atrial HL-1 cells with a
cut-off of 0.23, plotted on top of a microscope image. A cut divided the
cells into two populations, as indicated in the figure. (B) Correlation as a
function of distance for the experiment shown in (A). (C) Lag distribution
for the maximum correlations above cut-off (>Cut-off), shown in red, and
below cut-off (<Cut-off), shown in black. Note the small peaks for values
below cut-off. (D) Network plot of data from (A) with x-y-coordinates of all
cells randomized. (E) Correlation as a function of distance for the data
shown in (D). (F) Degree distribution of the analysis of the HL-1 cells shown
in (A). Scale bars, 50 μm.

to pre-select cells that are active: the cross-covariance function
only considers the relative amplitude; consequently, inactive cells
with normal background noise appear correlated in the pro-
gram, resulting in false-positive network links (Figures 6A–C).
Therefore, inactive cells should be manually removed from the
data set. Cells with sustained plateau increases may also result in
false-positive network links (Figure 6D).

DETERMINING THE CUT-OFF
In the two experiments above, different cut-off values were used
to filter out only strongly connected cells. The cut-offs were
chosen as the mean of the 99th percentile of the correlation coef-
ficients for the scrambled data. Changing the cut-off affected the
edge density and the connectivity, two different definitions of the
number of connected cells (Figure 9A). In addition, the small-
worldness of a network is strongly related to its edge density
(Humphries and Gurney, 2008). As illustrated by a functional
network of neural progenitors, increasing the cut-off (the same as
decreasing the edge density) increases the small-world parameter
(Figures 9B,C). Thus, it is very important to choose an adequate
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FIGURE 9 | Network properties are dependent on the cut-off value. (A)

Increasing the cut-off for an experiment on neural progenitor cells
decreased both the edge density and connectivity. (B) Increasing the
cut-off decreased the shortest path length and increased clustering and the
small-world parameter. (C) The small-world parameter does not exhibit a
linear dependency on the edge density. Data were fit to a polynomial
function of the first order inverse.

cut-off; for example, by studying the correlation distribution of
a scrambled data set. It is worth pointing out that a network of
strongly correlated cells does not automatically have the prop-
erties of small-worldness or scale-freeness, as is clear from a
theoretical point of view (Watts and Strogatz, 1998; Barabasi and
Albert, 1999) and from our two examples of highly correlated cells
with different network structures (Figures 7A, 8A).

COMPARISON WITH PREVIOUSLY PUBLISHED PRODUCTS
Our method allows identification and analysis of network
structures from cell-imaging data sets acquired by time-lapse
microscopy using code written in MATLAB. MATLAB is a widely
used numerical computing environment and programming lan-
guage developed by MathWorks (http://www.mathworks.com).

A number of software tools for analyzing networks exist, but
these are most often suited for genetic and molecular data,
rather than time-lapse microscopy recordings (Brohee et al.,
2008; Doncheva et al., 2012). LEDA (Mehlhorn and Naher, 1995)
(C++) and QuACN (Mueller et al., 2011) (R) are tools for users
with programming skills, whereas Pajek (Batagelj and Mrvar,
2004), Cytoscape, and yED are more graphically oriented solu-
tions. A common feature of all of these software tools is that they
are primarily used to analyze already identified networks, and
are therefore not applicable to data sets consisting of time-lapse
recordings of unknown network activity.

CELL NETWORKS vs. SOCIAL NETWORKS AND TRANSPORTATION
SYSTEMS
We hypothesized that the scale-free network structure exhibited
by neural progenitor cells (Figure 7A) was a consequence of the
fact that dividing cells are more prone to connect to already
existing highly connected nodes, in accordance with the Barabási–
Albert model of preferential attachment (Barabasi and Albert,
1999). Highly active neural progenitors with many neighbors
divide more frequently and tend to connect to their daugh-
ter cells. The same phenomenon exists in social networks, in
which people with many friends can acquire new friends more
easily than those with few. By analogy to the Watts-Strogatz
model of long shortcuts (Watts and Strogatz, 1998), the small-
worldness in the central nervous system could be generated by
extensions from neurons that connect to other neurons at rel-
atively long distances, thereby decreasing the mean internodal
distance. Examples of small-world networks include social net-
works of actors in Hollywood, in which the distance between two
random actors is shorter than expected and cliques are present
(Watts and Strogatz, 1998). An example of a scale-free small-
world network is how airlines connect the world through nodes of
airports (Guimera et al., 2005). A random disruption to one of the
thousands of airport around the world would usually not disturb
the flow of travelers, but a shutdown of a hub, such as London
Heathrow Airport, could severely harm the network. Hence a
scale-free small-world network has a good tolerance for random
deletion of nodes, but low tolerance for a directed attack to a hub.
Graph theory predicts that such network designs are effective for
biological systems, since they enable efficient information transfer
and robustness against failure of single cells (Barabasi and Oltvai,
2004).

FUTURE DIRECTIONS
Studying network structures is becoming increasingly popular
in many subfields of biology, in part because network designs
of biological systems resemble the Internet, social networks, and
transportation systems. Studies of networking in cell biology and
social networks will benefit from each other and further our
knowledge of how cells interact to build a functioning organism.
Obviously, this is even more important in the field of neuro-
science where neural circuits perform computations dependent
on their structure.

Currently, most analyses are two-dimensional. However, bio-
logical systems are 3-dimensional. Therefore, future analyses
should be performed in three dimensions. Modern two-photon
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laser scanning microscopes and light-sheet microscopy systems
should make it possible to image intact organs or whole animals
in real time. Experiments using these image techniques gener-
ate huge data sets that require fast computers with large storage
capacities to perform network analyses.

In the future, network analyses may benefit from employing
more sophisticated methods to identify network links. This may
include Granger causality test, which is a statistical hypothesis test
for determining whether one time series is useful in forecasting
another (Seth, 2010). Furthermore, both cross-correlation analy-
sis and Granger causality detects linear relationships, opening up
for further improvement for detection of non-linear connections
such as transfer entropy (Vicente et al., 2011).
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